Metallacarborane Cluster Anions of the Cobalt Bisdicarbollide-Type as Chaotropic Carriers for Transmembrane and Intracellular Delivery of Cationic Peptides
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37265356
PubMed Central
PMC10288510
DOI
10.1021/jacs.3c01623
Knihovny.cz E-zdroje
- MeSH
- anionty metabolismus MeSH
- buněčná membrána metabolismus MeSH
- kobalt * metabolismus MeSH
- lipidové dvojvrstvy chemie MeSH
- peptidy * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- anionty MeSH
- kobalt * MeSH
- lipidové dvojvrstvy MeSH
- peptidy * MeSH
Cobalt bisdicarbollides (COSANs) are inorganic boron-based anions that have been previously reported to permeate by themselves through lipid bilayer membranes, a propensity that is related to their superchaotropic character. We now introduce their use as selective and efficient molecular carriers of otherwise impermeable hydrophilic oligopeptides through both artificial and cellular membranes, without causing membrane lysis or poration at low micromolar carrier concentrations. COSANs transport not only arginine-rich but also lysine-rich peptides, whereas low-molecular-weight analytes such as amino acids as well as neutral and anionic cargos (phalloidin and BSA) are not transported. In addition to the unsubstituted isomers (known as ortho- and meta-COSAN), four derivatives bearing organic substituents or halogen atoms have been evaluated, and all six of them surpass established carriers such as pyrenebutyrate in terms of activity. U-tube experiments and black lipid membrane conductance measurements establish that the transport across model membranes is mediated by a molecular carrier mechanism. Transport experiments in living cells showed that a fluorescent peptide cargo, FITC-Arg8, is delivered into the cytosol.
Zobrazit více v PubMed
Sivaev I. B.; Bregadze V. V. Polyhedral boranes for medical applications: current status and perspectives. Eur. J. Inorg. Chem. 2009, 2009, 1433–1450. 10.1002/ejic.200900003. DOI
Gabel D. Boron clusters in medicinal chemistry: perspectives and problems. Pure Appl. Chem. 2015, 87, 173–179. 10.1515/pac-2014-1007. DOI
Hey-Hawkins E.; Viñas C.. Boron-Based Compounds: Potential and Emerging Applications in Medicine; John Wiley & Sons, 2018.
Axtell J. C.; Saleh L. M. A.; Qian E. A.; Wixtrom A. I.; Spokoyny A. M. Synthesis and Applications of Perfunctionalized Boron Clusters. Inorg. Chem. 2018, 57, 2333–2350. 10.1021/acs.inorgchem.7b02912. PubMed DOI PMC
Bernier N. A.; Teh J.; Reichel D.; Zahorsky-Reeves J. L.; Perez J. M.; Spokoyny A. M. Ex Vivo and In Vivo Evaluation of Dodecaborate-Based Clusters Encapsulated in Ferumoxytol Nanoparticles. Langmuir 2021, 37, 14500–14508. 10.1021/acs.langmuir.1c02506. PubMed DOI PMC
Soloway A. H.; Tjarks W.; Barnum B. A.; Rong F.-G.; Barth R. F.; Codogni I. M.; Wilson J. G. The Chemistry of Neutron Capture Therapy. Chem. Rev. 1998, 98, 1515–1562. 10.1021/cr941195u. PubMed DOI
Assaf K. I.; Ural M. S.; Pan F.; Georgiev T.; Simova S.; Rissanen K.; Gabel D.; Nau W. M. Water Structure Recovery in Chaotropic Anion Recognition: High-Affinity Binding of Dodecaborate Clusters to γ-Cyclodextrin. Angew. Chem., Int. Ed. 2015, 54, 6852–6856. 10.1002/anie.201412485. PubMed DOI PMC
