Metallacarborane Cluster Anions of the Cobalt Bisdicarbollide-Type as Chaotropic Carriers for Transmembrane and Intracellular Delivery of Cationic Peptides

. 2023 Jun 21 ; 145 (24) : 13089-13098. [epub] 20230602

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37265356

Cobalt bisdicarbollides (COSANs) are inorganic boron-based anions that have been previously reported to permeate by themselves through lipid bilayer membranes, a propensity that is related to their superchaotropic character. We now introduce their use as selective and efficient molecular carriers of otherwise impermeable hydrophilic oligopeptides through both artificial and cellular membranes, without causing membrane lysis or poration at low micromolar carrier concentrations. COSANs transport not only arginine-rich but also lysine-rich peptides, whereas low-molecular-weight analytes such as amino acids as well as neutral and anionic cargos (phalloidin and BSA) are not transported. In addition to the unsubstituted isomers (known as ortho- and meta-COSAN), four derivatives bearing organic substituents or halogen atoms have been evaluated, and all six of them surpass established carriers such as pyrenebutyrate in terms of activity. U-tube experiments and black lipid membrane conductance measurements establish that the transport across model membranes is mediated by a molecular carrier mechanism. Transport experiments in living cells showed that a fluorescent peptide cargo, FITC-Arg8, is delivered into the cytosol.

Zobrazit více v PubMed

Sivaev I. B.; Bregadze V. V. Polyhedral boranes for medical applications: current status and perspectives. Eur. J. Inorg. Chem. 2009, 2009, 1433–1450. 10.1002/ejic.200900003. DOI

Gabel D. Boron clusters in medicinal chemistry: perspectives and problems. Pure Appl. Chem. 2015, 87, 173–179. 10.1515/pac-2014-1007. DOI

Hey-Hawkins E.; Viñas C.. Boron-Based Compounds: Potential and Emerging Applications in Medicine; John Wiley & Sons, 2018.

Axtell J. C.; Saleh L. M. A.; Qian E. A.; Wixtrom A. I.; Spokoyny A. M. Synthesis and Applications of Perfunctionalized Boron Clusters. Inorg. Chem. 2018, 57, 2333–2350. 10.1021/acs.inorgchem.7b02912. PubMed DOI PMC

Bernier N. A.; Teh J.; Reichel D.; Zahorsky-Reeves J. L.; Perez J. M.; Spokoyny A. M. Ex Vivo and In Vivo Evaluation of Dodecaborate-Based Clusters Encapsulated in Ferumoxytol Nanoparticles. Langmuir 2021, 37, 14500–14508. 10.1021/acs.langmuir.1c02506. PubMed DOI PMC

Soloway A. H.; Tjarks W.; Barnum B. A.; Rong F.-G.; Barth R. F.; Codogni I. M.; Wilson J. G. The Chemistry of Neutron Capture Therapy. Chem. Rev. 1998, 98, 1515–1562. 10.1021/cr941195u. PubMed DOI

Assaf K. I.; Ural M. S.; Pan F.; Georgiev T.; Simova S.; Rissanen K.; Gabel D.; Nau W. M. Water Structure Recovery in Chaotropic Anion Recognition: High-Affinity Binding of Dodecaborate Clusters to γ-Cyclodextrin. Angew. Chem., Int. Ed. 2015, 54, 6852–6856. 10.1002/anie.201412485. PubMed DOI PMC

Naskar B.; Diat O.; Nardello-Rataj V.; Bauduin P. Nanometer-Size Polyoxometalate Anions Adsorb Strongly on Neutral Soft Surfaces. J. Phys. Chem. C 2015, 119, 20985–20992. 10.1021/acs.jpcc.5b06273. DOI

Buchecker T.; Schmid P.; Renaudineau S.; Diat O.; Proust A.; Pfitzner A.; Bauduin P. Polyoxometalates in the Hofmeister series. Chem. Commun. 2018, 54, 1833–1836. 10.1039/C7CC09113C. PubMed DOI

Ivanov A. A.; Falaise C.; Landy D.; Haouas M.; Mironov Y. V.; Shestopalov M. A.; Cadot E. Tuning the chaotropic effect as an assembly motif through one-electron transfer in a rhenium cluster. Chem. Commun. 2019, 55, 9951–9954. 10.1039/C9CC05136H. PubMed DOI

