Carbon-Substituted Amines of the Cobalt Bis(dicarbollide) Ion: Stereochemistry and Acid-Base Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39393080
PubMed Central
PMC11523243
DOI
10.1021/acs.inorgchem.4c03257
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Organic amines are found to be abundant in natural living systems. They also constitute an inestimable family of building blocks available in drug design. Considering the man-made cluster [(1,2-C2B9H11)2-3,3'-Co(III)]- ion (1-) and its application as an emerging unconventional pharmacophore, the availability of the corresponding amines has been limited and those with amino groups attached directly to carbon atoms have remained unknown. This paper describes the synthesis of compounds containing one or two primary amino groups attached to the carbon atoms of the cobaltacarborane cage that are accessible via the reduction of newly synthesized azides or via the Curtius rearrangement of the corresponding acyl azide. This substitution represents the first members of the series of azides and primary amines with functional groups bound directly to the carbon atoms of the cage. As expected, the absence of the linker along with the presence of the bulky anionic polyhedral ion leads to a significant alteration of the chemical and physicochemical properties. On a broader series of amines of the ion 1- we have thus observed significant differences in the acidity of the amino groups, depending on whether these are attached to the carbon or boron atoms of the cage, or the C-substituted amines contain an aliphatic linker of variable length. The compounds are relevant for potential use as cobalt bis(dicarbollide) structural blocks in medicinal chemistry and material science. Our study includes single-crystal X-ray diffraction (XRD) structures of both amines and a discussion of their stereochemical and structural features.
Zobrazit více v PubMed
Smith J. G.Chapter 25- Amines. In Organic Chemistry, 3rd ed.; McGraw-Hill, 2011; pp 949–993.
Roughley S. D.; Jordan A. M. The Medicinal Chemist′s Toolbox: An Analysis of Reactions Used in the Pursuit of Drug Candidates. J. Med. Chem. 2011, 54 (10), 3451–3479. 10.1021/jm200187y. PubMed DOI
Grimes R. N.Carboranes, 3rd ed.; Academic Press Ltd-Elsevier Science Ltd, 2016.
Grimes R. N.Carboranes in Medicine. In Carboranes, 3rd ed.; Academic Press Ltd-Elsevier Science Ltd, 201610.1016/b978-0-12-801894-1.00016-0. DOI
Issa F.; Kassiou M.; Rendina L. M. Boron in Drug Discovery: Carboranes as Unique Pharmacophores in Biologically Active Compounds. Chem. Rev. 2011, 111 (9), 5701–5722. 10.1021/cr2000866. PubMed DOI
Marfavi A.; Kavianpour P.; Rendina L. M. Carboranes in drug discovery, chemical biology and molecular imaging. Nat. Rev. Chem. 2022, 6 (7), 486–504. 10.1038/s41570-022-00400-x. PubMed DOI
Chen Y.; Du F. K.; Tang L. Y.; Xu J. R.; Zhao Y. S.; Wu X.; Li M. X.; Shen J.; Wen Q. L.; Cho C. H.; Xiao Z. G. Carboranes as unique pharmacophores in antitumor medicinal chemistry. Mol. Ther.-Oncolytics 2022, 24, 400–416. 10.1016/j.omto.2022.01.005. PubMed DOI PMC
Goszczyński T. M.; Fink K.; Boratynski J. Icosahedral boron clusters as modifying entities for biomolecules. Expert Opin. Biol. Ther. 2018, 18, 205–213. 10.1080/14712598.2018.1473369. PubMed DOI