Naskar B.; Diat O.; Nardello-Rataj V.; Bauduin P. Nanometer-Size Polyoxometalate Anions Adsorb Strongly on Neutral Soft Surfaces. J. Phys. Chem. C 2015, 119, 20985–20992. 10.1021/acs.jpcc.5b06273. DOI
Buchecker T.; Schmid P.; Renaudineau S.; Diat O.; Proust A.; Pfitzner A.; Bauduin P. Polyoxometalates in the Hofmeister series. Chem. Commun. 2018, 54, 1833–1836. 10.1039/C7CC09113C. PubMed DOI
Ivanov A. A.; Falaise C.; Landy D.; Haouas M.; Mironov Y. V.; Shestopalov M. A.; Cadot E. Tuning the chaotropic effect as an assembly motif through one-electron transfer in a rhenium cluster. Chem. Commun. 2019, 55, 9951–9954. 10.1039/C9CC05136H. PubMed DOI
Yao S.; Falaise C.; Ivanov A. A.; Leclerc N.; Hohenschutz M.; Haouas M.; Landy D.; Shestopalov M. A.; Bauduin P.; Cadot E. Hofmeister effect in the Keggin-type polyoxotungstate series. Inorg. Chem. Front. 2021, 8, 12–25. 10.1039/D0QI00902D. DOI
Khlifi S.; Marrot J.; Haouas M.; Shepard W. E.; Falaise C.; Cadot E. Chaotropic Effect as an Assembly Motif to Construct Supramolecular Cyclodextrin–Polyoxometalate-Based Frameworks. J. Am. Chem. Soc. 2022, 144, 4469–4477. 10.1021/jacs.1c12049. PubMed DOI
Hollow S. E.; Johnstone T. C. Encapsulation of closo-dodecaiodododecaborate in 2-hydroxypropyl-γ-cyclodextrin prevents hemolysis. Chem. Commun. 2022, 58, 2375–2378. 10.1039/D1CC06348K. PubMed DOI
Barba-Bon A.; Salluce G.; Lostalé-Seijo I.; Assaf K. I.; Hennig A.; Montenegro J.; Nau W. M. Boron clusters as broadband membrane carriers. Nature 2022, 603, 637–642. 10.1038/s41586-022-04413-w. PubMed DOI PMC
Hu X.-Y.; Guo D.-S. Superchaotropic Boron Clusters as Membrane Carriers for the Transport of Hydrophilic Cargos. Angew. Chem., Int. Ed. 2022, 61, e20220497910.1002/anie.202204979. PubMed DOI
Muetterties E. L.; Balthis J. H.; Chia Y. T.; Knoth W. H.; Miller H. C. Chemistry of Boranes. VIII. Salts and Acids of B10H10-2 and B1212-2. Inorg. Chem. 1964, 3, 444–451. 10.1021/ic50013a030. DOI
Plesek J. Potential applications of the boron cluster compounds. Chem. Rev. 1992, 92, 269–278. 10.1021/cr00010a005. DOI
Barton J. L.; Wixtrom A. I.; Kowalski J. A.; Qian E. A.; Jung D.; Brushett F. R.; Spokoyny A. M. Perfunctionalized Dodecaborate Clusters as Stable Metal-Free Active Materials for Charge Storage. ACS Appl. Energy Mater. 2019, 2, 4907–4913. 10.1021/acsaem.9b00610. PubMed DOI PMC
Karki K.; Gabel D.; Roccatano D. Structure and Dynamics of Dodecaborate Clusters in Water. Inorg. Chem. 2012, 51, 4894–4896. 10.1021/ic300223z. PubMed DOI
Larsen D.; Beeren S. R. Enzyme-mediated dynamic combinatorial chemistry allows out-of-equilibrium template-directed synthesis of macrocyclic oligosaccharides. Chem. Sci. 2019, 10, 9981–9987. 10.1039/C9SC03983J. PubMed DOI PMC
Cebula J.; Fink K.; Boratyński J.; Goszczyński T. M. Supramolecular chemistry of anionic boron clusters and its applications in biology. Coord. Chem. Rev. 2023, 477, 21494010.1016/j.ccr.2022.214940. DOI