Yao S.; Falaise C.; Ivanov A. A.; Leclerc N.; Hohenschutz M.; Haouas M.; Landy D.; Shestopalov M. A.; Bauduin P.; Cadot E. Hofmeister effect in the Keggin-type polyoxotungstate series. Inorg. Chem. Front. 2021, 8, 12–25. 10.1039/D0QI00902D. DOI

Khlifi S.; Marrot J.; Haouas M.; Shepard W. E.; Falaise C.; Cadot E. Chaotropic Effect as an Assembly Motif to Construct Supramolecular Cyclodextrin–Polyoxometalate-Based Frameworks. J. Am. Chem. Soc. 2022, 144, 4469–4477. 10.1021/jacs.1c12049. PubMed DOI

Hollow S. E.; Johnstone T. C. Encapsulation of closo-dodecaiodododecaborate in 2-hydroxypropyl-γ-cyclodextrin prevents hemolysis. Chem. Commun. 2022, 58, 2375–2378. 10.1039/D1CC06348K. PubMed DOI

Barba-Bon A.; Salluce G.; Lostalé-Seijo I.; Assaf K. I.; Hennig A.; Montenegro J.; Nau W. M. Boron clusters as broadband membrane carriers. Nature 2022, 603, 637–642. 10.1038/s41586-022-04413-w. PubMed DOI PMC

Hu X.-Y.; Guo D.-S. Superchaotropic Boron Clusters as Membrane Carriers for the Transport of Hydrophilic Cargos. Angew. Chem., Int. Ed. 2022, 61, e20220497910.1002/anie.202204979. PubMed DOI

Muetterties E. L.; Balthis J. H.; Chia Y. T.; Knoth W. H.; Miller H. C. Chemistry of Boranes. VIII. Salts and Acids of B10H10-2 and B1212-2. Inorg. Chem. 1964, 3, 444–451. 10.1021/ic50013a030. DOI

Plesek J. Potential applications of the boron cluster compounds. Chem. Rev. 1992, 92, 269–278. 10.1021/cr00010a005. DOI

Barton J. L.; Wixtrom A. I.; Kowalski J. A.; Qian E. A.; Jung D.; Brushett F. R.; Spokoyny A. M. Perfunctionalized Dodecaborate Clusters as Stable Metal-Free Active Materials for Charge Storage. ACS Appl. Energy Mater. 2019, 2, 4907–4913. 10.1021/acsaem.9b00610. PubMed DOI PMC

Karki K.; Gabel D.; Roccatano D. Structure and Dynamics of Dodecaborate Clusters in Water. Inorg. Chem. 2012, 51, 4894–4896. 10.1021/ic300223z. PubMed DOI

Larsen D.; Beeren S. R. Enzyme-mediated dynamic combinatorial chemistry allows out-of-equilibrium template-directed synthesis of macrocyclic oligosaccharides. Chem. Sci. 2019, 10, 9981–9987. 10.1039/C9SC03983J. PubMed DOI PMC

Cebula J.; Fink K.; Boratyński J.; Goszczyński T. M. Supramolecular chemistry of anionic boron clusters and its applications in biology. Coord. Chem. Rev. 2023, 477, 21494010.1016/j.ccr.2022.214940. DOI

Bregadze V. I. Dicarba-closo-dodecaboranes C2B10H12 and their derivatives. Chem. Rev. 1992, 92, 209–223. 10.1021/cr00010a002. DOI

Beckett M. A.; Brellochs B.; Chizhevsky I. T.; Damhus T.; Hellwich K.-H.; Kennedy J. D.; Laitinen R.; Powell W. H.; Rabinovich D.; Viñas C.; Yerin A. Nomenclature for boranes and related species (IUPAC Recommendations 2019). Pure Appl. Chem. 2020, 92, 355–381. 10.1515/pac-2018-0205. DOI

Sivaev I. B.; Bregadze V. I. Chemistry of Cobalt Bis(dicarbollides). A Review. Collect. Czech. Chem. Commun. 1999, 64, 783–805. 10.1135/cccc19990783. DOI