Valliant J. F.; Guenther K. J.; King A. S.; Morel P.; Schaffer P.; Sogbein O. O.; Stephenson K. A. The medicinal chemistry of carboranes. Coord. Chem. Rev. 2002, 232 (1–2), 173–230. 10.1016/S0010-8545(02)00087-5. DOI
Scholz M.; Hey-Hawkins E. Carbaboranes as Pharmacophores: Properties, Synthesis, and Application Strategies. Chem. Rev. 2011, 111 (11), 7035–7062. 10.1021/cr200038x. PubMed DOI
Fink K.; Uchman M. Boron cluster compounds as new chemical leads for antimicrobial therapy. Coord. Chem. Rev. 2021, 431, 21368410.1016/j.ccr.2020.213684. DOI
Ali F.; Hosmane N. S.; Zhu Y. H. Boron Chemistry for Medical Applications. Molecules 2020, 25 (4), 828.10.3390/molecules25040828. PubMed DOI PMC
Poater J.; Sola M.; Viñas C.; Teixidor F. pi Aromaticity and Three-Dimensional Aromaticity: Two sides of the Same Coin?. Angew. Chem., Int. Ed. 2014, 53 (45), 12191–12195. 10.1002/anie.201407359. PubMed DOI
Poater J.; Viñas C.; Sola M.; Teixidor F. 3D and 2D aromatic units behave like oil and water in the case of benzocarborane derivatives. Nat. Commun. 2022, 13 (1), 384410.1038/s41467-022-31267-7. PubMed DOI PMC
Sivaev I. B.; Bregadze V. V. Polyhedral Boranes for Medical Applications: Current Status and Perspectives. Eur. J. Inorg. Chem. 2009, 2009 (11), 1433–1450. 10.1002/ejic.200900003. DOI
Fanfrlík J.; Brynda J.; Kugler M.; Lepšik M.; Pospíšilová K.; Holub J.; Hnyk D.; Nekvinda J.; Grűner B.; Řezáčová P. B-H center dot center dot center dot pi and C-H center dot center dot center dot pi interactions in protein-ligand complexes: carbonic anhydrase II inhibition by carborane sulfonamides. Phys. Chem. Chem. Phys. 2023, 25 (3), 1728–1733. 10.1039/D2CP04673C. PubMed DOI
Ďord'ovič V.; Tošner Z.; Uchman M.; Zhigunov A.; Reza M.; Ruokolainen J.; Pramanik G.; Cígler P.; Kalikova K.; Gradzielski M.; Matějíček P. Stealth Amphiphiles: Self-Assembly of Polyhedral Boron Clusters. Langmuir 2016, 32 (26), 6713–6722. 10.1021/acs.langmuir.6b01995. PubMed DOI
Uchman M.; Dord'ovič V.; Tošner Z.; Matějíček P. Classical Amphiphilic Behavior of Nonclassical Amphiphiles: A Comparison of Metallacarborane Self-Assembly with SDS Micellization. Angew. Chem., Int. Ed. 2015, 54 (47), 14113–14117. 10.1002/anie.201506545. PubMed DOI
Verdiá-Báguena C.; Alcaraz A.; Aguilella V. M.; Cioran A. M.; Tachikawa S.; Nakamura H.; Teixidor F.; Viñas C. Amphiphilic COSAN and I2-COSAN crossing synthetic lipid membranes: planar bilayers and liposomes. Chem. Commun. 2014, 50 (51), 6700–6703. 10.1039/c4cc01283f. PubMed DOI
Hohenschutz M.; Grillo I.; Diat O.; Bauduin P. How Nano-Ions Act Like Ionic Surfactants. Angew. Chem.-Int. Ed. 2020, 59 (21), 8084–8088. 10.1002/anie.201916193. PubMed DOI
Malaspina D. C.; Viñas C.; Teixidor F.; Faraudo J. Atomistic Simulations of COSAN: Amphiphiles without a Head-and-Tail Design Display ″Head and Tail″ Surfactant Behavior. Angew. Chem.-Int. Ed. 2020, 59 (8), 3088–3092. 10.1002/anie.201913257. PubMed DOI
Barba-Bon A.; Salluce G.; Lostale-Seijo I.; Assaf K. I.; Hennig A.; Montenegro J.; Nau W. M. Boron clusters as broadband membrane carriers. Nature 2022, 603 (7902), 637.10.1038/s41586-022-04413-w. PubMed DOI PMC
Chen Y.; Barba-Bon A.; Grüner B.; Winterhalter M.; Aksoyoglu M. A.; Pangeni S.; Ashjari M.; Brix K.; Salluce G.; Folgar-Cameán Y.; et al. Metallacarborane Cluster Anions of the Cobalt Bisdicarbollide-Type as Chaotropic Carriers for Transmembrane and Intracellular Delivery of Cationic Peptides. J. Am. Chem. Soc. 2023, 145 (24), 13089–13098. 10.1021/jacs.3c01623. PubMed DOI PMC