Bregadze V. I. Dicarba-closo-dodecaboranes C2B10H12 and their derivatives. Chem. Rev. 1992, 92, 209–223. 10.1021/cr00010a002. DOI
Beckett M. A.; Brellochs B.; Chizhevsky I. T.; Damhus T.; Hellwich K.-H.; Kennedy J. D.; Laitinen R.; Powell W. H.; Rabinovich D.; Viñas C.; Yerin A. Nomenclature for boranes and related species (IUPAC Recommendations 2019). Pure Appl. Chem. 2020, 92, 355–381. 10.1515/pac-2018-0205. DOI
Sivaev I. B.; Bregadze V. I. Chemistry of Cobalt Bis(dicarbollides). A Review. Collect. Czech. Chem. Commun. 1999, 64, 783–805. 10.1135/cccc19990783. DOI
Cabrera-González J.; Sánchez-Arderiu V.; Viñas C.; Parella T.; Teixidor F.; Núñez R. Redox-Active Metallacarborane-Decorated Octasilsesquioxanes Electrochemical and Thermal Properties. Inorg. Chem. 2016, 55, 11630–11634. 10.1021/acs.inorgchem.6b02394. PubMed DOI
Dash B. P.; Satapathy R.; Swain B. R.; Mahanta C. S.; Jena B. B.; Hosmane N. S. Cobalt bis(dicarbollide) anion and its derivatives. J. Organomet. Chem. 2017, 849–850, 170–194. 10.1016/j.jorganchem.2017.04.006. DOI
Kaniowski D.; Kulik K.; Suwara J.; Ebenryter-Olbińska K.; Nawrot B. Boron Clusters as Enhancers of RNase H Activity in the Smart Strategy of Gene Silencing by Antisense Oligonucleotides. Int. J. Mol. Sci. 2022, 23, 12190.10.3390/ijms232012190. PubMed DOI PMC
Kaniowski D.; Suwara J.; Ebenryter-Olbińska K.; Jakóbik-Kolon A.; Nawrot B. EGFR-Targeted Cellular Delivery of Therapeutic Nucleic Acids Mediated by Boron Clusters. Int. J. Mol. Sci. 2022, 23, 14793.10.3390/ijms232314793. PubMed DOI PMC
Nuez-Martínez M.; Queralt-Martín M.; Muñoz-Juan A.; Aguilella V. M.; Laromaine A.; Teixidor F.; Viñas C.; Pinto C. G.; Pinheiro T.; Guerreiro J. F.; Mendes F.; Roma-Rodrigues C.; Baptista P. V.; Fernandes A. R.; Valic S.; Marques F. Boron clusters (ferrabisdicarbollides) shaping the future as radiosensitizers for multimodal (chemo/radio/PBFR) therapy of glioblastoma. J. Mater. Chem. B 2022, 10, 9794–9815. 10.1039/D2TB01818G. PubMed DOI
Kožíšek M.; Cígler P.; Lepšík M.; Fanfrlík J.; Řezáčová P.; Brynda J.; Pokorná J.; Plešek J.; Grüner B.; Grantz Šašková K.; Václavíková J.; Král V.; Konvalinka J. Inorganic Polyhedral Metallacarborane Inhibitors of HIV Protease: A New Approach to Overcoming Antiviral Resistance. J. Med. Chem. 2008, 51, 4839–4843. 10.1021/jm8002334. PubMed DOI
Řezáčová P.; Pokorná J.; Brynda J.; Kožíšek M.; Cígler P.; Lepšík M.; Fanfrlík J.; Řezáč J.; Grantz Šašková K.; Sieglová I.; Plešek J.; Šícha V.; Grüner B.; Oberwinkler H.; Sedláček J.; Kräusslich H.-G.; Hobza P.; Král V.; Konvalinka J. Design of HIV Protease Inhibitors Based on Inorganic Polyhedral Metallacarboranes. J. Med. Chem. 2009, 52, 7132–7141. 10.1021/jm9011388. PubMed DOI
Grüner B.; Brynda J.; Das V.; Šícha V.; Štěpánková J.; Nekvinda J.; Holub J.; Pospíšilová K.; Fábry M.; Pachl P.; Král V.; Kugler M.; Mašek V.; Medvedíková M.; Matějková S.; Nová A.; Lišková B.; Gurská S.; Džubák P.; Hajdúch M.; Řezáčová P. Metallacarborane Sulfamides: Unconventional, Specific, and Highly Selective Inhibitors of Carbonic Anhydrase IX. J. Med. Chem. 2019, 62, 9560–9575. 10.1021/acs.jmedchem.9b00945. PubMed DOI