Cabrera-González J.; Sánchez-Arderiu V.; Viñas C.; Parella T.; Teixidor F.; Núñez R. Redox-Active Metallacarborane-Decorated Octasilsesquioxanes Electrochemical and Thermal Properties. Inorg. Chem. 2016, 55, 11630–11634. 10.1021/acs.inorgchem.6b02394. PubMed DOI

Dash B. P.; Satapathy R.; Swain B. R.; Mahanta C. S.; Jena B. B.; Hosmane N. S. Cobalt bis(dicarbollide) anion and its derivatives. J. Organomet. Chem. 2017, 849–850, 170–194. 10.1016/j.jorganchem.2017.04.006. DOI

Kaniowski D.; Kulik K.; Suwara J.; Ebenryter-Olbińska K.; Nawrot B. Boron Clusters as Enhancers of RNase H Activity in the Smart Strategy of Gene Silencing by Antisense Oligonucleotides. Int. J. Mol. Sci. 2022, 23, 12190.10.3390/ijms232012190. PubMed DOI PMC

Kaniowski D.; Suwara J.; Ebenryter-Olbińska K.; Jakóbik-Kolon A.; Nawrot B. EGFR-Targeted Cellular Delivery of Therapeutic Nucleic Acids Mediated by Boron Clusters. Int. J. Mol. Sci. 2022, 23, 14793.10.3390/ijms232314793. PubMed DOI PMC

Nuez-Martínez M.; Queralt-Martín M.; Muñoz-Juan A.; Aguilella V. M.; Laromaine A.; Teixidor F.; Viñas C.; Pinto C. G.; Pinheiro T.; Guerreiro J. F.; Mendes F.; Roma-Rodrigues C.; Baptista P. V.; Fernandes A. R.; Valic S.; Marques F. Boron clusters (ferrabisdicarbollides) shaping the future as radiosensitizers for multimodal (chemo/radio/PBFR) therapy of glioblastoma. J. Mater. Chem. B 2022, 10, 9794–9815. 10.1039/D2TB01818G. PubMed DOI

Kožíšek M.; Cígler P.; Lepšík M.; Fanfrlík J.; Řezáčová P.; Brynda J.; Pokorná J.; Plešek J.; Grüner B.; Grantz Šašková K.; Václavíková J.; Král V.; Konvalinka J. Inorganic Polyhedral Metallacarborane Inhibitors of HIV Protease: A New Approach to Overcoming Antiviral Resistance. J. Med. Chem. 2008, 51, 4839–4843. 10.1021/jm8002334. PubMed DOI

Řezáčová P.; Pokorná J.; Brynda J.; Kožíšek M.; Cígler P.; Lepšík M.; Fanfrlík J.; Řezáč J.; Grantz Šašková K.; Sieglová I.; Plešek J.; Šícha V.; Grüner B.; Oberwinkler H.; Sedláček J.; Kräusslich H.-G.; Hobza P.; Král V.; Konvalinka J. Design of HIV Protease Inhibitors Based on Inorganic Polyhedral Metallacarboranes. J. Med. Chem. 2009, 52, 7132–7141. 10.1021/jm9011388. PubMed DOI

Grüner B.; Brynda J.; Das V.; Šícha V.; Štěpánková J.; Nekvinda J.; Holub J.; Pospíšilová K.; Fábry M.; Pachl P.; Král V.; Kugler M.; Mašek V.; Medvedíková M.; Matějková S.; Nová A.; Lišková B.; Gurská S.; Džubák P.; Hajdúch M.; Řezáčová P. Metallacarborane Sulfamides: Unconventional, Specific, and Highly Selective Inhibitors of Carbonic Anhydrase IX. J. Med. Chem. 2019, 62, 9560–9575. 10.1021/acs.jmedchem.9b00945. PubMed DOI

Kvasničková E.; Masák J.; Čejka J.; Mat’átková O.; Šícha V. Preparation, characterization, and the selective antimicrobial activity of N-alkylammonium 8-diethyleneglycol cobalt bis-dicarbollide derivatives. J. Organomet. Chem. 2017, 827, 23–31. 10.1016/j.jorganchem.2016.10.037. DOI

