The zymogenic form of SARS-CoV-2 main protease: A discrete target for drug discovery

. 2025 Jan ; 301 (1) : 108079. [epub] 20241214

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid39675720
Odkazy

PubMed 39675720
PubMed Central PMC11773056
DOI 10.1016/j.jbc.2024.108079
PII: S0021-9258(24)02581-X
Knihovny.cz E-zdroje

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) autocatalytically releases itself out of the viral polyprotein to form a fully active mature dimer in a manner that is not fully understood. Here, we introduce several tools to help elucidate differences between cis (intramolecular) and trans (intermolecular) proteolytic processing and to evaluate inhibition of precursor Mpro. We found that many mutations at the P1 position of the N-terminal autoprocessing site do not block cis autoprocessing but do inhibit trans processing. Notably, substituting the WT glutamine at the P1 position with isoleucine retains Mpro in an unprocessed precursor form that can be purified and further studied. We also developed a cell-based reporter assay suitable for compound library screening and evaluation in HEK293T cells. This assay can detect both overall Mpro inhibition and the fraction of uncleaved precursor form of Mpro through separable fluorescent signals. We observed that inhibitory compounds preferentially block mature Mpro. Bofutrelvir and a novel compound designed in-house showed the lowest selectivity between precursor and mature Mpro, indicating that inhibition of both forms may be possible. Additionally, we observed positive modulation of precursor activity at low concentrations of inhibitors. Our findings help expand understanding of the SARS-CoV-2 viral life cycle and may facilitate development of strategies to target precursor form of Mpro for inhibition or premature activation of Mpro.

Zobrazit více v PubMed

V'Kovski P., Kratzel A., Steiner S., Stalder H., Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat. Rev. Microbiol. 2021;19:155–170. PubMed PMC

Roman C., Lewicka A., Koirala D., Li N.S., Piccirilli J.A. The SARS-CoV-2 programmed -1 ribosomal frameshifting element crystal structure solved to 2.09 Å using chaperone-assisted RNA crystallography. ACS Chem. Biol. 2021;16:1469–1481. PubMed PMC

Plant E.P., Rakauskaite R., Taylor D.R., Dinman J.D. Achieving a golden mean: mechanisms by which coronaviruses ensure synthesis of the correct stoichiometric ratios of viral proteins. J. Virol. 2010;84:4330–4340. PubMed PMC

Zhao Y., Zhu Y., Liu X., Jin Z., Duan Y., Zhang Q., et al. Structural basis for replicase polyprotein cleavage and substrate specificity of main protease from SARS-CoV-2. Proc. Natl. Acad. Sci. U S A. 2022;119 PubMed PMC

Thomas S. Mapping the nonstructural transmembrane proteins of severe acute respiratory syndrome coronavirus 2. J. Comput. Biol. 2021;28:909–921. PubMed PMC

Malone B., Urakova N., Snijder E.J., Campbell E.A. Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design. Nat. Rev. Mol. Cell Biol. 2022;23:21–39. PubMed PMC

Subissi L., Posthuma C.C., Collet A., Zevenhoven-Dobbe J.C., Gorbalenya A.E., Decroly E., et al. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proc. Natl. Acad. Sci. U S A. 2014;111:E3900–E3909. PubMed PMC

Kenward C., Vuckovic M., Paetzel M., Strynadka N.C.J. Kinetic comparison of all eleven viral polyprotein cleavage site processing events by SARS-CoV-2 main protease using a linked protein FRET platform. J. Biol. Chem. 2024;300 PubMed PMC

Yadav R., Courouble V.V., Dey S.K., Harrison J., Timm J., Hopkins J.B., et al. Biochemical and structural insights into SARS-CoV-2 polyprotein processing. Mpro Sci. Adv. 2022;8 PubMed PMC

Krichel B., Falke S., Hilgenfeld R., Redecke L., Uetrecht C. Processing of the SARS-CoV pp1a/ab nsp7-10 region. Biochem. J. 2020;477:1009–1019. PubMed PMC

Narwal M., Armache J.P., Edwards T.J., Murakami K.S. SARS-CoV-2 polyprotein substrate regulates the stepwise M(pro) cleavage reaction. J. Biol. Chem. 2023;299 PubMed PMC