Kvasničková E.; Masák J.; Čejka J.; Mat’átková O.; Šícha V. Preparation, characterization, and the selective antimicrobial activity of N-alkylammonium 8-diethyleneglycol cobalt bis-dicarbollide derivatives. J. Organomet. Chem. 2017, 827, 23–31. 10.1016/j.jorganchem.2016.10.037. DOI
Vaňková E.; Lokočová K.; Kašparová P.; Hadravová R.; Křížová I.; Mat’átková O.; Masák J.; Šícha V. Cobalt Bis-Dicarbollide Enhances Antibiotics Action towards Staphylococcus epidermidis Planktonic Growth Due to Cell Envelopes Disruption. Pharmaceuticals 2022, 15, 534.10.3390/ph15050534. PubMed DOI PMC
Bennour I.; Ramos M. N.; Nuez-Martínez M.; Xavier J. A. M.; Buades A. B.; Sillanpä R.; Teixidor F.; Choquesillo-Lazarte D.; Romero I.; Martinez-Medina M.; Viñas C. Water soluble organometallic small molecules as promising antibacterial agents: synthesis, physical–chemical properties and biological evaluation to tackle bacterial infections. Dalton Trans. 2022, 51, 7188–7209. 10.1039/D2DT01015A. PubMed DOI
Kubiński K.; Masłyk M.; Janeczko M.; Goldeman W.; Nasulewicz-Goldeman A.; Psurski M.; Martyna A.; Boguszewska-Czubara A.; Cebula J.; Goszczyński T. M. Metallacarborane Derivatives as Innovative Anti-Candida albicans Agents. J. Med. Chem. 2022, 65, 13935–13945. 10.1021/acs.jmedchem.2c01167. PubMed DOI
Núñez R.; Romero I.; Teixidor F.; Viñas C. Icosahedral boron clusters: a perfect tool for the enhancement of polymer features. Chem. Soc. Rev. 2016, 45, 5147–5173. 10.1039/C6CS00159A. PubMed DOI
Hardie M. J. The use of carborane anions in coordination polymers and extended solids. J. Chem. Crystallogr. 2007, 37, 69–80. 10.1007/S10870-006-9153-X. DOI
Fink K.; Boratynski J.; Paprocka M.; Goszczynski T. M. Metallacarboranes as a tool for enhancing the activity of therapeutic peptides. Ann. N. Y. Acad. Sci. 2019, 1457, 128–141. 10.1111/nyas.14201. PubMed DOI
Masalles C.; Borrós S.; Viñas C.; Teixidor F. Are Low-Coordinating Anions of Interest as Doping Agents in Organic Conducting Polymers?. Adv. Mater. 2000, 12, 1199–1202. 10.1002/1521-4095(200008)12:16<1199::AID-ADMA1199>3.0.CO;2-W. DOI
Brus J.; Czernek J.; Urbanova M.; Rohlíček J.; Plecháček T. Transferring Lithium Ions in the Nanochannels of Flexible Metal–Organic Frameworks Featuring Superchaotropic Metallacarborane Guests: Mechanism of Ionic Conductivity at Atomic Resolution. ACS Appl. Mater. Interfaces 2020, 12, 47447–47456. 10.1021/acsami.0c12293. PubMed DOI
Verdiá-Báguena C.; Alcaraz A.; Aguilella V. M.; Cioran A. M.; Tachikawa S.; Nakamura H.; Teixidor F.; Viñas C. Amphiphilic COSAN and I2-COSAN crossing synthetic lipid membranes: planar bilayers and liposomes. Chem. Commun. 2014, 50, 6700–6703. 10.1039/c4cc01283f. PubMed DOI
Rokitskaya T. I.; Kosenko I. D.; Sivaev I. B.; Antonenko Y. N.; Bregadze V. I. Fast flip–flop of halogenated cobalt bis(dicarbollide) anion in a lipid bilayer membrane. Phys. Chem. Chem. Phys. 2017, 19, 25122–25128. 10.1039/C7CP04207H. PubMed DOI