Vaňková E.; Lokočová K.; Kašparová P.; Hadravová R.; Křížová I.; Mat’átková O.; Masák J.; Šícha V. Cobalt Bis-Dicarbollide Enhances Antibiotics Action towards Staphylococcus epidermidis Planktonic Growth Due to Cell Envelopes Disruption. Pharmaceuticals 2022, 15, 534.10.3390/ph15050534. PubMed DOI PMC

Bennour I.; Ramos M. N.; Nuez-Martínez M.; Xavier J. A. M.; Buades A. B.; Sillanpä R.; Teixidor F.; Choquesillo-Lazarte D.; Romero I.; Martinez-Medina M.; Viñas C. Water soluble organometallic small molecules as promising antibacterial agents: synthesis, physical–chemical properties and biological evaluation to tackle bacterial infections. Dalton Trans. 2022, 51, 7188–7209. 10.1039/D2DT01015A. PubMed DOI

Kubiński K.; Masłyk M.; Janeczko M.; Goldeman W.; Nasulewicz-Goldeman A.; Psurski M.; Martyna A.; Boguszewska-Czubara A.; Cebula J.; Goszczyński T. M. Metallacarborane Derivatives as Innovative Anti-Candida albicans Agents. J. Med. Chem. 2022, 65, 13935–13945. 10.1021/acs.jmedchem.2c01167. PubMed DOI

Núñez R.; Romero I.; Teixidor F.; Viñas C. Icosahedral boron clusters: a perfect tool for the enhancement of polymer features. Chem. Soc. Rev. 2016, 45, 5147–5173. 10.1039/C6CS00159A. PubMed DOI

Hardie M. J. The use of carborane anions in coordination polymers and extended solids. J. Chem. Crystallogr. 2007, 37, 69–80. 10.1007/S10870-006-9153-X. DOI

Fink K.; Boratynski J.; Paprocka M.; Goszczynski T. M. Metallacarboranes as a tool for enhancing the activity of therapeutic peptides. Ann. N. Y. Acad. Sci. 2019, 1457, 128–141. 10.1111/nyas.14201. PubMed DOI

Masalles C.; Borrós S.; Viñas C.; Teixidor F. Are Low-Coordinating Anions of Interest as Doping Agents in Organic Conducting Polymers?. Adv. Mater. 2000, 12, 1199–1202. 10.1002/1521-4095(200008)12:16<1199::AID-ADMA1199>3.0.CO;2-W. DOI

Brus J.; Czernek J.; Urbanova M.; Rohlíček J.; Plecháček T. Transferring Lithium Ions in the Nanochannels of Flexible Metal–Organic Frameworks Featuring Superchaotropic Metallacarborane Guests: Mechanism of Ionic Conductivity at Atomic Resolution. ACS Appl. Mater. Interfaces 2020, 12, 47447–47456. 10.1021/acsami.0c12293. PubMed DOI

Verdiá-Báguena C.; Alcaraz A.; Aguilella V. M.; Cioran A. M.; Tachikawa S.; Nakamura H.; Teixidor F.; Viñas C. Amphiphilic COSAN and I2-COSAN crossing synthetic lipid membranes: planar bilayers and liposomes. Chem. Commun. 2014, 50, 6700–6703. 10.1039/c4cc01283f. PubMed DOI

Rokitskaya T. I.; Kosenko I. D.; Sivaev I. B.; Antonenko Y. N.; Bregadze V. I. Fast flip–flop of halogenated cobalt bis(dicarbollide) anion in a lipid bilayer membrane. Phys. Chem. Chem. Phys. 2017, 19, 25122–25128. 10.1039/C7CP04207H. PubMed DOI

Assaf K. I.; Begaj B.; Frank A.; Nilam M.; Mougharbel A. S.; Kortz U.; Nekvinda J.; Grüner B.; Gabel D.; Nau W. M. High-Affinity Binding of Metallacarborane Cobalt Bis(dicarbollide) Anions to Cyclodextrins and Application to Membrane Translocation. J. Org. Chem. 2019, 84, 11790–11798. 10.1021/acs.joc.9b01688. PubMed DOI