Yaghi R.M., Andrews C.L., Wylie D.C., Iverson B.L. High-resolution substrate specificity profiling of SARS-CoV-2 M(pro); comparison to SARS-CoV M(pro) ACS Chem. Biol. 2024;19:1474–1483. PubMed PMC

Noske G.D., Nakamura A.M., Gawriljuk V.O., Fernandes R.S., Lima G.M.A., Rosa H.V.D., et al. A crystallographic snapshot of SARS-CoV-2 main protease maturation process. J. Mol. Biol. 2021;433 PubMed PMC

Sacco M.D., Ma C., Lagarias P., Gao A., Townsend J.A., Meng X., et al. Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing dual inhibitors against M(pro) and cathepsin L. Sci. Adv. 2020;6 PubMed PMC

Zimmermann L., Zhao X., Makroczyova J., Wachsmuth-Melm M., Prasad V., Hensel Z., et al. SARS-CoV-2 nsp3 and nsp4 are minimal constituents of a pore spanning replication organelle. Nat. Commun. 2023;14:7894. PubMed PMC

Wang H., Rizvi S.R.A., Dong D., Lou J., Wang Q., Sopipong W., et al. Emerging variants of SARS-CoV-2 NSP10 highlight strong functional conservation of its binding to two non-structural proteins, NSP14 and NSP16. Elife. 2023;12 PubMed PMC

Li F., Ghiabi P., Hajian T., Klima M., Li A.S.M., Khalili Yazdi A., et al. SS148 and WZ16 inhibit the activities of nsp10-nsp16 complexes from all seven human pathogenic coronaviruses. Biochim. Biophys. Acta Gen. Subj. 2023;1867 PubMed PMC

Liu C., Shi W., Becker S.T., Schatz D.G., Liu B., Yang Y. Structural basis of mismatch recognition by a SARS-CoV-2 proofreading enzyme. Science. 2021;373:1142–1146. PubMed PMC

Nencka R., Silhan J., Klima M., Otava T., Kocek H., Krafcikova P., et al. Coronaviral RNA-methyltransferases: function, structure and inhibition. Nucleic Acids Res. 2022;50:635–650. PubMed PMC

Liu Y., Qin C., Rao Y., Ngo C., Feng J.J., Zhao J., et al. SARS-CoV-2 Nsp5 demonstrates two distinct mechanisms targeting RIG-I and MAVS to evade the innate immune response. mBio. 2021;12 PubMed PMC

Chen S.A., Arutyunova E., Lu J., Khan M.B., Rut W., Zmudzinski M., et al. SARS-CoV-2 M(pro) protease variants of concern display altered viral substrate and cell host target galectin-8 processing but retain sensitivity toward antivirals. ACS Cent. Sci. 2023;9:696–708. PubMed PMC

Ju X., Wang Z., Wang P., Ren W., Yu Y., Yu Y., et al. SARS-CoV-2 main protease cleaves MAGED2 to antagonize host antiviral defense. mBio. 2023;14 PubMed PMC

Shin D., Mukherjee R., Grewe D., Bojkova D., Baek K., Bhattacharya A., et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature. 2020;587:657–662. PubMed PMC

Pablos I., Machado Y., de Jesus H.C.R., Mohamud Y., Kappelhoff R., Lindskog C., et al. Mechanistic insights into COVID-19 by global analysis of the SARS-CoV-2 3CL(pro) substrate degradome. Cell Rep. 2021;37 PubMed PMC

Song L., Wang D., Abbas G., Li M., Cui M., Wang J., et al. The main protease of SARS-CoV-2 cleaves histone deacetylases and DCP1A, attenuating the immune defense of the interferon-stimulated genes. J. Biol. Chem. 2023;299 PubMed PMC

Resnick S.J., Iketani S., Hong S.J., Zask A., Liu H., Kim S., et al. Inhibitors of coronavirus 3CL proteases protect cells from protease-mediated cytotoxicity. J. Virol. 2021;95 PubMed PMC

