Inhibition of the precursor and mature forms of HIV-1 protease as a tool for drug evaluation
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29992979
PubMed Central
PMC6041310
DOI
10.1038/s41598-018-28638-w
PII: 10.1038/s41598-018-28638-w
Knihovny.cz E-zdroje
- MeSH
- atazanavir sulfát farmakologie MeSH
- buněčné linie MeSH
- darunavir farmakologie MeSH
- fluorescenční barviva MeSH
- HIV-1 enzymologie MeSH
- inhibitory HIV-proteasy farmakologie MeSH
- látky proti HIV farmakologie MeSH
- lidé MeSH
- nelfinavir farmakologie MeSH
- proteinové prekurzory antagonisté a inhibitory MeSH
- proteolýza MeSH
- průtoková cytometrie MeSH
- rezonanční přenos fluorescenční energie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- atazanavir sulfát MeSH
- darunavir MeSH
- fluorescenční barviva MeSH
- inhibitory HIV-proteasy MeSH
- látky proti HIV MeSH
- nelfinavir MeSH
- proteinové prekurzory MeSH
HIV-1 protease (PR) is a homodimeric enzyme that is autocatalytically cleaved from the Gag-Pol precursor. Known PR inhibitors bind the mature enzyme several orders of magnitude more strongly than the PR precursor. Inhibition of PR at the precursor level, however, may stop the process at its rate-limiting step before the proteolytic cascade is initiated. Due to its structural heterogeneity, limited solubility and autoprocessing, the PR precursor is difficult to access by classical methods, and limited knowledge regarding precursor inhibition is available. Here, we describe a cell-based assay addressing precursor inhibition. We used a reporter molecule containing the transframe (TFP) and p6* peptides, PR, and N-terminal fragment of reverse transcriptase flanked by the fluorescent proteins mCherry and EGFP on its N- and C- termini, respectively. The level of FRET between EGFP and mCherry indicates the amount of unprocessed reporter, allowing specific monitoring of precursor inhibition. The inhibition can be quantified by flow cytometry. Additionally, two microscopy techniques confirmed that the reporter remains unprocessed within individual cells upon inhibition. We tested darunavir, atazanavir and nelfinavir and their combinations against wild-type PR. Shedding light on an inhibitor's ability to act on non-mature forms of PR may aid novel strategies for next-generation drug design.
Zobrazit více v PubMed
Konvalinka J, Kräusslich H-G, Müller B. Retroviral proteases and their roles in virion maturation. Virology. 2015;479:403–417. doi: 10.1016/j.virol.2015.03.021. PubMed DOI
Engelman A, Cherepanov P. The structural biology of HIV-1: mechanistic and therapeutic insights. Nat. Rev. Microbiol. 2012;10:279–290. doi: 10.1038/nrmicro2747. PubMed DOI PMC
Gulick RM. New antiretroviral drugs. Clin. Microbiol. Infect. 2003;9:186–193. doi: 10.1046/j.1469-0691.2003.00570.x. PubMed DOI
Kurt Yilmaz N, Swanstrom R, Schiffer CA. Improving Viral Protease Inhibitors to Counter Drug Resistance. Trends Microbiol. 2016;24:547–557. doi: 10.1016/j.tim.2016.03.010. PubMed DOI PMC
Su CT-T, Ling W-L, Lua W-H, Haw Y-X, Gan SK-E. Structural analyses of 2015-updated drug-resistant mutations in HIV-1 protease: an implication of protease inhibitor cross-resistance. BMC Bioinformatics. 2016;17:500. doi: 10.1186/s12859-016-1372-3. PubMed DOI PMC
Pettit SC, Everitt LE, Choudhury S, Dunn BM, Kaplan AH. Initial Cleavage of the Human Immunodeficiency Virus Type 1 GagPol Precursor by Its Activated Protease Occurs by an Intramolecular Mechanism. J. Virol. 2004;78:8477–8485. doi: 10.1128/JVI.78.16.8477-8485.2004. PubMed DOI PMC
Pettit SC, Clemente JC, Jeung JA, Dunn BM, Kaplan AH. Ordered Processing of the Human Immunodeficiency Virus Type 1 GagPol Precursor Is Influenced by the Context of the Embedded Viral Protease. J. Virol. 2005;79:10601–10607. doi: 10.1128/JVI.79.16.10601-10607.2005. PubMed DOI PMC
Pettit SC, Gulnik S, Everitt L, Kaplan AH. The Dimer Interfaces of Protease and Extra-Protease Domains Influence the Activation of Protease and the Specificity of GagPol Cleavage. J. Virol. 2003;77:366–374. doi: 10.1128/JVI.77.1.366-374.2003. PubMed DOI PMC
Mattei S, et al. Induced Maturation of Human Immunodeficiency Virus. J. Virol. 2014;88:13722–13731. doi: 10.1128/JVI.02271-14. PubMed DOI PMC
Krausslich HG. Human immunodeficiency virus proteinase dimer as component of the viral polyprotein prevents particle assembly and viral infectivity. Proc. Natl. Acad. Sci USA. 1991;88:3213–3217. doi: 10.1073/pnas.88.8.3213. PubMed DOI PMC
Pan Y-Y, Wang S-M, Huang K-J, Chiang C-C, Wang C-T. Placement of Leucine Zipper Motifs at the Carboxyl Terminus of HIV-1 Protease Significantly Reduces Virion Production. PLoS ONE. 2012;7:e32845. doi: 10.1371/journal.pone.0032845. PubMed DOI PMC
Lee S-K, Potempa M, Swanstrom R. The Choreography of HIV-1 Proteolytic Processing and Virion Assembly. J. Biol.Chem. 2012;287:40867–40874. doi: 10.1074/jbc.R112.399444. PubMed DOI PMC
Louis JM, Clore GM, Gronenborn AM. Autoprocessing of HIV-1 protease is tightly coupled to protein folding. Nat. Struct. Mol. Biol. 1999;6:868–875. doi: 10.1038/12327. PubMed DOI
Ishima R, Torchia DA, Louis JM. Mutational and structural studies aimed at characterizing the monomer of HIV-1 protease and its precursor. J. Biol.Chem.J. 2007;282:17190–17199. doi: 10.1074/jbc.M701304200. PubMed DOI
Tessmer U, Krausslich H-G. Cleavage of Human Immunodeficiency Virus Type 1 Proteinase from the N-Terminally Adjacentp6* Protein Is Essential for Efficient Gag Polyprotein Processing and Viral Infectivity. J. Virol. 1998;72:3459–3463. PubMed PMC
Ludwig C, Leiherer A, Wagner R. Importance of Protease Cleavage Sites within and Flanking Human Immunodeficiency Virus Type 1 Transframe Proteinp6* for Spatiotemporal Regulation of Protease Activation. J. Virol. 2008;82:4573–4584. doi: 10.1128/JVI.02353-07. PubMed DOI PMC
Huang L, Li Y, Chen C. Flexible catalytic site conformations implicated in modulation of HIV-1 protease autoprocessing reactions. Retrovirology. 2011;8:79–79. doi: 10.1186/1742-4690-8-79. PubMed DOI PMC
Ingr M, et al. Inhibitor and Substrate Binding Induced Stability of HIV-1 Protease against Sequential Dissociation and Unfolding Revealed by High Pressure Spectroscopy and Kinetics. PLoS ONE. 2015;10:e0119099. doi: 10.1371/journal.pone.0119099. PubMed DOI PMC
Yu, F.-H., Huang, K.-J. & Wang, C.-T. C-terminal HIV-1 transframep6* tetra-peptide blocks enhanced Gag cleavage incurred by leucine zipper replacement of a deleted p6* domain. J. Virol, 10.1128/jvi.00103-17 (2017). PubMed PMC
Kassell B, Kay J. Zymogens of Proteolytic Enzymes. Science. 1973;180:1022–1027. doi: 10.1126/science.180.4090.1022. PubMed DOI
Mori H, et al. A cluster of rapid disease progressors upon primary HIV-1 infection shared a novel variant with mutations in the p6gag/pol and pol/vif genes. AIDS. 2015;29:1717–1719. doi: 10.1097/QAD.0000000000000771. PubMed DOI
Yu F-H, Chou T-A, Liao W-H, Huang K-J, Wang C-T. Gag-Pol Transframe Domainp6* Is Essential for HIV-1 Protease-Mediated Virus Maturation. PLoS ONE. 2015;10:e0127974. doi: 10.1371/journal.pone.0127974. PubMed DOI PMC
Larrouy L, et al. Dynamics of gag-pol minority viral populations in naive HIV-1-infected patients failing protease inhibitor regimen. AIDS. 2011;25:2143–2148. doi: 10.1097/QAD.0b013e32834cabb9. PubMed DOI
Leiherer A, Ludwig C, Wagner R. Uncoupling Human Immunodeficiency Virus Type 1 gag and pol Reading Frames: Role of the Transframe Proteinp6* in Viral Replication. J. Virol. 2009;83:7210–7220. doi: 10.1128/JVI.02603-08. PubMed DOI PMC
Paulus C, Ludwig C, Wagner R. Contribution of the Gag-Pol transframe domainp6* and its coding sequence to morphogenesis and replication of human immunodeficiency virus type 1. Virology. 2004;330:271–283. doi: 10.1016/j.virol.2004.09.013. PubMed DOI
Koh Y, et al. Potent Inhibition of HIV-1 Replication by Novel Non-peptidyl Small Molecule Inhibitors of Protease Dimerization. J. Biol. Chem. 2007;282:28709–28720. doi: 10.1074/jbc.M703938200. PubMed DOI
Pietrucci F, Vargiu AV, Kranjc A. HIV-1 Protease Dimerization Dynamics Reveals a Transient Druggable Binding Pocket at theInterface. Sci. Rep. 2015;5:18555. doi: 10.1038/srep18555. PubMed DOI PMC
Hayashi H, et al. Dimerization of HIV-1 protease occurs through two steps relating to the mechanism of protease dimerization inhibition by darunavir. Proc. Natl. Acad. Sci USA. 2014;111:12234–12239. doi: 10.1073/pnas.1400027111. PubMed DOI PMC
Louis JM, Aniana A, Weber IT, Sayer JM. Inhibition of autoprocessing of natural variants and multidrug resistant mutant precursors of HIV-1 protease by clinical inhibitors. Proc. Natl. Acad. Sci USA. 2011;108:9072–9077. doi: 10.1073/pnas.1102278108. PubMed DOI PMC
Park JH, et al. Binding of clinical inhibitors to a model precursor of a rationally selected multidrug resistant HIV-1 protease is significantly weaker than to the released mature enzyme. Biochemistry. 2016;55:2390–2400. doi: 10.1021/acs.biochem.6b00012. PubMed DOI PMC
Speck RR, Flexner C, Tian C-J, Yu X-F. Comparison of Human Immunodeficiency Virus Type 1 Pr55(Gag) and Pr160(Gag-Pol) Processing Intermediates That Accumulate in Primary and Transformed Cells Treated with Peptidic and Nonpeptidic Protease Inhibitors. Antimicrob. Agents Chemother. 2000;44:1397–1403. doi: 10.1128/AAC.44.5.1397-1403.2000. PubMed DOI PMC
Huang, L. & Chen, C. Understanding HIV-1 protease autoprocessing for novel therapeutic development. Future Med. Chem. 5, 10.4155/fmc.4113.4189, 10.4155/fmc.13.89 (2013). PubMed PMC
Davis DA, et al. Activity of Human Immunodeficiency Virus Type 1 Protease Inhibitors against the Initial Autocleavage in Gag-Pol Polyprotein Processing. Antimicrob. Agents Chemother. 2012;56:3620–3628. doi: 10.1128/AAC.00055-12. PubMed DOI PMC
Weber IT, Kneller DW, Wong-Sam A. Highly resistant HIV-1 proteases and strategies for their inhibition. Future Med. Chem. 2015;7:1023–1038. doi: 10.4155/fmc.15.44. PubMed DOI PMC
Xue B, Mizianty MJ, Kurgan L, Uversky VN. Protein intrinsic disorder as a flexible armor and a weapon of HIV-1. Cell. Mol. Life Sci. 2012;69:1211–1259. doi: 10.1007/s00018-011-0859-3. PubMed DOI PMC
Ahrens JB, Nunez-Castilla J, Siltberg-Liberles J. Evolution of intrinsic disorder in eukaryotic proteins. Cell. Mol. Life Sci. 2017;74:3163–3174. doi: 10.1007/s00018-017-2559-0. PubMed DOI PMC
Tang C, Louis JM, Aniana A, Suh J-Y, Clore GM. Visualizing transient events in amino-terminal autoprocessing of HIV-1 protease. Nature. 2008;455:693–696. doi: 10.1038/nature07342. PubMed DOI PMC
Agniswamy J, Sayer JM, Weber IT, Louis JM. Terminal Interface Conformations Modulate Dimer Stability Prior to Amino Terminal Autoprocessing of HIV-1 Protease. Biochemistry. 2012;51:1041–1050. doi: 10.1021/bi201809s. PubMed DOI PMC
Warszycki D, et al. From Homology Models to a Set of Predictive Binding Pockets – a 5-HT(1A) Receptor Case Study. J Chem. Inf. Model. 2017;57:311–321. doi: 10.1021/acs.jcim.6b00263. PubMed DOI PMC
Freyd T, et al. Ligand-guided homology modelling of the GABAB2 subunit of the GABAB receptor. PLOS ONE. 2017;12:e0173889. doi: 10.1371/journal.pone.0173889. PubMed DOI PMC
Lindsten K, Uhlíková T, Konvalinka J, Masucci MG, Dantuma NP. Cell-Based Fluorescence Assay for Human Immunodeficiency Virus Type 1 Protease Activity. Antimicrob. Agents Chemother. 2001;45:2616–2622. doi: 10.1128/AAC.45.9.2616-2622.2001. PubMed DOI PMC
Majerová-Uhlíková T, Dantuma NP, Lindsten K, Masucci MG, Konvalinka J. Non-infectious fluorimetric assay for phenotyping of drug-resistant HIV proteinase mutants. J. Clin. Virol. 2006;36:50–59. doi: 10.1016/j.jcv.2006.01.014. PubMed DOI
Buzon MJ, et al. A non-infectious cell-based phenotypic assay for the assessment of HIV-1 susceptibility to protease inhibitors. J. Antimicrob. Chemother. 2012;67:32–38. doi: 10.1093/jac/dkr433. PubMed DOI
Boehr DD, Nussinov R, Wright PE. The role of dynamic conformational ensembles in biomolecular recognition. Nat. Chem.Biol. 2009;5:789–796. doi: 10.1038/nchembio.232. PubMed DOI PMC
Chou, T.-C. Drug Combination Studies and Their Synergy Quantification Using the Chou-Talalay Method. Cancer Res., 10.1158/0008-5472.can-09-1947 (2010). PubMed
Robinson BS, et al. BMS-232632, A Highly Potent Human Immunodeficiency Virus Protease Inhibitor That Can Be Used in Combination with Other Available Antiretroviral Agents. Antimicrob. Agents Chemother. 2000;44:2093–2099. doi: 10.1128/AAC.44.8.2093-2099.2000. PubMed DOI PMC
Dam E, et al. Inhibition of protease-inhibitor-resistant HIV type 1 by saquinavir in combination with atazanavir or lopinavir. Antivir. Ther. 2007;12:371–380. PubMed
Molla A, et al. In Vitro Antiviral Interaction of Lopinavir with Other Protease Inhibitors. Antimicrob. Agents Chemother. 2002;46:2249–2253. doi: 10.1128/AAC.46.7.2249-2253.2002. PubMed DOI PMC
Wei G, Xi W, Nussinov R, Ma B. Protein Ensembles: How Does Nature Harness Thermodynamic Fluctuations for Life? The Diverse Functional Roles of Conformational Ensembles in the Cell. Chem. Rev. 2016;116:6516–6551. doi: 10.1021/acs.chemrev.5b00562. PubMed DOI PMC
Liu Z, et al. Pulsed EPR Characterization of HIV-1 Protease Conformational Sampling and Inhibitor-Induced Population Shifts. PCCP. 2016;18:5819–5831. doi: 10.1039/C5CP04556H. PubMed DOI PMC
Hodek J, et al. Protective hybrid coating containing silver, copper and zinc cations effective against human immunodeficiency virus and other enveloped viruses. BMC Microbiol. 2016;16:56. doi: 10.1186/s12866-016-0675-x. PubMed DOI PMC
Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints 12. Am. J. Epidemiol. 1938;27:493–497. doi: 10.1093/oxfordjournals.aje.a118408. DOI
Wahl M, Gregor I, Patting M, Enderlein J. Fast calculation of fluorescence correlation data with asynchronous time-correlated single-photon counting. Optics Express. 2003;11:3583–3591. doi: 10.1364/OE.11.003583. PubMed DOI
Gregor I, Enderlein J. Time-resolved methods in biophysics. 3. Fluorescence lifetime correlation spectroscopy. PPS. 2007;6:13–18. PubMed
Digman MA, Caiolfa VR, Zamai M, Gratton E. The Phasor Approach to Fluorescence Lifetime Imaging Analysis. Biophys. J. 2008;94:L14–L16. doi: 10.1529/biophysj.107.120154. PubMed DOI PMC
The zymogenic form of SARS-CoV-2 main protease: A discrete target for drug discovery
Viral proteases as therapeutic targets
Precursors of Viral Proteases as Distinct Drug Targets
Triterpenoid-PEG Ribbons Targeting Selectivity in Pharmacological Effects