Dash B. P.; Satapathy R.; Swain B. R.; Mahanta C. S.; Jena B. B.; Hosmane N. S. Cobalt bis(dicarbollide) anion and its derivatives. J. Organomet. Chem. 2017, 849–850, 170–194. 10.1016/j.jorganchem.2017.04.006. DOI
Pazderová L.; Tüzün E. Z.; Bavol D.; Litecká M.; Fojt L.; Grűner B. Chemistry of Carbon-Substituted Derivatives of Cobalt Bis(dicarbollide)(1-) Ion and Recent Progress in Boron Substitution. Molecules 2023, 28 (19), 6971.10.3390/molecules28196971. PubMed DOI PMC
Semioshkin A. A.; Sivaev I. B.; Bregadze V. I. Cyclic oxonium derivatives of polyhedral boron hydrides and their synthetic applications. Dalton Trans. 2008, 2008, 977–992. 10.1039/b715363e. PubMed DOI
Mahanta C. S.; Bhavsar R.; Dash B. P.; Satapathy R. Cobaltabisdicarbollide based metallodendrimers with cyclotriphosphazene core. J. Organomet. Chem. 2018, 865, 183–188. 10.1016/j.jorganchem.2018.02.022. DOI
Dash B. P.; Satapathy R.; Maguire J. A.; Hosmane N. S. Facile Synthetic Routes to Phenylene and Triazine Core Based Dendritic Cobaltabisdicarbollides. Organometallics 2010, 29 (21), 5230–5235. 10.1021/om100365t. DOI
Druzina A. A.; Shmalko A. V.; Sivaev I. B.; Bregadze V. I. Cyclic oxonium derivatives of cobalt and iron bis(dicarbollides) and their use in organic synthesis. Russ. Chem. Rev. 2021, 90 (7), 785–830. 10.1070/RCR5000. DOI
Plešek J.; Grűner B.; Šícha V.; Böhmer V.; Císařová I. The Zwitterion (8,8′-mu-CH2O(CH3)-(1,2-C2B9H10)2-3,3′-Co (0) as a Versatile Building Block To Introduce Cobalt Bis(Dicarbollide) Ion into Organic Molecules. Organometallics 2012, 31 (5), 1703–1715. 10.1021/om200938n. DOI
Šícha V.; Plešek J.; Kvíčalová M.; Císařová I.; Grűner B. Boron(8) substituted nitrilium and ammonium derivatives, versatile cobalt bis(1,2-dicarbollide) building blocks for synthetic purposes. Dalton Trans. 2009, (5), 851–860. 10.1039/B814941K. PubMed DOI
Plešek Jr.; Grüner Br.; Báča J.; Fusek J.; Císařová I. Syntheses of the B(8)-hydroxy- and B(8,8′)-dihydroxy-derivatives of the bis(1,2-dicarbollido)–3-cobalt(1-)ate ion by its reductive acetoxylation and hydroxylation: molecular structure of [8,8′-μ-CH3C(O)2-(1,2-C2B9H10)2–3-Co]0 zwitterion determined by X-ray diffraction analysis. J. Organomet. Chem. 2002, 649 (2), 181–190. 10.1016/S0022-328X(02)01115-4. DOI
Shmal’ko A. V.; Stogniy M. Y.; Kazakov G. S.; Anufriev S. A.; Sivaev I. B.; Kovalenko L. V.; Bregadze V. I. Cyanide free contraction of disclosed 1,4-dioxane ring as a route to cobalt bis(dicarbollide) derivatives with short spacer between the boron cage and terminal functional group. Dalton Trans. 2015, 44 (21), 9860–9871. 10.1039/C5DT01293G. PubMed DOI
Cígler P.; Kožísek M.; Rezáčová P.; Brynda J.; Otwinowski Z.; Pokorná J.; Plešek J.; Grűner B.; Dolečková-Marešová L.; Máša M.; et al. From nonpeptide toward noncarbon protease inhibitors: Metallacarboranes as specific and potent inhibitors of HIV protease. Proc. Natl. Acad. Sci. U.S.A. 2005, 102 (43), 15394–15399. 10.1073/pnas.0507577102. PubMed DOI PMC
Řezáčová P.; Cígler P.; Matějíček P.; Pokorná J.; Grüner B.; Konvalinka J.. Chapter 1.3., Medicinal Application of Carboranes: Inhibition of HIV Protease. In Boron Science- New Technologies and Applications; Hosmane N. S., Ed.; CRC Press, 2012; pp 45–63.