Assaf K. I.; Begaj B.; Frank A.; Nilam M.; Mougharbel A. S.; Kortz U.; Nekvinda J.; Grüner B.; Gabel D.; Nau W. M. High-Affinity Binding of Metallacarborane Cobalt Bis(dicarbollide) Anions to Cyclodextrins and Application to Membrane Translocation. J. Org. Chem. 2019, 84, 11790–11798. 10.1021/acs.joc.9b01688. PubMed DOI
Tarrés M.; Canetta E.; Paul E.; Forbes J.; Azzouni K.; Viñas C.; Teixidor F.; Harwood A. J. Biological interaction of living cells with COSAN-based synthetic vesicles. Sci. Rep. 2015, 5, 7804.10.1038/srep07804. PubMed DOI PMC
Chaari M.; Gaztelumendi N.; Cabrera-Gonzalez J.; Peixoto-Moledo P.; Vinas C.; Xochitiotzi-Flores E.; Farfan N.; Ben Salah A.; Nogues C.; Nunez R. Fluorescent BODIPY-Anionic Boron Cluster Conjugates as Potential Agents for Cell Tracking. Bioconjugate Chem. 2018, 29, 1763–1773. 10.1021/acs.bioconjchem.8b00204. PubMed DOI
Muñoz-Flores B. M.; Cabrera-González J.; Viñas C.; Chávez-Reyes A.; Dias H. V. R.; Jiménez-Pérez V. M.; Núñez R. Organotin Dyes Bearing Anionic Boron Clusters as Cell-Staining Fluorescent Probes. Chem. – Eur. J. 2018, 24, 5601–5612. 10.1002/chem.201705804. PubMed DOI
Gona K. B.; Zaulet A.; Gómez-Vallejo V.; Teixidor F.; Llop J.; Viñas C. COSAN as a molecular imaging platform: synthesis and “in vivo” imaging. Chem. Commun. 2014, 50, 11415–11417. 10.1039/C4CC05058D. PubMed DOI
Fuentes I.; García-Mendiola T.; Sato S.; Pita M.; Nakamura H.; Lorenzo E.; Teixidor F.; Marques F.; Viñas C. Metallacarboranes on the Road to Anticancer Therapies: Cellular Uptake, DNA Interaction, and Biological Evaluation of Cobaltabisdicarbollide [COSAN]–. Chem. – Eur. J. 2018, 24, 17239–17254. 10.1002/chem.201803178. PubMed DOI
Tarrés M.; Canetta E.; Viñas C.; Teixidor F.; Harwood A. J. Imaging in living cells using νB–H Raman spectroscopy: monitoring COSAN uptake. Chem. Commun. 2014, 50, 3370–3372. 10.1039/C3CC49658A. PubMed DOI
Nuez-Martinez M.; Pinto C. I. G.; Guerreiro J. F.; Mendes F.; Marques F.; Muñoz-Juan A.; Xavier J. A. M.; Laromaine A.; Bitonto V.; Protti N.; Crich S. G.; Teixidor F.; Viñas C. Cobaltabis(dicarbollide) ([o-COSAN]−) as Multifunctional Chemotherapeutics: A Prospective Application in Boron Neutron Capture Therapy (BNCT) for Glioblastoma. Cancers 2021, 13, 6367.10.3390/cancers13246367. PubMed DOI PMC
Rojo I.; Teixidor F.; Kivekäs R.; Sillanpä R.; Viñas C. Methylation and Demethylation in Cobaltabis(dicarbollide) Derivatives. Organometallics 2003, 22, 4642–4646. 10.1021/om030412r. DOI
Hurlburt P. K.; Miller R. L.; Abney K. D.; Foreman T. M.; Butcher R. J.; Kinkhead S. A. New synthetic routes to B-halogenated derivatives of cobalt dicarbollide. Inorg. Chem. 1995, 34, 5215–5219. 10.1021/ic00125a021. DOI
Mátel Ĺ.; Macášek F.; Rajec P.; Heřmánek S.; Plešek J. B-Halogen derivatives of the bis (1, 2-dicarbollyl) cobalt (III) anion. Polyhedron 1982, 1, 511–519. 10.1016/S0277-5387(00)81604-6. DOI
Hawthorne M. F.; Young D. C.; Andrews T. D.; Howe D. V.; Pilling R. L.; Pitts A. D.; Reintjes M.; Warren L. F.; Wegner P. A. pi.-Dicarbollyl derivatives of the transition metals. Metallocene analogs. J. Am. Chem. Soc. 1968, 90, 879–896. 10.1021/ja01006a008. DOI
Assaf K. I.; Nau W. M. The Chaotropic Effect as an Assembly Motif in Chemistry. Angew. Chem., Int. Ed. 2018, 57, 13968–13981. 10.1002/anie.201804597. PubMed DOI PMC