Moghadasi S.A., Esler M.A., Otsuka Y., Becker J.T., Moraes S.N., Anderson C.B., et al. Gain-of-Signal assays for probing inhibition of SARS-CoV-2 M(pro)/3CL(pro) Living. Cells. mBio. 2022;13 PubMed PMC

Cao W., Cho C.D., Geng Z.Z., Shaabani N., Ma X.R., Vatansever E.C., et al. Evaluation of SARS-CoV-2 main protease inhibitors using a novel cell-based assay. ACS Cent. Sci. 2022;8:192–204. PubMed PMC

Emmott E., de Rougemont A., Hosmillo M., Lu J., Fitzmaurice T., Haas J., et al. Polyprotein processing and intermolecular interactions within the viral replication complex spatially and temporally control norovirus protease activity. J. Biol. Chem. 2019;294:4259–4271. PubMed PMC

Yost S.A., Marcotrigiano J. Viral precursor polyproteins: keys of regulation from replication to maturation. Curr. Opin. Virol. 2013;3:137–142. PubMed PMC

Shin G., Yost S.A., Miller M.T., Elrod E.J., Grakoui A., Marcotrigiano J. Structural and functional insights into alphavirus polyprotein processing and pathogenesis. Proc. Natl. Acad. Sci. U S A. 2012;109:16534–16539. PubMed PMC

Mattei S., Anders M., Konvalinka J., Kräusslich H.G., Briggs J.A., Müller B. Induced maturation of human immunodeficiency virus. J. Virol. 2014;88:13722–13731. PubMed PMC

Wiegers K., Rutter G., Kottler H., Tessmer U., Hohenberg H., Kräusslich H.G. Sequential steps in human immunodeficiency virus particle maturation revealed by alterations of individual Gag polyprotein cleavage sites. J. Virol. 1998;72:2846–2854. PubMed PMC

Kräusslich H.G. Human immunodeficiency virus proteinase dimer as component of the viral polyprotein prevents particle assembly and viral infectivity. Proc. Natl. Acad. Sci. U S A. 1991;88:3213–3217. PubMed PMC

Yan S., Wu G. Spatial and temporal roles of SARS-CoV PL(pro)-A snapshot. Faseb j. 2021;35 PubMed PMC

Stobart C.C., Sexton N.R., Munjal H., Lu X., Molland K.L., Tomar S., et al. Chimeric exchange of coronavirus nsp5 proteases (3CLpro) identifies common and divergent regulatory determinants of protease activity. J. Virol. 2013;87:12611–12618. PubMed PMC

Lulla V., Karo-Astover L., Rausalu K., Saul S., Merits A., Lulla A. Timeliness of proteolytic events is prerequisite for efficient functioning of the alphaviral. Replicase J. Virol. 2018;92 PubMed PMC

Sullender M.E., Pierce L.R., Annaswamy Srinivas M., Crockett S.L., Dunlap B.F., Rodgers R., et al. Selective polyprotein processing determines norovirus sensitivity to Trim7. J. Virol. 2022;96 PubMed PMC

de Groot R.J., Hardy W.R., Shirako Y., Strauss J.H. Cleavage-site preferences of Sindbis virus polyproteins containing the non-structural proteinase. Evid. temporal Regul. polyprotein Process. vivo. EMBO J. 1990;9:2631–2638. PubMed PMC

Lackner T., Müller A., König M., Thiel H.J., Tautz N. Persistence of bovine viral diarrhea virus is determined by a cellular cofactor of a viral autoprotease. J. Virol. 2005;79:9746–9755. PubMed PMC

Lemm J.A., Rümenapf T., Strauss E.G., Strauss J.H., Rice C.M. Polypeptide requirements for assembly of functional Sindbis virus replication complexes: a model for the temporal regulation of minus- and plus-strand RNA synthesis. EMBO J. 1994;13:2925–2934. PubMed PMC

van Aken D., Snijder E.J., Gorbalenya A.E. Mutagenesis analysis of the nsp4 main proteinase reveals determinants of arterivirus replicase polyprotein autoprocessing. J. Virol. 2006;80:3428–3437. PubMed PMC

Kräusslich H.G., Nicklin M.J., Lee C.K., Wimmer E. Polyprotein processing in picornavirus replication. Biochimie. 1988;70:119–130. PubMed