Grüner B.; Brynda J.; Das V.; Šícha V.; Štěpánková J.; Nekvinda J.; Holub J.; Pospíšilová K.; Fábry M.; Pachl P.; et al. Metallacarborane Sulfamides: Unconventional, Specific, and Highly Selective Inhibitors of Carbonic Anhydrase IX. J. Med. Chem. 2019, 62 (21), 9560–9575. 10.1021/acs.jmedchem.9b00945. PubMed DOI
Kugler M.; Nekvinda J.; Holub J.; El Anwar S.; Das V.; Šícha V.; Pospíšilová K.; Fábry M.; Král V.; Brynda J.; et al. Inhibitors of CA IX Enzyme Based on Polyhedral Boron Compounds. ChemBioChem 2021, 22 (18), 2741–2761. 10.1002/cbic.202100121. PubMed DOI
Nuez-Martinez M.; Pinto C. I. G.; Guerreiro J. F.; Mendes F.; Marques F.; Munoz-Juan A.; Xavier J. A. M.; Laromaine A.; Bitonto V.; Protti N.; et al.Cobaltabis(dicarbollide) (o-COSAN (−)) as Multifunctional Chemotherapeutics: A Prospective Application in Boron Neutron Capture Therapy (BNCT) for Glioblastoma. Cancers 2021, 13 ( (24), 6367.10.3390/cancers13246367. PubMed DOI PMC
Couto M.; Alamn C.; Nievas S.; Perona M.; Dagrosa M. A.; Teixidor F.; Cabral P.; Viñas C.; Cerecetto H. Bimodal Therapeutic Agents Against Glioblastoma, One of the Most Lethal Forms of Cancer. Chem.—Eur. J. 2020, 26 (63), 14335–14340. 10.1002/chem.202002963. PubMed DOI
Kubiński K.; Maslyk M.; Janeczko M.; Goldeman W.; Nasulewicz-Goldeman A.; Psurski M.; Martyna A.; Boguszewska-Czubara A.; Cebula J.; Goszczynski T. M. Metallacarborane Derivatives as Innovative Anti-Candida albicans Agents. J. Med. Chem. 2022, 65 (20), 13935–13945. 10.1021/acs.jmedchem.2c01167. PubMed DOI
Bogucka-Kocka A.; Kolodziej P.; Makuch-Kocka A.; Rozycka D.; Rykowski S.; Nekvinda J.; Grűner B.; Olejniczak A. B. Nematicidal activity of naphthalimide-boron cluster conjugates. Chem. Commun. 2022, 58 (15), 2528–2531. 10.1039/D1CC07075D. PubMed DOI
Vaňková E.; Lokočová K.; Matatkova O.; Křížová I.; Masák J.; Grűner B.; Kaule P.; Čermák J.; Šícha V. Cobalt bis-dicarbollide and its ammonium derivatives are effective antimicrobial and antibiofilm agents. J. Organomet. Chem. 2019, 899, 12089110.1016/j.jorganchem.2019.120891. DOI
Vaňková E.; Lokočová K.; Kašparová P.; Hadravová R.; Křížová I.; Mat’atková O.; Masák J.; Šícha V. Cobalt Bis-Dicarbollide Enhances Antibiotics Action towards Staphylococcus epidermidis Planktonic Growth Due to Cell Envelopes Disruption. Pharmaceuticals 2022, 15 (5), 534.10.3390/ph15050534. PubMed DOI PMC
Takagaki M.; Kazuko U.; Hosmane N. S.. An Overview of Clinical and Biological Aspects of Current Boron Neutron Capture Therapy (BNCT) for Cancer Treatment. In Handbook of Boron Science; WORLD SCIENTIFIC (EUROPE), 2019; pp 101–14310.1142/9781786344670_0005. DOI