Marcus Y. Effect of Ions on the Structure of Water: Structure Making and Breaking. Chem. Rev. 2009, 109, 1346–1370. 10.1021/cr8003828. PubMed DOI
Marcus Y. ViscosityB-coefficients, structural entropies and heat capacities, and the effects of ions on the structure of water. J. Solution Chem. 1994, 23, 831–848. 10.1007/BF00972677. DOI
Okur H. I.; Hladílková J.; Rembert K. B.; Cho Y.; Heyda J.; Dzubiella J.; Cremer P. S.; Jungwirth P. Beyond the Hofmeister Series: Ion-Specific Effects on Proteins and Their Biological Functions. J. Phys. Chem. B 2017, 121, 1997–2014. 10.1021/acs.jpcb.6b10797. PubMed DOI
Kunz W.; Lo Nostro P.; Ninham B. W. The present state of affairs with Hofmeister effects. Curr. Opin. Colloid Interface Sci. 2004, 9, 1–18. 10.1016/j.cocis.2004.05.004. DOI
Collins K. D.; Washabaugh M. W. The Hofmeister effect and the behaviour of water at interfaces. Q. Rev. Biophys. 1985, 18, 323–422. 10.1017/S0033583500005369. PubMed DOI
Hofmeister F. Zur Lehre von der Wirkung der Salze. Arch. Exp. Pathol. Pharmakol. 1888, 24, 247–260. 10.1007/BF01918191. DOI
Ďord’ovič V.; Tošner Z.; Uchman M.; Zhigunov A.; Reza M.; Ruokolainen J.; Pramanik G.; Cígler P.; Kalíková K.; Gradzielski M.; Matějíček P. Stealth Amphiphiles: Self-Assembly of Polyhedral Boron Clusters. Langmuir 2016, 32, 6713–6722. 10.1021/acs.langmuir.6b01995. PubMed DOI
Fernandez-Alvarez R.; Ďord’ovič V.; Uchman M.; Matějíček P. Amphiphiles without Head-and-Tail Design: Nanostructures Based on the Self-Assembly of Anionic Boron Cluster Compounds. Langmuir 2018, 34, 3541–3554. 10.1021/acs.langmuir.7b03306. PubMed DOI
Fernandez-Alvarez R.; Medos Z.; Tosner Z.; Zhigunov A.; Uchman M.; Hervo-Hansen S.; Lund M.; Bester-Rogac M.; Matějíček P. Total Description of Intrinsic Amphiphile Aggregation: Calorimetry Study and Molecular Probing. Langmuir 2018, 34, 14448–14457. 10.1021/acs.langmuir.8b03462. PubMed DOI
Matějíček P.; Cígler P.; Procházka K.; Král V. Molecular Assembly of Metallacarboranes in Water: Light Scattering and Microscopy Study. Langmuir 2006, 22, 575–581. 10.1021/la052201s. PubMed DOI
Chevrot G.; Schurhammer R.; Wipff G. Surfactant Behavior of “Ellipsoidal” Dicarbollide Anions: A Molecular Dynamics Study. J. Phys. Chem. B 2006, 110, 9488–9498. 10.1021/jp060930q. PubMed DOI
Bauduin P.; Prevost S.; Farras P.; Teixidor F.; Diat O.; Zemb T. A theta-shaped amphiphilic cobaltabisdicarbollide anion: transition from monolayer vesicles to micelles. Angew. Chem., Int. Ed. 2011, 50, 5298–5300. 10.1002/anie.201100410. PubMed DOI
Uchman M.; Ďord’ovič V.; Tošner Z.; Matějíček P. Classical Amphiphilic Behavior of Nonclassical Amphiphiles: A Comparison of Metallacarborane Self-Assembly with SDS Micellization. Angew. Chem., Int. Ed. 2015, 54, 14113–14117. 10.1002/anie.201506545. PubMed DOI
Malaspina D. C.; Viñas C.; Teixidor F.; Faraudo J. Atomistic Simulations of COSAN: Amphiphiles without a Head-and-Tail Design Display “Head and Tail” Surfactant Behavior. Angew. Chem., Int. Ed. 2020, 59, 3088–3092. 10.1002/anie.201913257. PubMed DOI