Deming D.J., Graham R.L., Denison M.R., Baric R.S. Processing of open reading frame 1a replicase proteins nsp7 to nsp10 in murine hepatitis virus strain A59 replication. J. Virol. 2007;81:10280–10291. PubMed PMC

Kiemel D., Kroell A.H., Denolly S., Haselmann U., Bonfanti J.F., Andres J.I., et al. Pan-serotype dengue virus inhibitor JNJ-A07 targets NS4A-2K-NS4B interaction with NS2B/NS3 and blocks replication organelle formation. Nat. Commun. 2024;15:6080. PubMed PMC

Molla A., Harris K.S., Paul A.V., Shin S.H., Mugavero J., Wimmer E. Stimulation of poliovirus proteinase 3Cpro-related proteolysis by the genome-linked protein VPg and its precursor 3AB. J. Biol. Chem. 1994;269:27015–27020. PubMed

Li G., Hilgenfeld R., Whitley R., De Clercq E. Therapeutic strategies for COVID-19: progress and lessons learned. Nat. Rev. Drug Discov. 2023;22:449–475. PubMed PMC

Zagórska A., Czopek A., Fryc M., Jończyk J. Inhibitors of SARS-CoV-2 main protease (Mpro) as anti-coronavirus Agents. Biomolecules. 2024;14:797. PubMed PMC

Zhang L., Lin D., Sun X., Curth U., Drosten C., Sauerhering L., et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020;368:409–412. PubMed PMC

Jin Z., Du X., Xu Y., Deng Y., Liu M., Zhao Y., et al. Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020;582:289–293. PubMed

Yan W., Zheng Y., Zeng X., He B., Cheng W. Structural biology of SARS-CoV-2: open the door for novel therapies. Signal. Transduct. Target. Ther. 2022;7:26. PubMed PMC

Kaptan S., Girych M., Enkavi G., Kulig W., Sharma V., Vuorio J., et al. Maturation of the SARS-CoV-2 virus is regulated by dimerization of its main protease. Comput. Struct. Biotechnol. J. 2022;20:3336–3346. PubMed PMC

Davis D.A., Bulut H., Shrestha P., Yaparla A., Jaeger H.K., Hattori S.I., et al. Regulation of the dimerization and activity of SARS-CoV-2 main protease through reversible glutathionylation of cysteine 300. mBio. 2021;12 PubMed PMC

Lis K., Plewka J., Menezes F., Bielecka E., Chykunova Y., Pustelny K., et al. SARS-CoV-2 M(pro) oligomerization as a potential target for therapy. Int. J. Biol. Macromol. 2024;267 PubMed

Nashed N.T., Aniana A., Ghirlando R., Chiliveri S.C., Louis J.M. Modulation of the monomer-dimer equilibrium and catalytic activity of SARS-CoV-2 main protease by a transition-state analog inhibitor. Commun. Biol. 2022;5:160. PubMed PMC

Nashed N.T., Kneller D.W., Coates L., Ghirlando R., Aniana A., Kovalevsky A., et al. Autoprocessing and oxyanion loop reorganization upon GC373 and nirmatrelvir binding of monomeric SARS-CoV-2 main protease catalytic domain. Commun. Biol. 2022;5:976. PubMed PMC

Chen S., Jonas F., Shen C., Hilgenfeld R. Liberation of SARS-CoV main protease from the viral polyprotein: N-terminal autocleavage does not depend on the mature dimerization mode. Protein Cell. 2010;1:59–74. PubMed PMC

Kovalevsky A., Aniana A., Coates L., Ghirlando R., Nashed N.T., Louis J.M. Visualizing the active site oxyanion loop transition upon ensitrelvir binding and transient dimerization of SARS-CoV-2 main protease. J. Mol. Biol. 2024;436 PubMed PMC

Aniana A., Nashed N.T., Ghirlando R., Coates L., Kneller D.W., Kovalevsky A., et al. Insights into the mechanism of SARS-CoV-2 main protease autocatalytic maturation from model precursors. Commun. Biol. 2023;6:1159. PubMed PMC

Hsu M.F., Kuo C.J., Chang K.T., Chang H.C., Chou C.C., Ko T.P., et al. Mechanism of the maturation process of SARS-CoV 3CL protease. J. Biol. Chem. 2005;280:31257–31266. PubMed PMC

Muramatsu T., Kim Y.T., Nishii W., Terada T., Shirouzu M., Yokoyama S. Autoprocessing mechanism of severe acute respiratory syndrome coronavirus 3C-like protease (SARS-CoV 3CLpro) from its polyproteins. Febs J. 2013;280:2002–2013. PubMed PMC

Crooks G.E., Hon G., Chandonia J.M., Brenner S.E. WebLogo: a sequence logo generator. Genome Res. 2004;14:1188–1190. PubMed PMC

Majerová T., Konvalinka J. Viral proteases as therapeutic targets. Mol. Aspects. Med. 2022;88 PubMed PMC

Cao B., Wang Y., Lu H., Huang C., Yang Y., Shang L., et al. Oral simnotrelvir for adult patients with mild-to-moderate covid-19. N. Engl. J. Med. 2024;390:230–241. PubMed PMC

Ferraro S., Convertino I., Cappello E., Valdiserra G., Bonaso M., Tuccori M. Lessons learnt from the preclinical discovery and development of ensitrelvir as a COVID-19 therapeutic option. Expert Opin. Drug Discov. 2024;19:9–20. PubMed

Louis J.M., Aniana A., Weber I.T., Sayer J.M. Inhibition of autoprocessing of natural variants and multidrug resistant mutant precursors of HIV-1 protease by clinical inhibitors. Proc. Natl. Acad. Sci. U S A. 2011;108:9072–9077. PubMed PMC

Humpolíčková J., Weber J., Starková J., Mašínová E., Günterová J., Flaisigová I., et al. Inhibition of the precursor and mature forms of HIV-1 protease as a tool for drug evaluation. Sci. Rep. 2018;8 PubMed PMC

Doherty J.S., Kirkegaard K. Differential inhibition of intra- and inter-molecular protease cleavages by antiviral compounds. J. Virol. 2023;97 PubMed PMC

Majerová T., Novotný P. Precursors of viral proteases as distinct drug targets. Viruses. 2021;13:1981. PubMed PMC

Constant D.A., Mateo R., Nagamine C.M., Kirkegaard K. Targeting intramolecular proteinase NS2B/3 cleavages for trans-dominant inhibition of dengue virus. Proc. Natl. Acad. Sci. U S A. 2018;115:10136–10141. PubMed PMC

Müller B., Anders M., Akiyama H., Welsch S., Glass B., Nikovics K., et al. HIV-1 Gag processing intermediates trans-dominantly interfere with HIV-1 infectivity. J. Biol. Chem. 2009;284:29692–29703. PubMed PMC

Pan Y.Y., Wang S.M., Huang K.J., Chiang C.C., Wang C.T. Placement of leucine zipper motifs at the carboxyl terminus of HIV-1 protease significantly reduces virion production. PLoS One. 2012;7 PubMed PMC

Zábranský A., Hadravová R., Stokrová J., Sakalian M., Pichová I. Premature processing of mouse mammary tumor virus Gag polyprotein impairs intracellular capsid assembly. Virology. 2009;384:33–37. PubMed

Trinité B., Zhang H., Levy D.N. NNRTI-induced HIV-1 protease-mediated cytotoxicity induces rapid death of CD4 T cells during productive infection and latency reversal. Retrovirology. 2019;16:17. PubMed PMC

Jochmans D., Anders M., Keuleers I., Smeulders L., Kräusslich H.G., Kraus G., et al. Selective killing of human immunodeficiency virus infected cells by non-nucleoside reverse transcriptase inhibitor-induced activation of HIV protease. Retrovirology. 2010;7:89. PubMed PMC

Sudo S., Haraguchi H., Hirai Y., Gatanaga H., Sakuragi J., Momose F., et al. Efavirenz enhances HIV-1 gag processing at the plasma membrane through Gag-Pol dimerization. J. Virol. 2013;87:3348–3360. PubMed PMC

Wang Q., Gao H., Clark K.M., Mugisha C.S., Davis K., Tang J.P., et al. CARD8 is an inflammasome sensor for HIV-1 protease activity. Science. 2021;371 PubMed PMC

Kirchhofer D., Lipari M.T., Santell L., Billeci K.L., Maun H.R., Sandoval W.N., et al. Utilizing the activation mechanism of serine proteases to engineer hepatocyte growth factor into a Met antagonist. Proc. Natl. Acad. Sci. U S A. 2007;104:5306–5311. PubMed PMC

Cho H., Choi Y., Min K., Son J.B., Park H., Lee H.H., et al. Over-activation of a nonessential bacterial protease DegP as an antibiotic strategy. Commun. Biol. 2020;3:547. PubMed PMC

Bode W., Huber R. Induction of the bovine trypsinogen-trypsin transition by peptides sequentially similar to the N-terminus of trypsin. FEBS Lett. 1976;68:231–236. PubMed

Quancard J., Klein T., Fung S.Y., Renatus M., Hughes N., Israël L., et al. An allosteric MALT1 inhibitor is a molecular corrector rescuing function in an immunodeficient patient. Nat. Chem. Biol. 2019;15:304–313. PubMed

Lindsten K., Uhlíková T., Konvalinka J., Masucci M.G., Dantuma N.P. Cell-based fluorescence assay for human immunodeficiency virus type 1 protease activity Antimicrob. Agents. Chemother. 2001;45:2616–2622. PubMed PMC

Majerová-Uhlíková T., Dantuma N.P., Lindsten K., Masucci M.G., Konvalinka J. Non-infectious fluorimetric assay for phenotyping of drug-resistant HIV proteinase mutants. J. Clin. Virol. 2006;36:50–59. PubMed

Li C., Qi Y., Teng X., Yang Z., Wei P., Zhang C., et al. Maturation mechanism of severe acute respiratory syndrome (SARS) coronavirus 3C-like proteinase. J. Biol. Chem. 2010;285:28134–28140. PubMed PMC

Hou N., Peng C., Zhang L., Zhu Y., Hu Q. BRET-based self-cleaving biosensors for SARS-CoV-2 3CLpro inhibitor discovery. Microbiol. Spectr. 2022;10 PubMed PMC

Ma C., Sacco M.D., Hurst B., Townsend J.A., Hu Y., Szeto T., et al. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Res. 2020;30:678–692. PubMed PMC

Dai W., Zhang B., Jiang X.M., Su H., Li J., Zhao Y., et al. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science. 2020;368:1331–1335. PubMed PMC

Nobori H., Fukao K., Kuroda T., Anan N., Tashima R., Nakashima M., et al. Efficacy of ensitrelvir against SARS-CoV-2 in a delayed-treatment mouse model. J. Antimicrob. Chemother. 2022;77:2984–2991. PubMed PMC

Owen D.R., Allerton C.M.N., Anderson A.S., Aschenbrenner L., Avery M., Berritt S., et al. An oral SARS-CoV-2 M(pro) inhibitor clinical candidate for the treatment of COVID-19. Science. 2021;374:1586–1593. PubMed

Hattori S.I., Higashi-Kuwata N., Hayashi H., Allu S.R., Raghavaiah J., Bulut H., et al. A small molecule compound with an indole moiety inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nat. Commun. 2021;12:668. PubMed PMC

Tichá A., Stanchev S., Vinothkumar K.R., Mikles D.C., Pachl P., Began J., et al. General and modular strategy for designing potent, selective, and pharmacologically compliant inhibitors of rhomboid proteases. Cell Chem Biol. 2017;24:1523–1536.e1524. PubMed PMC

Yachnin B.J., Azouz L.R., White R.E., 3rd, Minetti C., Remeta D.P., Tan V.M., et al. Massively parallel, computationally guided design of a proenzyme. Proc. Natl. Acad. Sci. U S A. 2022;119 PubMed PMC

Zhang S., Zhong N., Xue F., Kang X., Ren X., Chen J., et al. Three-dimensional domain swapping as a mechanism to lock the active conformation in a super-active octamer of SARS-CoV main protease. Protein Cell. 2010;1:371–383. PubMed PMC

Huang L., Gish M., Boehlke J., Jeep R.H., Chen C. Assay development and validation for innovative antiviral development targeting the N-terminal autoprocessing of SARS-CoV-2 main protease precursors. Viruses. 2024;16:1218. PubMed PMC

Flynn J.M., Samant N., Schneider-Nachum G., Barkan D.T., Yilmaz N.K., Schiffer C.A., et al. Comprehensive fitness landscape of SARS-CoV-2 M(pro) reveals insights into viral resistance mechanisms. Elife. 2022;11 PubMed PMC

Majerová T., Novotný P., Krýsová E., Konvalinka J. Exploiting the unique features of Zika and Dengue proteases for inhibitor design. Biochimie. 2019;166:132–141. PubMed

Ghosh A.K., Raghavaiah J., Shahabi D., Yadav M., Anson B.J., Lendy E.K., et al. Indole chloropyridinyl ester-derived SARS-CoV-2 3CLpro inhibitors: enzyme inhibition, antiviral efficacy, structure-activity relationship, and X-ray structural studies. J. Med. Chem. 2021;64:14702–14714. PubMed PMC

Tong X., Keung W., Arnold L.D., Stevens L.J., Pruijssers A.J., Kook S., et al. Evaluation of in vitro antiviral activity of SARS-CoV-2 M(pro) inhibitor pomotrelvir and cross-resistance to nirmatrelvir resistance substitutions Antimicrob. Agents Chemother. 2023;67 PubMed PMC

Bai B., Belovodskiy A., Hena M., Kandadai A.S., Joyce M.A., Saffran H.A., et al. Peptidomimetic α-acyloxymethylketone warheads with six-membered lactam P1 glutamine mimic: SARS-CoV-2 3CL protease inhibition, coronavirus antiviral activity, and in vitro biological stability. J. Med. Chem. 2022;65:2905–2925. PubMed

Shurtleff V.W., Layton M.E., Parish C.A., Perkins J.J., Schreier J.D., Wang Y., et al. Invention of MK-7845, a SARS-CoV-2 3CL protease inhibitor employing a novel difluorinated glutamine mimic. J. Med. Chem. 2024;67:3935–3958. PubMed

Cesar Ramos de Jesus H., Solis N., Machado Y., Pablos I., Bell P.A., Kappelhoff R., et al. Optimization of quenched fluorescent peptide substrates of SARS-CoV-2 3CL(pro) main protease (Mpro) from proteomic identification of P6-P6' active site specificity. J. Virol. 2024;98 PubMed PMC

Chen M., Yu X. tert-Butyloxycarbonyl-protected amino acid ionic liquids and their application to dipeptide synthesis. RSC Adv. 2021;11:27603–27606. PubMed PMC

Vuong W., Khan M.B., Fischer C., Arutyunova E., Lamer T., Shields J., et al. Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nat. Commun. 2020;11:4282. PubMed PMC

Tian Q., Nayyar N.K., Babu S., Chen L., Tao J., Lee S., et al. An efficient synthesis of a key intermediate for the preparation of the rhinovirus protease inhibitor AG7088 via asymmetric dianionic cyanomethylation of N-Boc-l-(+)-glutamic acid dimethyl ester. Tetrahedron Lett. 2001;42:6807–6809.

Ghosh A.K., Xi K., Ratia K., Santarsiero B.D., Fu W., Harcourt B.H., et al. Design and synthesis of peptidomimetic severe acute respiratory syndrome chymotrypsin-like protease inhibitors. J. Med. Chem. 2005;48:6767–6771. PubMed

Souček Milan U.J. An efficient method for preparation of optically active N-protected α-amino aldehydes from N-protected α-amino alcohols collect Czech. Chem. Commun. 1995;60:663–696.

Semple J.E., Owens T.D., Nguyen K., Levy O.E. New synthetic technology for efficient construction of alpha-hydroxy-beta-amino amides via the Passerini reaction. Org. Lett. 2000;2:2769–2772. PubMed

Román T., Acosta G., Cárdenas C., de la Torre B.G., Guzmán F., Albericio F. Protocol for facile synthesis of fmoc-N-Me-AA-OH using 2-CTC resin as temporary and reusable protecting group. Methods Protoc. 2023;6:110. PubMed PMC

Gandhi S., Baker R.P., Cho S., Stanchev S., Strisovsky K., Urban S. Designed parasite-selective rhomboid inhibitors block invasion and clear blood-stage malaria cell. Chem. Biol. 2020;27:1410–1424.e1416. PubMed PMC

Liu M., Li J., Liu W., Yang Y., Zhang M., Ye Y., et al. The S1'-S3' pocket of the SARS-CoV-2 main protease is critical for substrate selectivity and can Be targeted with covalent inhibitors. Angew. Chem. Int. Ed. Engl. 2023;62 PubMed

Rahman F., Nguyen T.M., Adekoya O.A., Campestre C., Tortorella P., Sylte I., et al. Inhibition of bacterial and human zinc-metalloproteases by bisphosphonate- and catechol-containing compounds. J. Enzyme Inhib. Med. Chem. 2021;36:819–830. PubMed PMC

Neises B., Steglich W. Simple method for the esterification of carboxylic acids. Angew. Chem. Int. Edition English. 1978;17:522–524.

Ede N.J., Bray A.M. A simple linker for the attachment of aldehydes to the solid phase. Appl. Solid phase Synth. by multipin™ method. Tetrahedron Lett. 1997;38:7119–7122.

Sorg G., Mengel A., Jung G., Rademann J. Oxidizing polymers: a polymer-supported, recyclable hypervalent iodine(V) reagent for the efficient conversion of alcohols, carbonyl compounds, and unsaturated carbamates in solution. Angew. Chem. Int. Ed. Engl. 2001;40:4395–4397. PubMed

Rut W., Groborz K., Zhang L., Sun X., Zmudzinski M., Pawlik B., et al. SARS-CoV-2 M(pro) inhibitors and activity-based probes for patient-sample imaging. Nat. Chem. Biol. 2021;17:222–228. PubMed

Dragovich P.S., Webber S.E., Babine R.E., Fuhrman S.A., Patick A.K., Matthews D.A., et al. Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 1. Michael acceptor structure-activity studies. J. Med. Chem. 1998;41:2806–2818. PubMed

Aniana A., Nashed N.T., Ghirlando R., Drago V.N., Kovalevsky A., Louis J.M. Characterization of alternate encounter assemblies of SARS-CoV-2 main protease. J. Biol. Chem. 2024;300 PubMed PMC

Noske G.D., Song Y., Fernandes R.S., Chalk R., Elmassoudi H., Koekemoer L., et al. An in-solution snapshot of SARS-COV-2 main protease maturation process and inhibition. Nat. Commun. 2023;14:1545. PubMed PMC

Kovalevsky A., Coates L., Kneller D.W., Ghirlando R., Aniana A., Nashed N.T., et al. Unmasking the conformational stability and inhibitor binding to SARS-CoV-2 main protease active site mutants and miniprecursor. J. Mol. Biol. 2022;434 PubMed PMC

Dahl G., Arenas O.G., Danielson U.H. Hepatitis C virus NS3 protease is activated by low concentrations of protease inhibitors. Biochemistry. 2009;48:11592–11602. PubMed

Gibson D.G., Young L., Chuang R.Y., Venter J.C., Hutchison C.A., 3rd, Smith H.O. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods. 2009;6:343–345. PubMed

Šácha P., Knedlík T., Schimer J., Tykvart J., Parolek J., Navrátil V., et al. iBodies: Modular synthetic antibody Mimetics based on hydrophilic polymers decorated with functional moieties. Angew. Chem. Int. Ed. Engl. 2016;55:2356–2360. PubMed PMC

Wahl M., Gregor I., Patting M., Enderlein J. Fast calculation of fluorescence correlation data with asynchronous time-correlated single-photon counting. Opt. Express. 2003;11:3583–3591. PubMed

Škerle J., Humpolíčková J., Johnson N., Rampírová P., Poláchová E., Fliegl M., et al. Membrane protein dimerization in cell-derived lipid membranes measured by FRET with MC simulations. Biophys. J. 2020;118:1861–1875. PubMed PMC

Morrison J.F., Walsh C.T. The behavior and significance of slow-binding enzyme inhibitors. Adv. Enzymol. Relat. Areas Mol. Biol. 1988;61:201–301. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...