Tarrés M.; Canetta E.; Paul E.; Forbes J.; Azzouni K.; Viñas C.; Teixidor F.; Harwood A. J. Biological interaction of living cells with COSAN-based synthetic vesicles. Sci. Rep. 2015, 5, 7804.10.1038/srep07804. PubMed DOI PMC

Chaari M.; Gaztelumendi N.; Cabrera-Gonzalez J.; Peixoto-Moledo P.; Vinas C.; Xochitiotzi-Flores E.; Farfan N.; Ben Salah A.; Nogues C.; Nunez R. Fluorescent BODIPY-Anionic Boron Cluster Conjugates as Potential Agents for Cell Tracking. Bioconjugate Chem. 2018, 29, 1763–1773. 10.1021/acs.bioconjchem.8b00204. PubMed DOI

Muñoz-Flores B. M.; Cabrera-González J.; Viñas C.; Chávez-Reyes A.; Dias H. V. R.; Jiménez-Pérez V. M.; Núñez R. Organotin Dyes Bearing Anionic Boron Clusters as Cell-Staining Fluorescent Probes. Chem. – Eur. J. 2018, 24, 5601–5612. 10.1002/chem.201705804. PubMed DOI

Gona K. B.; Zaulet A.; Gómez-Vallejo V.; Teixidor F.; Llop J.; Viñas C. COSAN as a molecular imaging platform: synthesis and “in vivo” imaging. Chem. Commun. 2014, 50, 11415–11417. 10.1039/C4CC05058D. PubMed DOI

Fuentes I.; García-Mendiola T.; Sato S.; Pita M.; Nakamura H.; Lorenzo E.; Teixidor F.; Marques F.; Viñas C. Metallacarboranes on the Road to Anticancer Therapies: Cellular Uptake, DNA Interaction, and Biological Evaluation of Cobaltabisdicarbollide [COSAN]–. Chem. – Eur. J. 2018, 24, 17239–17254. 10.1002/chem.201803178. PubMed DOI

Tarrés M.; Canetta E.; Viñas C.; Teixidor F.; Harwood A. J. Imaging in living cells using νB–H Raman spectroscopy: monitoring COSAN uptake. Chem. Commun. 2014, 50, 3370–3372. 10.1039/C3CC49658A. PubMed DOI

Nuez-Martinez M.; Pinto C. I. G.; Guerreiro J. F.; Mendes F.; Marques F.; Muñoz-Juan A.; Xavier J. A. M.; Laromaine A.; Bitonto V.; Protti N.; Crich S. G.; Teixidor F.; Viñas C. Cobaltabis(dicarbollide) ([o-COSAN]−) as Multifunctional Chemotherapeutics: A Prospective Application in Boron Neutron Capture Therapy (BNCT) for Glioblastoma. Cancers 2021, 13, 6367.10.3390/cancers13246367. PubMed DOI PMC

Rojo I.; Teixidor F.; Kivekäs R.; Sillanpä R.; Viñas C. Methylation and Demethylation in Cobaltabis(dicarbollide) Derivatives. Organometallics 2003, 22, 4642–4646. 10.1021/om030412r. DOI

Hurlburt P. K.; Miller R. L.; Abney K. D.; Foreman T. M.; Butcher R. J.; Kinkhead S. A. New synthetic routes to B-halogenated derivatives of cobalt dicarbollide. Inorg. Chem. 1995, 34, 5215–5219. 10.1021/ic00125a021. DOI

Mátel Ĺ.; Macášek F.; Rajec P.; Heřmánek S.; Plešek J. B-Halogen derivatives of the bis (1, 2-dicarbollyl) cobalt (III) anion. Polyhedron 1982, 1, 511–519. 10.1016/S0277-5387(00)81604-6. DOI

Hawthorne M. F.; Young D. C.; Andrews T. D.; Howe D. V.; Pilling R. L.; Pitts A. D.; Reintjes M.; Warren L. F.; Wegner P. A. pi.-Dicarbollyl derivatives of the transition metals. Metallocene analogs. J. Am. Chem. Soc. 1968, 90, 879–896. 10.1021/ja01006a008. DOI

Assaf K. I.; Nau W. M. The Chaotropic Effect as an Assembly Motif in Chemistry. Angew. Chem., Int. Ed. 2018, 57, 13968–13981. 10.1002/anie.201804597. PubMed DOI PMC