Medoš Ž.; Hleli B.; Tošner Z.; Ogrin P.; Urbič T.; Kogej K.; Bešter-Rogač M.; Matějíček P. Counterion-Induced Aggregation of Metallacarboranes. J. Phys. Chem. C 2022, 126, 5735–5742. 10.1021/acs.jpcc.2c00107. DOI
Wennerström H.; Lindman B.; Micelles Physical chemistry of surfactant association. Phys. Rep. 1979, 52, 1–86. 10.1016/0370-1573(79)90087-5. DOI
Takeuchi T.; Bagnacani V.; Sansone F.; Matile S. Amphiphilic Counterion Activators for DNA: Stimuli-Responsive Cation Transporters and Biosensors in Bulk and Lipid Bilayer Membranes. ChemBioChem 2009, 10, 2793–2799. 10.1002/cbic.200900512. PubMed DOI
Sakai N.; Matile S. Anion-Mediated Transfer of Polyarginine across Liquid and Bilayer Membranes. J. Am. Chem. Soc. 2003, 125, 14348–14356. 10.1021/ja037601l. PubMed DOI
Nishihara M.; Perret F.; Takeuchi T.; Futaki S.; Lazar A. N.; Coleman A. W.; Sakai N.; Matile S. Arginine magic with new counterions up the sleeve. Org. Biomol. Chem. 2005, 3, 1659–1669. 10.1039/b501472g. PubMed DOI
Perret F.; Nishihara M.; Takeuchi T.; Futaki S.; Lazar A. N.; Coleman A. W.; Sakai N.; Matile S. Anionic Fullerenes, Calixarenes, Coronenes, and Pyrenes as Activators of Oligo/Polyarginines in Model Membranes and Live Cells. J. Am. Chem. Soc. 2005, 127, 1114–1115. 10.1021/ja043633c. PubMed DOI
Gasparini G.; Bang E.-K.; Montenegro J.; Matile S. Cellular uptake: lessons from supramolecular organic chemistry. Chem. Commun. 2015, 51, 10389–10402. 10.1039/C5CC03472H. PubMed DOI
Chuard N.; Fujisawa K.; Morelli P.; Saarbach J.; Winssinger N.; Metrangolo P.; Resnati G.; Sakai N.; Matile S. Activation of Cell-Penetrating Peptides with Ionpair−π Interactions and Fluorophiles. J. Am. Chem. Soc. 2016, 138, 11264–11271. 10.1021/jacs.6b06253. PubMed DOI
Peng S.; Barba-Bon A.; Pan Y.-C.; Nau W. M.; Guo D.-S.; Hennig A. Phosphorylation-Responsive Membrane Transport of Peptides. Angew. Chem., Int. Ed. 2017, 56, 15742–15745. 10.1002/anie.201707979. PubMed DOI
Fan Y.; Zhang Q. Development of liposomal formulations: From concept to clinical investigations. Asian J. Pharm. Sci. 2013, 8, 81–87. 10.1016/j.ajps.2013.07.010. DOI
Bulbake U.; Doppalapudi S.; Kommineni N.; Khan W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics 2017, 9, 12.10.3390/pharmaceutics9020012. PubMed DOI PMC
Lim S. K.; Sandén C.; Selegård R.; Liedberg B.; Aili D. Tuning Liposome Membrane Permeability by Competitive Peptide Dimerization and Partitioning-Folding Interactions Regulated by Proteolytic Activity. Sci. Rep. 2016, 6, 21123.10.1038/srep21123. PubMed DOI PMC
Mady M. M.; Ghannam M. M. Stability of anionic liposomes in serum and plasma. Afr. J. Pharm. Pharmacol. 2011, 5, 898–1905. 10.5897/AJPP11.462. DOI
Davis J. T.; Okunola O.; Quesada R. Recent advances in the transmembrane transport of anions. Chem. Soc. Rev. 2010, 39, 3843–3862. 10.1039/b926164h. PubMed DOI
Gale P. A.; Davis J. T.; Quesada R. Anion transport and supramolecular medicinal chemistry. Chem. Soc. Rev. 2017, 46, 2497–2519. 10.1039/C7CS00159B. PubMed DOI
Matile S.; Vargas Jentzsch A.; Montenegro J.; Fin A. Recent synthetic transport systems. Chem. Soc. Rev. 2011, 40, 2453–2474. 10.1039/c0cs00209g. PubMed DOI