Dubey R. D.; Sarkar A.; Shen Z. Y.; Bregadze V. I.; Sivaev I. B.; Druzina A. A.; Zhidkova O. B.; Shmal’ko A. V.; Kosenko I. D.; Sreejyothi P.; et al. Effects of Linkers on the Development of Liposomal Formulation of Cholesterol Conjugated Cobalt Bis(dicarbollides). J. Pharm. Sci. 2021, 110 (3), 1365–1373. 10.1016/j.xphs.2020.12.017. PubMed DOI
Teixidor-Viñas C.; Teixidor F.; Harwood A. J.. Cobaltabisdicarbollide-based Synthetic Vesicles: From Biological Interaction to in vivo Imaging. In Boron-Based Compounds: Potential and Emerging Applications in Medicine; HeyHawkins E.; Teixidor-Viñas C., Eds.; John Wiley & Sons Ltd, 2018; pp 159–173.
Tarrés M.; Canetta E.; Paul E.; Forbes J.; Azzouni K.; Vinas C.; Teixidor F.; Harwood A. J. Biological interaction of living cells with COSAN-based synthetic vesicles. Sci. Rep. 2015, 5, 780410.1038/srep07804. PubMed DOI PMC
Fink K.; Boratynski J.; Paprocka M.; Goszczynski T. M. Metallacarboranes as a tool for enhancing the activity of therapeutic peptides. Ann. N.Y. Acad. Sci. 2019, 1457 (1), 128–141. 10.1111/nyas.1420110.1111/nyas.14201. PubMed DOI
Olejniczak A. B.; Lesnikowski Z. J.. Boron Clusters as Redox Labels for Nucleosides and Nucleic Acids; World Scientific Publ Co Pte Ltd, 2019.
Núñez R.; Tarres M.; Ferrer-Ugalde A.; de Biani F. F.; Teixidor F. Electrochemistry and Photoluminescence of Icosahedral Carboranes, Boranes, Metallacarboranes, and Their Derivatives. Chem. Rev. 2016, 116 (23), 14307–14378. 10.1021/acs.chemrev.6b00198. PubMed DOI
Ferrer-Ugalde A.; Sandoval S.; Pulagam K. R.; Munoz-Juan A.; Laromaine A.; Llop J.; Tobias G.; Nunez R. Radiolabeled Cobaltabis(dicarbollide) Anion-Graphene Oxide Nanocomposites for In Vivo Bioimaging and Boron Delivery. ACS Appl. Nano Mater. 2021, 4 (2), 1613–1625. 10.1021/acsanm.0c03079. DOI
Das B. C.; Ojha D. P.; Das S.; Hosmane N. S.; Evans T.. Boron Compounds for Molecular Probes and Therapeutics. In Handbook of Boron Science; WORLD SCIENTIFIC (EUROPE), 2019; pp 145–16510.1142/9781786344670_0006. DOI
Stoica A. I.; Viñas C.; Teixidor F. History of Cobaltabis(dicarbollide) in Potentiometry, No Need for Ionophores to Get an Excellent Selectivity. Molecules 2022, 27 (23), 8312.10.3390/molecules27238312. PubMed DOI PMC
Teixidor F.; Núñez R.; Viñas C. Towards the Application of Purely Inorganic Icosahedral Boron Clusters in Emerging Nanomedicine. Molecules 2023, 28 (11), 4449.10.3390/molecules28114449. PubMed DOI PMC
Nekvinda J.; Švehla J.; Císařová I.; Grűner B. Chemistry of cobalt bis(1,2-dicarbollide) ion; the synthesis of carbon substituted alkylamino derivatives from hydroxyalkyl derivatives via methylsulfonyl or p-toluenesulfonyl esters. J. Organomet. Chem. 2015, 798, 112–120. 10.1016/j.jorganchem.2015.06.032. DOI
Grüner B.; Švec P.; Šícha V.; Padĕlková Z. Direct and facile synthesis of carbon substituted alkylhydroxy derivatives of cobalt bis(1,2-dicarbollide), versatile building blocks for synthetic purposes. Dalton Trans. 2012, 41, 7498–7512. 10.1039/c2dt30128h. PubMed DOI