Marcus Y. Effect of Ions on the Structure of Water: Structure Making and Breaking. Chem. Rev. 2009, 109, 1346–1370. 10.1021/cr8003828. PubMed DOI

Marcus Y. ViscosityB-coefficients, structural entropies and heat capacities, and the effects of ions on the structure of water. J. Solution Chem. 1994, 23, 831–848. 10.1007/BF00972677. DOI

Okur H. I.; Hladílková J.; Rembert K. B.; Cho Y.; Heyda J.; Dzubiella J.; Cremer P. S.; Jungwirth P. Beyond the Hofmeister Series: Ion-Specific Effects on Proteins and Their Biological Functions. J. Phys. Chem. B 2017, 121, 1997–2014. 10.1021/acs.jpcb.6b10797. PubMed DOI

Kunz W.; Lo Nostro P.; Ninham B. W. The present state of affairs with Hofmeister effects. Curr. Opin. Colloid Interface Sci. 2004, 9, 1–18. 10.1016/j.cocis.2004.05.004. DOI

Collins K. D.; Washabaugh M. W. The Hofmeister effect and the behaviour of water at interfaces. Q. Rev. Biophys. 1985, 18, 323–422. 10.1017/S0033583500005369. PubMed DOI

Hofmeister F. Zur Lehre von der Wirkung der Salze. Arch. Exp. Pathol. Pharmakol. 1888, 24, 247–260. 10.1007/BF01918191. DOI

Ďord’ovič V.; Tošner Z.; Uchman M.; Zhigunov A.; Reza M.; Ruokolainen J.; Pramanik G.; Cígler P.; Kalíková K.; Gradzielski M.; Matějíček P. Stealth Amphiphiles: Self-Assembly of Polyhedral Boron Clusters. Langmuir 2016, 32, 6713–6722. 10.1021/acs.langmuir.6b01995. PubMed DOI

Fernandez-Alvarez R.; Ďord’ovič V.; Uchman M.; Matějíček P. Amphiphiles without Head-and-Tail Design: Nanostructures Based on the Self-Assembly of Anionic Boron Cluster Compounds. Langmuir 2018, 34, 3541–3554. 10.1021/acs.langmuir.7b03306. PubMed DOI

Fernandez-Alvarez R.; Medos Z.; Tosner Z.; Zhigunov A.; Uchman M.; Hervo-Hansen S.; Lund M.; Bester-Rogac M.; Matějíček P. Total Description of Intrinsic Amphiphile Aggregation: Calorimetry Study and Molecular Probing. Langmuir 2018, 34, 14448–14457. 10.1021/acs.langmuir.8b03462. PubMed DOI

Matějíček P.; Cígler P.; Procházka K.; Král V. Molecular Assembly of Metallacarboranes in Water: Light Scattering and Microscopy Study. Langmuir 2006, 22, 575–581. 10.1021/la052201s. PubMed DOI

Chevrot G.; Schurhammer R.; Wipff G. Surfactant Behavior of “Ellipsoidal” Dicarbollide Anions: A Molecular Dynamics Study. J. Phys. Chem. B 2006, 110, 9488–9498. 10.1021/jp060930q. PubMed DOI

Bauduin P.; Prevost S.; Farras P.; Teixidor F.; Diat O.; Zemb T. A theta-shaped amphiphilic cobaltabisdicarbollide anion: transition from monolayer vesicles to micelles. Angew. Chem., Int. Ed. 2011, 50, 5298–5300. 10.1002/anie.201100410. PubMed DOI

Uchman M.; Ďord’ovič V.; Tošner Z.; Matějíček P. Classical Amphiphilic Behavior of Nonclassical Amphiphiles: A Comparison of Metallacarborane Self-Assembly with SDS Micellization. Angew. Chem., Int. Ed. 2015, 54, 14113–14117. 10.1002/anie.201506545. PubMed DOI

Malaspina D. C.; Viñas C.; Teixidor F.; Faraudo J. Atomistic Simulations of COSAN: Amphiphiles without a Head-and-Tail Design Display “Head and Tail” Surfactant Behavior. Angew. Chem., Int. Ed. 2020, 59, 3088–3092. 10.1002/anie.201913257. PubMed DOI