Tahara Y.; Fujiyoshi Y. A new method to measure bilayer thickness: Cryo-electron microscopy of frozen hydrated liposomes and image simulation. Micron 1994, 25, 141–149. 10.1016/0968-4328(94)90039-6. PubMed DOI
Kučerka N.; Nieh M.-P.; Katsaras J. Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. Biochim. Biophys. Acta, Biomembr. 2011, 1808, 2761–2771. 10.1016/j.bbamem.2011.07.022. PubMed DOI
Saha T.; Gautam A.; Mukherjee A.; Lahiri M.; Talukdar P. Chloride Transport through Supramolecular Barrel-Rosette Ion Channels: Lipophilic Control and Apoptosis-Inducing Activity. J. Am. Chem. Soc. 2016, 138, 16443–16451. 10.1021/jacs.6b10379. PubMed DOI
Malla J. A.; Umesh R. M.; Vijay A.; Mukherjee A.; Lahiri M.; Talukdar P. Apoptosis-inducing activity of a fluorescent barrel-rosette M+/Cl– channel. Chem. Sci. 2020, 11, 2420–2428. 10.1039/C9SC06520B. PubMed DOI PMC
We introduce here (top panels f and g) the “arrow-notation” for ITC titrations, where the compound on the top corresponds to the compound in the syringe, which is being added (arrow) to the compound contained in the cell (bottom); the additional advantage of this notation is that the top and bottom compounds correspond directly, written as a fraction with nominator and denominator, to the stoichiometric n value obtained from the ITC experiment, e.g., 2/protamine = 17.
Hanke W.; Schlue W. R.. Planar Lipid Bilayer; Academic press: London, 1993.
Takeuchi T.; Kosuge M.; Tadokoro A.; Sugiura Y.; Nishi M.; Kawata M.; Sakai N.; Matile S.; Futaki S. Direct and Rapid Cytosolic Delivery Using Cell-Penetrating Peptides Mediated by Pyrenebutyrate. ACS Chem. Biol. 2006, 1, 299–303. 10.1021/cb600127m. PubMed DOI
Smith B. D.; Lambert T. N. Molecular ferries: membrane carriers that promote phospholipid flip-flop and chloride transport. Chem. Commun. 2003, 2261–2268. 10.1039/b303359g. PubMed DOI
Song B.; Yuan H.; Pham S. V.; Jameson C. J.; Murad S. Nanoparticle permeation induces water penetration, ion transport, and lipid flip-flop. Langmuir 2012, 28, 16989–17000. 10.1021/la302879r. PubMed DOI
Robison A. D.; Sun S.; Poyton M. F.; Johnson G. A.; Pellois J.-P.; Jungwirth P.; Vazdar M.; Cremer P. S. Polyarginine Interacts More Strongly and Cooperatively than Polylysine with Phospholipid Bilayers. J. Phys. Chem. B 2016, 120, 9287–9296. 10.1021/acs.jpcb.6b05604. PubMed DOI PMC
Pan Y.-C.; Barba-Bon A.; Tian H.-W.; Ding F.; Hennig A.; Nau W. M.; Guo D.-S. An Amphiphilic Sulfonatocalix[5]arene as an Activator for Membrane Transport of Lysine-rich Peptides and Proteins. Angew. Chem., Int. Ed. 2021, 60, 1875–1882. 10.1002/anie.202011185. PubMed DOI
Cebula J.; Fink K.; Goldeman W.; Szermer-Olearnik B.; Nasulewicz-Goldeman A.; Psurski M.; Cuprych M.; Kędziora A.; Dudek B.; Bugla-Płoskońska G.; Goszczyński T. M. Structural patterns enhancing the antibacterial activity of metallacarborane-based antibiotics. ChemRxiv 2023, 10.26434/chemrxiv-2022-t2g39-v2. PubMed DOI
Wei W. Hofmeister Effects Shine in Nanoscience. Adv. Sci. 2023, 2302057.10.1002/advs.202302057. PubMed DOI PMC