Juárez-Pérez E.; Viñas C.; Gonzalez-Campo A.; Teixidor F.; Sillanpää R.; Kivekäs R.; Núñez R. Controlled direct synthesis of C-Mono- and C-disubstituted derivatives of 3,3′-Co(1,2-C(2)B(9)H(11))(2) (−) with organosilane groups: Theoretical calculations compared with experimental results. Chem.—Eur. J. 2008, 14 (16), 4924–4938. 10.1002/chem.200702013. PubMed DOI
Rojo I.; Teixidor F.; Viñas C.; Kivekäs R.; Sillanpää R. Synthesis and coordinating ability of an anionic cobaltabisdicarbollide ligand geometrically analogous to BINAP. Chem.—Eur. J. 2004, 10 (21), 5376–5385. 10.1002/chem.200400361. PubMed DOI
El Anwar S.; Ružičková Z.; Bavol D.; Fojt L.; Grűner B. Tetrazole Ring Substitution at Carbon and Boron Sites of the Cobalt Bis(dicarbollide) Ion Available via Dipolar Cycloadditions. Inorg. Chem. 2020, 59 (23), 17430–17442. 10.1021/acs.inorgchem.0c02719. PubMed DOI
Grüner B.; Plzák Z. High-performance liquid chromatographic separations of boron-cluster compounds. J. Chromatogr. A 1997, 789 (1–2), 497–517. 10.1016/S0021-9673(97)00497-4. DOI
CrysAlisPRO ; 2022. (accessed 2022).
Busing W. R.; Levy H. A. High-speed computation of the absorption correction for single-crystal diffraction measurements. Acta Crystallogr. 1957, 10 (3), 180–182. 10.1107/S0365110X57000584. DOI
Sheldrick G. M. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv. 2015, 71 (1), 3–8. 10.1107/S2053273314026370. PubMed DOI PMC
Sheldrick G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71 (1), 3–8. 10.1107/S2053229614024218. PubMed DOI PMC
Dolomanov O. V.; Bourhis L. J.; Gildea R. J.; Howard J. A. K.; Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42 (2), 339–341. 10.1107/S0021889808042726. DOI
Diamond—Crystal and Molecular Structure Visualization Crystal Impact; 2020. http://www.Crystalimpact.Com/Diamond (accessed March 2, 2023).
Wan H.; Holmén A. G.; Wang Y. D.; Lindberg W.; Englund M.; Någård M. B.; Thompson R. A. High-throughput screening of pK, values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry. Rapid Commun. Mass Spectrom. 2003, 17 (23), 2639–2648. 10.1002/rcm.1229. PubMed DOI
Geiser L.; Henchoz Y.; Galland A.; Carrupt P. A.; Veuthey J. L. Determination of pKa values by capillary zone electrophoresis with a dynamic coating procedure. J. Sep. Sci. 2005, 28 (17), 2374–2380. 10.1002/jssc.200500213. PubMed DOI
Šolínová V.; Brynda J.; Šícha V.; Holub J.; Grűner B.; Kašička V. Determination of acidity constants, ionic mobilities, and hydrodynamic radii of carborane-based inhibitors of carbonic anhydrases by capillary electrophoresis. Electrophoresis 2021, 42 (7–8), 910–919. 10.1002/elps.202000298. PubMed DOI
Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford CT, USA, 2016.
Knizia G. Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts. J. Chem. Theory Comput. 2013, 9 (11), 4834–4843. 10.1021/ct400687b. PubMed DOI
TURBOMOLE, Version 7.3; A development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2017; TURBOMOLE GmbH, 2007.
Nekvinda J.; Šícha V.; Hnyk D.; Grűner B. Synthesis, characterisation and some chemistry of C- and B-substituted carboxylic acids of cobalt bis(dicarbollide). Dalton Trans. 2014, 43 (13), 5106–5120. 10.1039/c3dt52870g. PubMed DOI
Konieczka S. Z.; Himmelspach A.; Hailmann M.; Finze M. Synthesis, Characterization, and Selected Properties of 7- and 12-Ammoniocarba-i-closo/i-dodecaboranes. Eur. J. Inorg. Chem. 2013, 2013 (1), 134–146. 10.1002/ejic.201200969. DOI
Fringuelli F.; Pizzo F.; Vaccaro L. Cobalt(II) chloride-catalyzed chemoselective sodium borohydride reduction of azides in water. Synthesis 2000, 2000, 646–650. 10.1055/s-2000-6389. DOI
Blanch R. J.; Bush L. C.; Jones M. Carboranyl Nitrenes. Inorg. Chem. 1994, 33 (2), 198–199. 10.1021/ic00080a005. DOI
Rodríguez-Rey J. L.; Esteban-Gómez D.; Platas-Iglesias C.; Sousa-Pedrares A. Electronic versus steric control in palladium complexes of carboranyl phosphine-iminophosphorane ligands. Dalton Trans. 2019, 48 (2), 486–503. 10.1039/C8DT04006K. PubMed DOI
Zakharkin L. I.; Kalinin V. N.; Zhigareva G. G. Syntheses based on lithium derivatives of p-carborane. Russ. Chem. Bull. 1970, 19 (4), 857–859. 10.1007/BF00867250. DOI
Zakharkin L. I.; Kalinin V. N. Synthesis of barene and neobarene amines. J. Gen. Chem. USSR 1965, 35 (10), 1878.
Jones C. J.; Francis J. N.; Hawthorne M. F. New 10-atom and 11-atom polyhedral metallacarboranes prepared by polyhedral contraction. J. Am. Chem. Soc. 1972, 94 (24), 8391–8399. 10.1021/ja00779a018. DOI
Jones C. J.; Francis J. N.; Hawthorne M. F. Derivative chemistry os metallocarboranes nido–11-atom metallocarboranes and their Lewis base adducts. J. Am. Chem. Soc. 1973, 95 (23), 7633–7643. 10.1021/ja00804a016. DOI
Juarez-Perez E. J.; Viñas C.; Teixidor F.; Núñez R. First example of the formation of a Si-C bond from an intramolecular Si-H center dot center dot center dot H-C diyhydrogen interaction in a metallacarborane: A theoretical study. J. Organomet. Chem. 2009, 694 (11), 1764–1770. 10.1016/j.jorganchem.2008.12.022. DOI
Sinou D.; Emziane M. Trimethylsilylazide: A Highly Reactive Silylating Agent for Primary and Secondary Alcohols. Synthesis 1986, 1986 (12), 1045–1046. 10.1055/s-1986-31869. DOI
Caron B.; Brassard P. Regiospecific α-substitution of crotonic esters synthesis of naturally occurring derivatives of 6-ethyljuglone. Tetrahedron 1991, 47 (25), 4287–4298. 10.1016/S0040-4020(01)87099-X. DOI
Amantini D.; Fringuelli F.; Pizzo F.; Vaccaro L. Efficient O-Trimethylsilylation of Alcohols and Phenols with Trimethylsilyl Azide Catalyzed by Tetrabutylammonium Bromide under Neat Conditions. J. Org. Chem. 2001, 66 (20), 6734–6737. 10.1021/jo015814s. PubMed DOI
El Anwar S.; Assaf K. I.; Begaj B.; Samsonov M. A.; Růžičková Z.; Holub J.; Bavol D.; Nau W. M.; Gabel D.; Grűner B. Versatile, one-pot introduction of nonahalogenated 2-ammonio-decaborate ions as boron cluster scaffolds into organic molecules; host-guest complexation with gamma-cyclodextrin. Chem. Commun. 2019, 55 (91), 13669–13672. 10.1039/C9CC07678F. PubMed DOI
Kang H. C.; Lee S. S.; Knobler C. B.; Hawthorne M. F. Synthesis of charge-compensated dicarbollide ligand precursors and their use in preparation of novel metallacarboranes. Inorg. Chem. 1991, 30 (9), 2024–2031. 10.1021/ic00009a015. DOI
Broder C. K.; Goeta A. E.; Howard J. A. K.; Hughes A. K.; Johnson A. L.; Malget J. M.; Wade K. Insertion and cleavage reactions of i-closo/i–3,1,2-Ta(NMe2)3/-(C2B9H11) with nitriles, phenols and thiols; structural characterisation of i-N/i-N/i-dimethylamidinate ligands. J. Chem. Soc., Dalton Trans. 2000, (20), 3526–3533. 10.1039/b004862n. DOI
Sivaev I. B.; Starikova Z. A.; Sjoberg S.; Bregadze V. I. Synthesis of functional derivatives of the 3,3 ′-Co(1,2-C2B2H11)(2) (−) anion. J. Organomet. Chem. 2002, 649 (1–2), 1–8. 10.1016/S0022-328X(01)01352-3. DOI
Oliva-Enrich J. M.; Humbel S.; Dávalos J. Z.; Holub J.; Hnyk D. Proton affinities of amino group functionalizing 2D and 3D boron compounds. Afinidad 2018, 75 (584), 260–266.
Teixidor F.; Barberà G.; Vaca A.; Kivekäs R.; Sillanpää R.; Oliva J.; Viñas C. Are methyl groups electron-donating or electron-withdrawing in boron clusters?: Permethylation of o-carborane. J. Am. Chem. Soc. 2005, 127 (29), 10158–10159. 10.1021/ja052981r. PubMed DOI
Bakardjiev M.; Růžička A.; Růžičková Z.; Tok O. L.; Holub J.; Hnyk D.; Fanfrlík J.; Štíbr B. Synthesis of i-closo, i–1,2-H2C2B8Me8 and 1,2-H2C2B8Me7X (X = I and OTf) Dicarbaboranes and Their Rearrangement Reactions. Inorg. Chem. 2019, 58 (4), 2865–2871. 10.1021/acs.inorgchem.8b03550. PubMed DOI
Bakardjiev M.; Tok O. L.; Růžička A.; Růžičková Z.; Holub J.; Hnyk D.; Špalt Z.; Fanfrlík J.; Štíbr B. Methyl camouflage in the ten-vertex i-closo/i-dicarbaborane(10) series. Isolation of i-closo/i–1,6-R2C2B8Me8 (R = H and Me) and their monosubstituted analogues. Dalton Trans. 2018, 47 (32), 11070–11076. 10.1039/C8DT02586J. PubMed DOI
Bakardjiev M.; Tok O. L.; Růžička A.; Růžičková Z.; Holub J.; Hnyk D.; Fanfrlík J.; Štíbr B. Quantitative syntheses of permethylated i-closo- /i–1,10-R2C2B8Me8 (R = H, Me) carboranes. Egg-shaped hydrocarbons on the Frontier between inorganic and organic chemistry. RSC Adv. 2018, 8 (67), 38238–38244. 10.1039/C8RA06640J. PubMed DOI PMC