Medoš Ž.; Hleli B.; Tošner Z.; Ogrin P.; Urbič T.; Kogej K.; Bešter-Rogač M.; Matějíček P. Counterion-Induced Aggregation of Metallacarboranes. J. Phys. Chem. C 2022, 126, 5735–5742. 10.1021/acs.jpcc.2c00107. DOI

Wennerström H.; Lindman B.; Micelles Physical chemistry of surfactant association. Phys. Rep. 1979, 52, 1–86. 10.1016/0370-1573(79)90087-5. DOI

Takeuchi T.; Bagnacani V.; Sansone F.; Matile S. Amphiphilic Counterion Activators for DNA: Stimuli-Responsive Cation Transporters and Biosensors in Bulk and Lipid Bilayer Membranes. ChemBioChem 2009, 10, 2793–2799. 10.1002/cbic.200900512. PubMed DOI

Sakai N.; Matile S. Anion-Mediated Transfer of Polyarginine across Liquid and Bilayer Membranes. J. Am. Chem. Soc. 2003, 125, 14348–14356. 10.1021/ja037601l. PubMed DOI

Nishihara M.; Perret F.; Takeuchi T.; Futaki S.; Lazar A. N.; Coleman A. W.; Sakai N.; Matile S. Arginine magic with new counterions up the sleeve. Org. Biomol. Chem. 2005, 3, 1659–1669. 10.1039/b501472g. PubMed DOI

Perret F.; Nishihara M.; Takeuchi T.; Futaki S.; Lazar A. N.; Coleman A. W.; Sakai N.; Matile S. Anionic Fullerenes, Calixarenes, Coronenes, and Pyrenes as Activators of Oligo/Polyarginines in Model Membranes and Live Cells. J. Am. Chem. Soc. 2005, 127, 1114–1115. 10.1021/ja043633c. PubMed DOI

Gasparini G.; Bang E.-K.; Montenegro J.; Matile S. Cellular uptake: lessons from supramolecular organic chemistry. Chem. Commun. 2015, 51, 10389–10402. 10.1039/C5CC03472H. PubMed DOI

Chuard N.; Fujisawa K.; Morelli P.; Saarbach J.; Winssinger N.; Metrangolo P.; Resnati G.; Sakai N.; Matile S. Activation of Cell-Penetrating Peptides with Ionpair−π Interactions and Fluorophiles. J. Am. Chem. Soc. 2016, 138, 11264–11271. 10.1021/jacs.6b06253. PubMed DOI

Peng S.; Barba-Bon A.; Pan Y.-C.; Nau W. M.; Guo D.-S.; Hennig A. Phosphorylation-Responsive Membrane Transport of Peptides. Angew. Chem., Int. Ed. 2017, 56, 15742–15745. 10.1002/anie.201707979. PubMed DOI

Fan Y.; Zhang Q. Development of liposomal formulations: From concept to clinical investigations. Asian J. Pharm. Sci. 2013, 8, 81–87. 10.1016/j.ajps.2013.07.010. DOI

Bulbake U.; Doppalapudi S.; Kommineni N.; Khan W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics 2017, 9, 12.10.3390/pharmaceutics9020012. PubMed DOI PMC

Lim S. K.; Sandén C.; Selegård R.; Liedberg B.; Aili D. Tuning Liposome Membrane Permeability by Competitive Peptide Dimerization and Partitioning-Folding Interactions Regulated by Proteolytic Activity. Sci. Rep. 2016, 6, 21123.10.1038/srep21123. PubMed DOI PMC

Mady M. M.; Ghannam M. M. Stability of anionic liposomes in serum and plasma. Afr. J. Pharm. Pharmacol. 2011, 5, 898–1905. 10.5897/AJPP11.462. DOI

Davis J. T.; Okunola O.; Quesada R. Recent advances in the transmembrane transport of anions. Chem. Soc. Rev. 2010, 39, 3843–3862. 10.1039/b926164h. PubMed DOI

Gale P. A.; Davis J. T.; Quesada R. Anion transport and supramolecular medicinal chemistry. Chem. Soc. Rev. 2017, 46, 2497–2519. 10.1039/C7CS00159B. PubMed DOI

Matile S.; Vargas Jentzsch A.; Montenegro J.; Fin A. Recent synthetic transport systems. Chem. Soc. Rev. 2011, 40, 2453–2474. 10.1039/c0cs00209g. PubMed DOI

Tahara Y.; Fujiyoshi Y. A new method to measure bilayer thickness: Cryo-electron microscopy of frozen hydrated liposomes and image simulation. Micron 1994, 25, 141–149. 10.1016/0968-4328(94)90039-6. PubMed DOI

Kučerka N.; Nieh M.-P.; Katsaras J. Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. Biochim. Biophys. Acta, Biomembr. 2011, 1808, 2761–2771. 10.1016/j.bbamem.2011.07.022. PubMed DOI

Saha T.; Gautam A.; Mukherjee A.; Lahiri M.; Talukdar P. Chloride Transport through Supramolecular Barrel-Rosette Ion Channels: Lipophilic Control and Apoptosis-Inducing Activity. J. Am. Chem. Soc. 2016, 138, 16443–16451. 10.1021/jacs.6b10379. PubMed DOI

Malla J. A.; Umesh R. M.; Vijay A.; Mukherjee A.; Lahiri M.; Talukdar P. Apoptosis-inducing activity of a fluorescent barrel-rosette M+/Cl– channel. Chem. Sci. 2020, 11, 2420–2428. 10.1039/C9SC06520B. PubMed DOI PMC

We introduce here (top panels f and g) the “arrow-notation” for ITC titrations, where the compound on the top corresponds to the compound in the syringe, which is being added (arrow) to the compound contained in the cell (bottom); the additional advantage of this notation is that the top and bottom compounds correspond directly, written as a fraction with nominator and denominator, to the stoichiometric n value obtained from the ITC experiment, e.g., 2/protamine = 17.

Hanke W.; Schlue W. R.. Planar Lipid Bilayer; Academic press: London, 1993.

Takeuchi T.; Kosuge M.; Tadokoro A.; Sugiura Y.; Nishi M.; Kawata M.; Sakai N.; Matile S.; Futaki S. Direct and Rapid Cytosolic Delivery Using Cell-Penetrating Peptides Mediated by Pyrenebutyrate. ACS Chem. Biol. 2006, 1, 299–303. 10.1021/cb600127m. PubMed DOI

Smith B. D.; Lambert T. N. Molecular ferries: membrane carriers that promote phospholipid flip-flop and chloride transport. Chem. Commun. 2003, 2261–2268. 10.1039/b303359g. PubMed DOI

Song B.; Yuan H.; Pham S. V.; Jameson C. J.; Murad S. Nanoparticle permeation induces water penetration, ion transport, and lipid flip-flop. Langmuir 2012, 28, 16989–17000. 10.1021/la302879r. PubMed DOI

Robison A. D.; Sun S.; Poyton M. F.; Johnson G. A.; Pellois J.-P.; Jungwirth P.; Vazdar M.; Cremer P. S. Polyarginine Interacts More Strongly and Cooperatively than Polylysine with Phospholipid Bilayers. J. Phys. Chem. B 2016, 120, 9287–9296. 10.1021/acs.jpcb.6b05604. PubMed DOI PMC

Pan Y.-C.; Barba-Bon A.; Tian H.-W.; Ding F.; Hennig A.; Nau W. M.; Guo D.-S. An Amphiphilic Sulfonatocalix[5]arene as an Activator for Membrane Transport of Lysine-rich Peptides and Proteins. Angew. Chem., Int. Ed. 2021, 60, 1875–1882. 10.1002/anie.202011185. PubMed DOI

Cebula J.; Fink K.; Goldeman W.; Szermer-Olearnik B.; Nasulewicz-Goldeman A.; Psurski M.; Cuprych M.; Kędziora A.; Dudek B.; Bugla-Płoskońska G.; Goszczyński T. M. Structural patterns enhancing the antibacterial activity of metallacarborane-based antibiotics. ChemRxiv 2023, 10.26434/chemrxiv-2022-t2g39-v2. PubMed DOI

Wei W. Hofmeister Effects Shine in Nanoscience. Adv. Sci. 2023, 2302057.10.1002/advs.202302057. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace