Viral proteases as therapeutic targets
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
36459838
PubMed Central
PMC9706241
DOI
10.1016/j.mam.2022.101159
PII: S0098-2997(22)00104-2
Knihovny.cz E-zdroje
- MeSH
- antivirové látky farmakologie terapeutické užití MeSH
- COVID-19 * MeSH
- HIV infekce * farmakoterapie MeSH
- lidé MeSH
- SARS-CoV-2 MeSH
- virové proteasy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antivirové látky MeSH
- nirmatrelvir and ritonavir drug combination MeSH Prohlížeč
- virové proteasy MeSH
Some medically important viruses-including retroviruses, flaviviruses, coronaviruses, and herpesviruses-code for a protease, which is indispensable for viral maturation and pathogenesis. Viral protease inhibitors have become an important class of antiviral drugs. Development of the first-in-class viral protease inhibitor saquinavir, which targets HIV protease, started a new era in the treatment of chronic viral diseases. Combining several drugs that target different steps of the viral life cycle enables use of lower doses of individual drugs (and thereby reduction of potential side effects, which frequently occur during long term therapy) and reduces drug-resistance development. Currently, several HIV and HCV protease inhibitors are routinely used in clinical practice. In addition, a drug including an inhibitor of SARS-CoV-2 main protease, nirmatrelvir (co-administered with a pharmacokinetic booster ritonavir as Paxlovid®), was recently authorized for emergency use. This review summarizes the basic features of the proteases of human immunodeficiency virus (HIV), hepatitis C virus (HCV), and SARS-CoV-2 and discusses the properties of their inhibitors in clinical use, as well as development of compounds in the pipeline.
Zobrazit více v PubMed
Achdout H., Aimon A., Bar-David E., Barr H., Ben-Shmuel A., Bennett J., Bilenko V.A., Bilenko V.A., Boby M.L., Borden B., Bowman G.R., Brun J., Bvnbs S., Calmiano M., Carbery A., Carney D., Cattermole E., Chang E., Chernyshenko E., Chodera J.D., Clyde A., Coffland J.E., Cohen G., Cole J., Contini A., Cox L., Cvitkovic M., Dias A., Donckers K., Dotson D.L., Douangamath A., Duberstein S., Dudgeon T., Dunnett L., Eastman P.K., Erez N., Eyermann C.J., Fairhead M., Fate G., Fearon D., Fedorov O., Ferla M., Fernandes R.S., Ferrins L., Foster R., Foster H., Gabizon R., Garcia-Sastre A., Gawriljuk V.O., Gehrtz P., Gileadi C., Giroud C., Glass W.G., Glen R., Glinert I., Godoy A.S., Gorichko M., Gorrie-Stone T., Griffen E.J., Hart S.H., Heer J., Henry M., Hill M., Horrell S., Huliak V.D., Hurley M.F.D., Israely T., Jajack A., Jansen J., Jnoff E., Jochmans D., John T., Jonghe S.D., Kantsadi A.L., Kenny P.W., Kiappes J.L., Kinakh S.O., Koekemoer L., Kovar B., Krojer T., Lee A., Lefker B.A., Levy H., Logvinenko I.G., London N., Lukacik P., Macdonald H.B., MacLean B., Malla T.R., Matviiuk T., McCorkindale W., McGovern B.L., Melamed S., Melnykov K.P., Michurin O., Mikolajek H., Milne B.F., Morris A., Morris G.M., Morwitzer M.J., Moustakas D., Nakamura A.M., Neto J.B., Neyts J., Nguyen L., Noske G.D., Oleinikovas V., Oliva G., Overheul G.J., Owen D., Pai R., Pan J., Paran N., Perry B., Pingle M., Pinjari J., Politi B., Powell A., Psenak V., Puni R., Rangel V.L., Reddi R.N., Reid S.P., Resnick E., Ripka E.G., Robinson M.C., Robinson R.P., Rodriguez-Guerra J., Rosales R., Rufa D., Saar K., Saikatendu K.S., Schofield C., Shafeev M., Shaikh A., Shi J., Shurrush K., Singh S., Sittner A., Skyner R., Smalley A., Smeets B., Smilova M.D., Solmesky L.J., Spencer J., Strain-Damerell C., Swamy V., Tamir H., Tennant R., Thompson W., Thompson A., Tomasio S., Tsurupa I.S., Tumber A., Vakonakis I., van Rij R.P., Vangeel L., Varghese F.S., Vaschetto M., Vitner E.B., Voelz V., Volkamer A., von Delft F., von Delft A., Walsh M., Ward W., Weatherall C., Weiss S., White K.M., Wild C.F., Wittmann M., Wright N., Yahalom-Ronen Y., Zaidmann D., Zidane H., Zitzmann N. bioRxiv; 2022. Open Science Discovery of Oral Non-covalent SARS-CoV-2 Main Protease Inhibitor Therapeutics. 2020.2010.2029.339317. DOI
Akaberi D., Båhlström A., Chinthakindi P.K., Nyman T., Sandström A., Järhult J.D., Palanisamy N., Lundkvist Å., Lennerstrand J. Targeting the NS2B-NS3 protease of tick-borne encephalitis virus with pan-flaviviral protease inhibitors. Antivir. Res. 2021;190 doi: 10.1016/j.antiviral.2021.105074. PubMed DOI
Alazard-Dany N., Denolly S., Boson B., Cosset F.-L. Overview of HCV life cycle with a special focus on current and possible future antiviral targets. Viruses. 2019;11(1):30. doi: 10.3390/v11010030. PubMed DOI PMC
Aleshin A.E., Drag M., Gombosuren N., Wei G., Mikolajczyk J., Satterthwait A.C., Strongin A.Y., Liddington R.C., Salvesen G.S. Activity, specificity, and probe design for the smallpox virus protease K7L. J. Biol. Chem. 2012;287(47):39470–39479. doi: 10.1074/jbc.M112.388678. PubMed DOI PMC
Allegra A., Innao V., Allegra A.G., Pulvirenti N., Pugliese M., Musolino C. Antitumorigenic action of nelfinavir: effects on multiple myeloma and hematologic malignancies (Review) Oncol. Rep. 2020;43(6):1729–1736. doi: 10.3892/or.2020.7562. PubMed DOI
Alvi R.M., Neilan A.M., Tariq N., Awadalla M., Afshar M., Banerji D., Rokicki A., Mulligan C., Triant V.A., Zanni M.V., Neilan T.G. Protease inhibitors and cardiovascular outcomes in patients with HIV and heart failure. J. Am. Coll. Cardiol. 2018;72(5):518–530. doi: 10.1016/j.jacc.2018.04.083. PubMed DOI PMC
Aoki M., Venzon D.J., Koh Y., Aoki-Ogata H., Miyakawa T., Yoshimura K., Maeda K., Mitsuya H. Non-cleavage site gag mutations in amprenavir-resistant human immunodeficiency virus type 1 (HIV-1) predispose HIV-1 to rapid acquisition of amprenavir resistance but delay development of resistance to other protease inhibitors. J. Virol. 2009;83(7):3059–3068. doi: 10.1128/jvi.02539-08. PubMed DOI PMC
Aoki M., Danish M.L., Aoki-Ogata H., Amano M., Ide K., Das D., Koh Y., Mitsuya H. Loss of the protease dimerization inhibition activity of tipranavir (TPV) and its association with the acquisition of resistance to TPV by HIV-1. J. Virol. 2012;86(24):13384–13396. doi: 10.1128/jvi.07234-11. PubMed DOI PMC
Arabi Y.M., Gordon A.C., Derde L.P.G., Nichol A.D., Murthy S., Beidh F.A., Annane D., Swaidan L.A., Beane A., Beasley R., Berry L.R., Bhimani Z., Bonten M.J.M., Bradbury C.A., Brunkhorst F.M., Buxton M., Buzgau A., Cheng A., De Jong M., Detry M.A., Duffy E.J., Estcourt L.J., Fitzgerald M., Fowler R., Girard T.D., Goligher E.C., Goossens H., Haniffa R., Higgins A.M., Hills T.E., Horvat C.M., Huang D.T., King A.J., Lamontagne F., Lawler P.R., Lewis R., Linstrum K., Litton E., Lorenzi E., Malakouti S., McAuley D.F., McGlothlin A., McGuinness S., McVerry B.J., Montgomery S.K., Morpeth S.C., Mouncey P.R., Orr K., Parke R., Parker J.C., Patanwala A.E., Rowan K.M., Santos M.S., Saunders C.T., Seymour C.W., Shankar-Hari M., Tong S.Y.C., Turgeon A.F., Turner A.M., Van de Veerdonk F.L., Zarychanski R., Green C., Berry S., Marshall J.C., McArthur C., Angus D.C., Webb S.A. Lopinavir-ritonavir and hydroxychloroquine for critically ill patients with COVID-19: REMAP-CAP randomized controlled trial. Intensive Care Med. 2021;47(8):867–886. doi: 10.1007/s00134-021-06448-5. PubMed DOI PMC
Arasappan A., Bennett F., Bogen S.L., Venkatraman S., Blackman M., Chen K.X., Hendrata S., Huang Y., Huelgas R.M., Nair L., Padilla A.I., Pan W., Pike R., Pinto P., Ruan S., Sannigrahi M., Velazquez F., Vibulbhan B., Wu W., Yang W., Saksena A.K., Girijavallabhan V., Shih N.Y., Kong J., Meng T., Jin Y., Wong J., McNamara P., Prongay A., Madison V., Piwinski J.J., Cheng K.C., Morrison R., Malcolm B., Tong X., Ralston R., Njoroge F.G. Discovery of narlaprevir (SCH 900518): a potent, second generation HCV NS3 serine protease inhibitor. ACS Med. Chem. Lett. 2010;1(2):64–69. doi: 10.1021/ml9000276. PubMed DOI PMC
Armstrong L.A., Lange S.M., Dee Cesare V., Matthews S.P., Nirujogi R.S., Cole I., Hope A., Cunningham F., Toth R., Mukherjee R., Bojkova D., Gruber F., Gray D., Wyatt P.G., Cinatl J., Dikic I., Davies P., Kulathu Y. Biochemical characterization of protease activity of Nsp3 from SARS-CoV-2 and its inhibition by nanobodies. PLoS One. 2021;16(7) doi: 10.1371/journal.pone.0253364. PubMed DOI PMC
Arya R., Kumari S., Pandey B., Mistry H., Bihani S.C., Das A., Prashar V., Gupta G.D., Panicker L., Kumar M. Structural insights into SARS-CoV-2 proteins. J. Mol. Biol. 2021;433(2) doi: 10.1016/j.jmb.2020.11.024. PubMed DOI PMC
Atluri K., Aimlin I., Arora S. Current effective therapeutics in management of COVID-19. J. Clin. Med. 2022;11(13) doi: 10.3390/jcm11133838. PubMed DOI PMC
Bacinschi X., Popescu G.C., Zgura A., Gales L., Rodica A., Mercan A., Serban D., Haineala B., Toma L., Iliescu L. A real-world study to compare the safety and efficacy of paritaprevir/ombitasvir/ritonavir and dasabuvir, with or without ribavirin, in 587 patients with chronic hepatitis C at the fundeni clinical Institute, bucharest, Romania. Med. Sci. Mon. Int. Med. J. Exp. Clin. Res. 2022;28 doi: 10.12659/msm.936706. PubMed DOI PMC
Badierah R.A., Uversky V.N., Redwan E.M. Dancing with Trojan horses: an interplay between the extracellular vesicles and viruses. J. Biomol. Struct. Dyn. 2021;39(8):3034–3060. doi: 10.1080/07391102.2020.1756409. PubMed DOI
Bafna K., White K., Harish B., Rosales R., Ramelot T.A., Acton T.B., Moreno E., Kehrer T., Miorin L., Royer C.A., García-Sastre A., Krug R.M., Montelione G.T. Hepatitis C virus drugs that inhibit SARS-CoV-2 papain-like protease synergize with remdesivir to suppress viral replication in cell culture. Cell Rep. 2021;35(7) doi: 10.1016/j.celrep.2021.109133. PubMed DOI PMC
Baker J.D., Uhrich R.L., Kraemer G.C., Love J.E., Kraemer B.C. A drug repurposing screen identifies hepatitis C antivirals as inhibitors of the SARS-CoV2 main protease. PLoS One. 2021;16(2) doi: 10.1371/journal.pone.0245962. PubMed DOI PMC
Bar-On Y.M., Flamholz A., Phillips R., Milo R. SARS-CoV-2 (COVID-19) by the numbers. Elife. 2020;9 doi: 10.7554/eLife.57309. PubMed DOI PMC
Barillari G., Monini P., Sgadari C., Ensoli B. The impact of human papilloma viruses, matrix metallo-proteinases and HIV protease inhibitors on the onset and progression of uterine cervix epithelial tumors: a review of preclinical and clinical studies. Int. J. Mol. Sci. 2018;19(5) doi: 10.3390/ijms19051418. PubMed DOI PMC
Barré-Sinoussi F., Chermann J.C., Rey F., Nugeyre M.T., Chamaret S., Gruest J., Dauguet C., Axler-Blin C., Vézinet-Brun F., Rouzioux C., Rozenbaum W., Montagnier L. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS) Science. 1983;220(4599):868–871. doi: 10.1126/science.6189183. PubMed DOI
Batman G., Oliver A.W., Zehbe I., Richard C., Hampson L., Hampson I.N. Lopinavir up-regulates expression of the antiviral protein ribonuclease L in human papillomavirus-positive cervical carcinoma cells. Antivir. Ther. 2011;16(4):515–525. doi: 10.3851/imp1786. PubMed DOI
Bean B. Antiviral therapy: current concepts and practices. Clin. Microbiol. Rev. 1992;5(2):146–182. doi: 10.1128/cmr.5.2.146. PubMed DOI PMC
Behnam M.A.M., Klein C.D. On track to tackle dengue: history and future of NS4B ligands. Cell Host Microbe. 2021;29(12):1735–1737. doi: 10.1016/j.chom.2021.11.010. PubMed DOI
Behnam M.A.M., Klein C.D. Corona versus dengue: distinct mechanisms for inhibition of polyprotein processing by antiviral drugs. ACS Pharmacol Transl Sci. 2022;5(7):508–511. doi: 10.1021/acsptsci.2c00105. PubMed DOI PMC
Bhatt P.R., Scaiola A., Loughran G., Leibundgut M., Kratzel A., Meurs R., Dreos R., O'Connor K.M., McMillan A., Bode J.W., Thiel V., Gatfield D., Atkins J.F., Ban N. Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome. Science. 2021;372(6548):1306–1313. doi: 10.1126/science.abf3546. PubMed DOI PMC
Bissinger R., Waibel S., Lang F. Induction of suicidal erythrocyte death by nelfinavir. Toxins. 2015;7(5):1616–1628. doi: 10.3390/toxins7051616. PubMed DOI PMC
Blanquart F., Grabowski M.K., Herbeck J., Nalugoda F., Serwadda D., Eller M.A., Robb M.L., Gray R., Kigozi G., Laeyendecker O., Lythgoe K.A., Nakigozi G., Quinn T.C., Reynolds S.J., Wawer M.J., Fraser C. A transmission-virulence evolutionary trade-off explains attenuation of HIV-1 in Uganda. Elife. 2016;5 doi: 10.7554/eLife.20492. PubMed DOI PMC
Boesecke C., Cooper D.A. Toxicity of HIV protease inhibitors: clinical considerations. Curr. Opin. HIV AIDS. 2008;3(6):653–659. doi: 10.1097/COH.0b013e328312c392. PubMed DOI
Boike L., Henning N.J., Nomura D.K. Advances in covalent drug discovery. Nat. Rev. Drug Discov. 2022:1–18. doi: 10.1038/s41573-022-00542-z. PubMed DOI PMC
Bold G., Fässler A., Capraro H.G., Cozens R., Klimkait T., Lazdins J., Mestan J., Poncioni B., Rösel J., Stover D., Tintelnot-Blomley M., Acemoglu F., Beck W., Boss E., Eschbach M., Hürlimann T., Masso E., Roussel S., Ucci-Stoll K., Wyss D., Lang M. New aza-dipeptide analogues as potent and orally absorbed HIV-1 protease inhibitors: candidates for clinical development. J. Med. Chem. 1998;41(18):3387–3401. doi: 10.1021/jm970873c. PubMed DOI
Boonma T., Nutho B., Rungrotmongkol T., Nunthaboot N. Understanding of the drug resistance mechanism of hepatitis C virus NS3/4A to paritaprevir due to D168N/Y mutations: a molecular dynamics simulation perspective. Comput. Biol. Chem. 2019;83 doi: 10.1016/j.compbiolchem.2019.107154. PubMed DOI
Boras B., Jones R.M., Anson B.J., Arenson D., Aschenbrenner L., Bakowski M.A., Beutler N., Binder J., Chen E., Eng H., Hammond H., Hammond J., Haupt R.E., Hoffman R., Kadar E.P., Kania R., Kimoto E., Kirkpatrick M.G., Lanyon L., Lendy E.K., Lillis J.R., Logue J., Luthra S.A., Ma C., Mason S.W., McGrath M.E., Noell S., Obach R.S., Mn O.B., O'Connor R., Ogilvie K., Owen D., Pettersson M., Reese M.R., Rogers T.F., Rosales R., Rossulek M.I., Sathish J.G., Shirai N., Steppan C., Ticehurst M., Updyke L.W., Weston S., Zhu Y., White K.M., García-Sastre A., Wang J., Chatterjee A.K., Mesecar A.D., Frieman M.B., Anderson A.S., Allerton C. Preclinical characterization of an intravenous coronavirus 3CL protease inhibitor for the potential treatment of COVID19. Nat. Commun. 2021;12(1):6055. doi: 10.1038/s41467-021-26239-2. PubMed DOI PMC
Borowiec B.M., Angelova Volponi A., Mozdziak P., Kempisty B., Dyszkiewicz-Konwińska M. Small extracellular vesicles and COVID19-using the "trojan horse" to tackle the giant. Cells. 2021;10(12) doi: 10.3390/cells10123383. PubMed DOI PMC
Broder S. The development of antiretroviral therapy and its impact on the HIV-1/AIDS pandemic. Antivir. Res. 2010;85(1):1–18. doi: 10.1016/j.antiviral.2009.10.002. PubMed DOI PMC
Brüning A., Friese K., Burges A., Mylonas I. Tamoxifen enhances the cytotoxic effects of nelfinavir in breast cancer cells. Breast Cancer Res. 2010;12(4):R45. doi: 10.1186/bcr2602. PubMed DOI PMC
Buitrón-González I., Aguilera-Durán G., Romo-Mancillas A. In-silico drug repurposing study: amprenavir, enalaprilat, and plerixafor, potential drugs for destabilizing the SARS-CoV-2 S-protein-angiotensin-converting enzyme 2 complex. Results Chem. 2021;3 doi: 10.1016/j.rechem.2020.100094. PubMed DOI PMC
Bunge E.M., Hoet B., Chen L., Lienert F., Weidenthaler H., Baer L.R., Steffen R. The changing epidemiology of human monkeypox-A potential threat? A systematic review. PLoS Neglected Trop. Dis. 2022;16(2) doi: 10.1371/journal.pntd.0010141. PubMed DOI PMC
Burki T. The future of Paxlovid for COVID-19. Lancet Respir. Med. 2022;10(7):e68. doi: 10.1016/s2213-2600(22)00192-8. PubMed DOI PMC
Busti A.J., Hall R.G., Margolis D.M. Atazanavir for the treatment of human immunodeficiency virus infection. Pharmacotherapy. 2004;24(12):1732–1747. doi: 10.1592/phco.24.17.1732.52347. PubMed DOI
Callaway E. The coronavirus is mutating - does it matter? Nature. 2020;585(7824):174–177. doi: 10.1038/d41586-020-02544-6. PubMed DOI
Cao B., Wang Y., Wen D., Liu W., Wang J., Fan G., Ruan L., Song B., Cai Y., Wei M., Li X., Xia J., Chen N., Xiang J., Yu T., Bai T., Xie X., Zhang L., Li C., Yuan Y., Chen H., Li H., Huang H., Tu S., Gong F., Liu Y., Wei Y., Dong C., Zhou F., Gu X., Xu J., Liu Z., Zhang Y., Li H., Shang L., Wang K., Li K., Zhou X., Dong X., Qu Z., Lu S., Hu X., Ruan S., Luo S., Wu J., Peng L., Cheng F., Pan L., Zou J., Jia C., Wang J., Liu X., Wang S., Wu X., Ge Q., He J., Zhan H., Qiu F., Guo L., Huang C., Jaki T., Hayden F.G., Horby P.W., Zhang D., Wang C. A trial of lopinavir–ritonavir in adults hospitalized with severe covid-19. N. Engl. J. Med. 2020;382(19):1787–1799. doi: 10.1056/NEJMoa2001282. PubMed DOI PMC
Carlin A.F., Clark A.E., Chaillon A., Garretson A.F., Bray W., Porrachia M., Santos A.T., Rana T.M., Smith D.M. Virologic and immunologic characterization of COVID-19 recrudescence after nirmatrelvir/ritonavir treatment. Clin. Infect. Dis. 2022 doi: 10.1093/cid/ciac496. PubMed DOI PMC
Cervino L., Hynicka L.M. Direct-acting antivirals to prevent vertical transmission of viral hepatitis C: when is the optimal time to treat? Ann. Pharmacother. 2018;52(11):1152–1157. doi: 10.1177/1060028018772181. PubMed DOI
Champenois K., Baras A., Choisy P., Ajana F., Melliez H., Bocket L., Yazdanpanah Y. Lopinavir/ritonavir resistance in patients infected with HIV-1: two divergent resistance pathways? J. Med. Virol. 2011;83(10):1677–1681. doi: 10.1002/jmv.22161. PubMed DOI
Chang M.W., Torbett B.E. Accessory mutations maintain stability in drug-resistant HIV-1 protease. J. Mol. Biol. 2011;410(4):756–760. doi: 10.1016/j.jmb.2011.03.038. PubMed DOI PMC
Chen C.-H., Chen C.-H., Lin C.-L., Lin C.-Y., Hu T.-H., Tung S.-Y., Hsieh S.-Y., Lu S.-N., Chien R.-N., Hung C.-H., Sheen I.S. Real-world safety and efficacy of paritaprevir/ritonavir/ombitasvir plus dasabuvir ± ribavirin in patients with hepatitis C virus genotype 1 and advanced hepatic fibrosis or compensated cirrhosis: a multicenter pooled analysis. Sci. Rep. 2019;9(1):7086. doi: 10.1038/s41598-019-43554-3. PubMed DOI PMC
Chia C.S.B., Xu W., Shuyi Ng P. A patent review on SARS coronavirus main protease (3CL(pro)) inhibitors. ChemMedChem. 2022;17(1) doi: 10.1002/cmdc.202100576. e202100576. PubMed DOI PMC
Chow W.A., Guo S., Valdes-Albini F. Nelfinavir induces liposarcoma apoptosis and cell cycle arrest by upregulating sterol regulatory element binding protein-1. Anti Cancer Drugs. 2006;17(8):891–903. doi: 10.1097/01.cad.0000224448.08706.76. PubMed DOI
Chuck C.P., Chen C., Ke Z., Wan D.C., Chow H.F., Wong K.B. Design, synthesis and crystallographic analysis of nitrile-based broad-spectrum peptidomimetic inhibitors for coronavirus 3C-like proteases. Eur. J. Med. Chem. 2013;59:1–6. doi: 10.1016/j.ejmech.2012.10.053. PubMed DOI PMC
Chun T.W., Finzi D., Margolick J., Chadwick K., Schwartz D., Siliciano R.F. In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency. Nat. Med. 1995;1(12):1284–1290. doi: 10.1038/nm1295-1284. PubMed DOI
Churchill S.A. Protease inhibitors: implications for HIV research and treatment. J. Int. Assoc. Phys. AIDS Care. 1996;2(1):13–18. PubMed
Clavel F., Guétard D., Brun-Vézinet F., Chamaret S., Rey M.A., Santos-Ferreira M.O., Laurent A.G., Dauguet C., Katlama C., Rouzioux C., et al. Isolation of a new human retrovirus from West African patients with AIDS. Science. 1986;233(4761):343–346. doi: 10.1126/science.2425430. PubMed DOI
Constant D.A., Mateo R., Nagamine C.M., Kirkegaard K. Targeting intramolecular proteinase NS2B/3 cleavages for trans-dominant inhibition of dengue virus. Proc. Natl. Acad. Sci. U. S. A. 2018;115(40):10136–10141. doi: 10.1073/pnas.1805195115. PubMed DOI PMC
Corman V.M., Muth D., Niemeyer D., Drosten C. Hosts and sources of endemic human coronaviruses. Adv. Virus Res. 2018;100:163–188. doi: 10.1016/bs.aivir.2018.01.001. PubMed DOI PMC
Cotter T.G., Jensen D.M. Glecaprevir/pibrentasvir for the treatment of chronic hepatitis C: design, development, and place in therapy. Drug Des. Dev. Ther. 2019;13:2565–2577. doi: 10.2147/dddt.S172512. PubMed DOI PMC
Coulson J.M., Adams A., Gray L.A., Evans A. COVID-19 "Rebound" associated with nirmatrelvir/ritonavir pre-hospital therapy. J. Infect. 2022 doi: 10.1016/j.jinf.2022.06.011. PubMed DOI PMC
Couzin-Frankel J. Antiviral pills could change pandemic's course. Science. 2021;374(6569):799–800. doi: 10.1126/science.acx9605. PubMed DOI
Craig J.C., Duncan I.B., Hockley D., Grief C., Roberts N.A., Mills J.S. Antiviral properties of Ro 31-8959, an inhibitor of human immunodeficiency virus (HIV) proteinase. Antivir. Res. 1991;16(4):295–305. doi: 10.1016/0166-3542(91)90045-s. PubMed DOI
Cuevas J.M., González-Candelas F., Moya A., Sanjuán R. Effect of ribavirin on the mutation rate and spectrum of hepatitis C virus in vivo. J. Virol. 2009;83(11):5760–5764. doi: 10.1128/jvi.00201-09. PubMed DOI PMC
Cully M. A tale of two antiviral targets - and the COVID-19 drugs that bind them. Nat. Rev. Drug Discov. 2022;21(1):3–5. doi: 10.1038/d41573-021-00202-8. PubMed DOI
da Costa V.G., Moreli M.L., Saivish M.V. The emergence of SARS, MERS and novel SARS-2 coronaviruses in the 21st century. Arch. Virol. 2020;165(7):1517–1526. doi: 10.1007/s00705-020-04628-0. PubMed DOI PMC
da Silva Rocha S.F.L., Olanda C.G., Fokoue H.H., Sant'Anna C.M.R. Virtual screening techniques in drug discovery: review and recent applications. Curr. Top. Med. Chem. 2019;19(19):1751–1767. doi: 10.2174/1568026619666190816101948. PubMed DOI
Dash P.K., Kaminski R., Bella R., Su H., Mathews S., Ahooyi T.M., Chen C., Mancuso P., Sariyer R., Ferrante P., Donadoni M., Robinson J.A., Sillman B., Lin Z., Hilaire J.R., Banoub M., Elango M., Gautam N., Mosley R.L., Poluektova L.Y., McMillan J., Bade A.N., Gorantla S., Sariyer I.K., Burdo T.H., Young W.B., Amini S., Gordon J., Jacobson J.M., Edagwa B., Khalili K., Gendelman H.E. Sequential LASER ART and CRISPR treatments eliminate HIV-1 in a subset of infected humanized mice. Nat. Commun. 2019;10(1):2753. doi: 10.1038/s41467-019-10366-y. PubMed DOI PMC
Davis D.A., Soule E.E., Davidoff K.S., Daniels S.I., Naiman N.E., Yarchoan R. Activity of human immunodeficiency virus type 1 protease inhibitors against the initial autocleavage in Gag-Pol polyprotein processing. Antimicrob. Agents Chemother. 2012;56(7):3620–3628. doi: 10.1128/AAC.00055-12. PubMed DOI PMC
De Clercq E. Perspectives for the chemotherapy of AIDS. Anticancer Res. 1987;7(5b):1023–1038. PubMed
De Clercq E. Antiviral drugs in current clinical use. J. Clin. Virol. 2004;30(2):115–133. doi: 10.1016/j.jcv.2004.02.009. PubMed DOI
De Clercq E., Li G. Approved antiviral drugs over the past 50 years. Clin. Microbiol. Rev. 2016;29(3):695–747. doi: 10.1128/CMR.00102-15. PubMed DOI PMC
de Mendoza C., Valer L., Bacheler L., Pattery T., Corral A., Soriano V. Prevalence of the HIV-1 protease mutation I47A in clinical practice and association with lopinavir resistance. AIDS. 2006;20(7):1071–1074. doi: 10.1097/01.aids.0000222084.44411.cc. PubMed DOI
De Vlaminck I., Khush K.K., Strehl C., Kohli B., Luikart H., Neff N.F., Okamoto J., Snyder T.M., Cornfield D.N., Nicolls M.R., Weill D., Bernstein D., Valantine H.A., Quake S.R. Temporal response of the human virome to immunosuppression and antiviral therapy. Cell. 2013;155(5):1178–1187. doi: 10.1016/j.cell.2013.10.034. PubMed DOI PMC
de Wit E., Feldmann F., Cronin J., Jordan R., Okumura A., Thomas T., Scott D., Cihlar T., Feldmann H. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc. Natl. Acad. Sci. U. S. A. 2020;117(12):6771–6776. doi: 10.1073/pnas.1922083117. PubMed DOI PMC
Deng W., Baki L., Yin J., Zhou H., Baumgarten C.M. HIV protease inhibitors elicit volume-sensitive Cl- current in cardiac myocytes via mitochondrial ROS. J. Mol. Cell. Cardiol. 2010;49(5):746–752. doi: 10.1016/j.yjmcc.2010.08.013. PubMed DOI PMC
Denison M.R., Graham R.L., Donaldson E.F., Eckerle L.D., Baric R.S. Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity. RNA Biol. 2011;8(2):270–279. doi: 10.4161/rna.8.2.15013. PubMed DOI PMC
Dienstag J.L. In: Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases. eighth ed. Bennett J.E., Dolin R., Blaser M.J., editors. W.B. Saunders; Philadelphia: 2015. 46 - antiviral drugs against hepatitis viruses; pp. 563–575. e563.
Doyon L., Tremblay S., Bourgon L., Wardrop E., Cordingley M.G. Selection and characterization of HIV-1 showing reduced susceptibility to the non-peptidic protease inhibitor tipranavir. Antivir. Res. 2005;68(1):27–35. doi: 10.1016/j.antiviral.2005.07.003. PubMed DOI
Dragovich P.S., Prins T.J., Zhou R., Webber S.E., Marakovits J.T., Fuhrman S.A., Patick A.K., Matthews D.A., Lee C.A., Ford C.E., Burke B.J., Rejto P.A., Hendrickson T.F., Tuntland T., Brown E.L., Meador J.W., 3rd, Ferre R.A., Harr J.E., Kosa M.B., Worland S.T. Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 4. Incorporation of P1 lactam moieties as L-glutamine replacements. J. Med. Chem. 1999;42(7):1213–1224. doi: 10.1021/jm9805384. PubMed DOI
Dunning J., Thwaites R.S., Openshaw P.J.M. Seasonal and pandemic influenza: 100 years of progress, still much to learn. Mucosal Immunol. 2020;13(4):566–573. doi: 10.1038/s41385-020-0287-5. PubMed DOI PMC
Dustin L.B., Bartolini B., Capobianchi M.R., Pistello M. Hepatitis C virus: life cycle in cells, infection and host response, and analysis of molecular markers influencing the outcome of infection and response to therapy. Clin. Microbiol. Infect. 2016;22(10):826–832. doi: 10.1016/j.cmi.2016.08.025. PubMed DOI PMC
El-Baba T.J., Lutomski C.A., Kantsadi A.L., Malla T.R., John T., Mikhailov V., Bolla J.R., Schofield C.J., Zitzmann N., Vakonakis I., Robinson C.V. Allosteric inhibition of the SARS-CoV-2 main protease: insights from mass spectrometry based assays. Angew Chem. Int. Ed. Engl. 2020;59(52):23544–23548. doi: 10.1002/anie.202010316. PubMed DOI PMC
Elion G.B., Furman P.A., Fyfe J.A., de Miranda P., Beauchamp L., Schaeffer H.J. Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine. Proc. Natl. Acad. Sci. U. S. A. 1977;74(12):5716–5720. doi: 10.1073/pnas.74.12.5716. PubMed DOI PMC
Elion R., Cohen C., Gathe J., Shalit P., Hawkins T., Liu H.C., Mathias A.A., Chuck S.L., Kearney B.P., Warren D.R. Phase 2 study of cobicistat versus ritonavir each with once-daily atazanavir and fixed-dose emtricitabine/tenofovir df in the initial treatment of HIV infection. Aids. 2011;25(15):1881–1886. doi: 10.1097/QAD.0b013e32834b4d48. PubMed DOI
Ely E.W., Ramanan A.V., Kartman C.E., de Bono S., Liao R., Piruzeli M.L.B., Goldman J.D., Saraiva J.F.K., Chakladar S., Marconi V.C. Efficacy and safety of baricitinib plus standard of care for the treatment of critically ill hospitalised adults with COVID-19 on invasive mechanical ventilation or extracorporeal membrane oxygenation: an exploratory, randomised, placebo-controlled trial. Lancet Respir. Med. 2022 doi: 10.1016/s2213-2600(22)00006-6. PubMed DOI PMC
Erbel P., Schiering N., D'Arcy A., Renatus M., Kroemer M., Lim S.P., Yin Z., Keller T.H., Vasudevan S.G., Hommel U. Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nat. Struct. Mol. Biol. 2006;13(4):372–373. doi: 10.1038/nsmb1073. PubMed DOI
Evenseth L.S.M., Gabrielsen M., Sylte I. The GABA(B) receptor-structure, ligand binding and drug development. Molecules. 2020;25(13) doi: 10.3390/molecules25133093. PubMed DOI PMC
Excision https://www.excision.bio/technology
Fassmannová D., Sedlák F., Sedláček J., Špička I., Grantz Šašková K. Nelfinavir inhibits the TCF11/nrf1-mediated proteasome recovery pathway in multiple myeloma. Cancers. 2020;12(5) doi: 10.3390/cancers12051065. PubMed DOI PMC
Foote B.S., Spooner L.M., Belliveau P.P. Boceprevir: a protease inhibitor for the treatment of chronic hepatitis C. Ann. Pharmacother. 2011;45(9):1085–1093. doi: 10.1345/aph.1P744. PubMed DOI
Fu L., Ye F., Feng Y., Yu F., Wang Q., Wu Y., Zhao C., Sun H., Huang B., Niu P., Song H., Shi Y., Li X., Tan W., Qi J., Gao G.F. Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease. Nat. Commun. 2020;11(1):4417. doi: 10.1038/s41467-020-18233-x. PubMed DOI PMC
Furfine E.S., Baker C.T., Hale M.R., Reynolds D.J., Salisbury J.A., Searle A.D., Studenberg S.D., Todd D., Tung R.D., Spaltenstein A. Preclinical pharmacology and pharmacokinetics of GW433908, a water-soluble prodrug of the human immunodeficiency virus protease inhibitor amprenavir. Antimicrob. Agents Chemother. 2004;48(3):791–798. doi: 10.1128/aac.48.3.791-798.2004. PubMed DOI PMC
Furman P.A., de Miranda P., St Clair M.H., Elion G.B. Metabolism of acyclovir in virus-infected and uninfected cells. Antimicrob. Agents Chemother. 1981;20(4):518–524. doi: 10.1128/aac.20.4.518. PubMed DOI PMC
Gable J.E., Lee G.M., Acker T.M., Hulce K.R., Gonzalez E.R., Schweigler P., Melkko S., Farady C.J., Craik C.S. Fragment-based protein-protein interaction antagonists of a viral dimeric protease. ChemMedChem. 2016;11(8):862–869. doi: 10.1002/cmdc.201500526. PubMed DOI PMC
Gallo R.C., Poiesz B.J., Ruscetti F.W. Regulation of human T-cell proliferation: T-cell growth factor and isolation of a new class of type-C retroviruses from human T-cells. Haematol. Blood Transfus. 1981;26:502–514. doi: 10.1007/978-3-642-67984-1_93. PubMed DOI
Gallo R.C., Sarin P.S., Gelmann E.P., Robert-Guroff M., Richardson E., Kalyanaraman V.S., Mann D., Sidhu G.D., Stahl R.E., Zolla-Pazner S., Leibowitch J., Popovic M. Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome (AIDS) Science. 1983;220(4599):865–867. doi: 10.1126/science.6601823. PubMed DOI
Gan J.H., Liu J.X., Liu Y., Chen S.W., Dai W.T., Xiao Z.X., Cao Y. DrugRep: an automatic virtual screening server for drug repurposing. Acta Pharmacol. Sin. 2022;1–9 doi: 10.1038/s41401-022-00996-2. PubMed DOI PMC
Gane E., Poordad F., Wang S., Asatryan A., Kwo P.Y., Lalezari J., Wyles D.L., Hassanein T., Aguilar H., Maliakkal B., Liu R., Lin C.W., Ng T.I., Kort J., Mensa F.J. High efficacy of ABT-493 and ABT-530 treatment in patients with HCV genotype 1 or 3 infection and compensated cirrhosis. Gastroenterology. 2016;151(4):651–659. doi: 10.1053/j.gastro.2016.07.020. e651. PubMed DOI
Gane E.J., Kowdley K.V., Pound D., Stedman C.A., Davis M., Etzkorn K., Gordon S.C., Bernstein D., Everson G., Rodriguez-Torres M., Tsai N., Khalid O., Yang J.C., Lu S., Dvory-Sobol H., Stamm L.M., Brainard D.M., McHutchison J.G., Tong M., Chung R.T., Beavers K., Poulos J.E., Kwo P.Y., Nguyen M.H. Efficacy of sofosbuvir, velpatasvir, and GS-9857 in patients with hepatitis C virus genotype 2, 3, 4, or 6 infections in an open-label, phase 2 trial. Gastroenterology. 2016;151(5):902–909. doi: 10.1053/j.gastro.2016.07.038. PubMed DOI
Gane E.J., Schwabe C., Hyland R.H., Yang Y., Svarovskaia E., Stamm L.M., Brainard D.M., McHutchison J.G., Stedman C.A. Efficacy of the combination of sofosbuvir, velpatasvir, and the NS3/4A protease inhibitor GS-9857 in treatment-naïve or previously treated patients with hepatitis C virus genotype 1 or 3 infections. Gastroenterology. 2016;151(3):448–456. doi: 10.1053/j.gastro.2016.05.021. e441. PubMed DOI
Garcia-Cehic D., Rando A., Rodriguez-Frias F., Gregori J., Costa J.G., Carrión J.A., Macenlle R., Pamplona J., Castro-Iglesias A., Cañizares A., Tabernero D., Campos C., Buti M., Esteban J.I., Quer J. Resistance-associated substitutions after sofosbuvir/velpatasvir/voxilaprevir triple therapy failure. J. Viral Hepat. 2021;28(9):1319–1324. doi: 10.1111/jvh.13497. PubMed DOI
Gehlhaar D.K., Verkhivker G.M., Rejto P.A., Sherman C.J., Fogel D.B., Fogel L.J., Freer S.T. Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming. Chem. Biol. 1995;2(5):317–324. doi: 10.1016/1074-5521(95)90050-0. PubMed DOI
Geller R., Estada Ú., Peris J.B., Andreu I., Bou J.V., Garijo R., Cuevas J.M., Sabariegos R., Mas A., Sanjuán R. Highly heterogeneous mutation rates in the hepatitis C virus genome. Nat. Microbiol. 2016;1(7) doi: 10.1038/nmicrobiol.2016.45. PubMed DOI
Georgi F., Andriasyan V., Witte R., Murer L., Hemmi S., Yu L., Grove M., Meili N., Kuttler F., Yakimovich A., Turcatti G., Greber U.F. The FDA-approved drug nelfinavir inhibits lytic cell-free but not cell-associated nonlytic transmission of human adenovirus. Antimicrob. Agents Chemother. 2020;64(9) doi: 10.1128/AAC.01002-20. e01002-01020. PubMed DOI PMC
Ghosh A.K., Dawson Z.L., Mitsuya H. Darunavir, a conceptually new HIV-1 protease inhibitor for the treatment of drug-resistant HIV. Bioorg. Med. Chem. 2007;15(24):7576–7580. doi: 10.1016/j.bmc.2007.09.010. PubMed DOI PMC
Ghosh A.K., Chapsal B.D., Weber I.T., Mitsuya H. Design of HIV protease inhibitors targeting protein backbone: an effective strategy for combating drug resistance. Acc. Chem. Res. 2008;41(1):78–86. doi: 10.1021/ar7001232. PubMed DOI
Ghosh A.K., Osswald H.L., Prato G. Recent progress in the development of HIV-1 protease inhibitors for the treatment of HIV/AIDS. J. Med. Chem. 2016;59(11):5172–5208. doi: 10.1021/acs.jmedchem.5b01697. PubMed DOI PMC
Gillis E.P., Eastman K.J., Hill M.D., Donnelly D.J., Meanwell N.A. Applications of fluorine in medicinal chemistry. J. Med. Chem. 2015;58(21):8315–8359. doi: 10.1021/acs.jmedchem.5b00258. PubMed DOI
Gills J.J., Lopiccolo J., Dennis P.A. Nelfinavir, a new anti-cancer drug with pleiotropic effects and many paths to autophagy. Autophagy. 2008;4(1):107–109. doi: 10.4161/auto.5224. PubMed DOI
Goldsmith D.R., Perry C.M. Atazanavir. Drugs. 2003;63(16):1679–1693. doi: 10.2165/00003495-200363160-00003. discussion 1694-1675. PubMed DOI
Gordon S.C., Muir A.J., Lim J.K., Pearlman B., Argo C.K., Ramani A., Maliakkal B., Alam I., Stewart T.G., Vainorius M., Peter J., Nelson D.R., Fried M.W., Reddy K.R. Safety profile of boceprevir and telaprevir in chronic hepatitis C: real world experience from HCV-TARGET. J. Hepatol. 2015;62(2):286–293. doi: 10.1016/j.jhep.2014.08.052. PubMed DOI PMC
Graff D.E., Shakhnovich E.I., Coley C.W. Accelerating high-throughput virtual screening through molecular pool-based active learning. Chem. Sci. 2021;12(22):7866–7881. doi: 10.1039/d0sc06805e. PubMed DOI PMC
Graham S.V. The human papillomavirus replication cycle, and its links to cancer progression: a comprehensive review. Clin. Sci. (Lond.) 2017;131(17):2201–2221. doi: 10.1042/cs20160786. PubMed DOI
Grandi N., Tramontano E. Human endogenous retroviruses are ancient acquired elements still shaping innate immune responses. Front. Immunol. 2018;9(2039) doi: 10.3389/fimmu.2018.02039. PubMed DOI PMC
Greasley S.E., Noell S., Plotnikova O., Ferre R., Liu W., Bolanos B., Fennell K., Nicki J., Craig T., Zhu Y., Stewart A.E., Steppan C.M. Structural basis for the in vitro efficacy of nirmatrelvir against SARS-CoV-2 variants. J. Biol. Chem. 2022;298(6) doi: 10.1016/j.jbc.2022.101972. PubMed DOI PMC
Gu Y., Wang X., Wang Y., Wang Y., Li J., Yu F.X. Nelfinavir inhibits human DDI2 and potentiates cytotoxicity of proteasome inhibitors. Cell. Signal. 2020;75 doi: 10.1016/j.cellsig.2020.109775. PubMed DOI
Hahm B., Han D.S., Back S.H., Song O.K., Cho M.J., Kim C.J., Shimotohno K., Jang S.K. NS3-4A of hepatitis C virus is a chymotrypsin-like protease. J. Virol. 1995;69(4):2534–2539. doi: 10.1128/jvi.69.4.2534-2539.1995. PubMed DOI PMC
Hakkola J., Hukkanen J., Turpeinen M., Pelkonen O. Inhibition and induction of CYP enzymes in humans: an update. Arch. Toxicol. 2020;94(11):3671–3722. doi: 10.1007/s00204-020-02936-7. PubMed DOI PMC
Hammond J., Leister-Tebbe H., Gardner A., Abreu P., Bao W., Wisemandle W., Baniecki M., Hendrick V.M., Damle B., Simón-Campos A., Pypstra R., Rusnak J.M. Oral nirmatrelvir for high-risk, nonhospitalized adults with covid-19. N. Engl. J. Med. 2022;386(15):1397–1408. doi: 10.1056/NEJMoa2118542. PubMed DOI PMC
Han D.S., Hahm B., Rho H.M., Jang S.K. Identification of the protease domain in NS3 of hepatitis C virus. J. Gen. Virol. 1995;76(Pt 4):985–993. doi: 10.1099/0022-1317-76-4-985. PubMed DOI
Han B., Martin R., Xu S., Parvangada A., Svarovskaia E.S., Mo H., Dvory-Sobol H. Sofosbuvir susceptibility of genotype 1 to 6 HCV from DAA-naïve subjects. Antivir. Res. 2019;170 doi: 10.1016/j.antiviral.2019.104574. PubMed DOI
Han S.H., Goins C.M., Arya T., Shin W.J., Maw J., Hooper A., Sonawane D.P., Porter M.R., Bannister B.E., Crouch R.D., Lindsey A.A., Lakatos G., Martinez S.R., Alvarado J., Akers W.S., Wang N.S., Jung J.U., Macdonald J.D., Stauffer S.R. Structure-based optimization of ml300-derived, noncovalent inhibitors targeting the severe acute respiratory syndrome coronavirus 3CL protease (SARS-CoV-2 3CL(pro)) J. Med. Chem. 2022;65(4):2880–2904. doi: 10.1021/acs.jmedchem.1c00598. PubMed DOI PMC
Harper S., McCauley J.A., Rudd M.T., Ferrara M., DiFilippo M., Crescenzi B., Koch U., Petrocchi A., Holloway M.K., Butcher J.W., Romano J.J., Bush K.J., Gilbert K.F., McIntyre C.J., Nguyen K.T., Nizi E., Carroll S.S., Ludmerer S.W., Burlein C., DiMuzio J.M., Graham D.J., McHale C.M., Stahlhut M.W., Olsen D.B., Monteagudo E., Cianetti S., Giuliano C., Pucci V., Trainor N., Fandozzi C.M., Rowley M., Coleman P.J., Vacca J.P., Summa V., Liverton N.J. Discovery of MK-5172, a macrocyclic hepatitis C virus NS3/4a protease inhibitor. ACS Med. Chem. Lett. 2012;3(4):332–336. doi: 10.1021/ml300017p. PubMed DOI PMC
Hayashi H., Takamune N., Nirasawa T., Aoki M., Morishita Y., Das D., Koh Y., Ghosh A.K., Misumi S., Mitsuya H. Dimerization of HIV-1 protease occurs through two steps relating to the mechanism of protease dimerization inhibition by darunavir. Proc. Natl. Acad. Sci. USA. 2014;111(33):12234–12239. doi: 10.1073/pnas.1400027111. PubMed DOI PMC
Heo Y.A., Deeks E.D. Sofosbuvir/velpatasvir/voxilaprevir: a review in chronic hepatitis C. Drugs. 2018;78(5):577–587. doi: 10.1007/s40265-018-0895-5. PubMed DOI
Hermans P.E., Cockerill F.R., 3rd Antiviral agents. Mayo Clin. Proc. 1983;58(4):217–222. PubMed
Hermida-Matsumoto L., Resh M.D. Human immunodeficiency virus type 1 protease triggers a myristoyl switch that modulates membrane binding of Pr55(gag) and p17MA. J. Virol. 1999;73(3):1902–1908. doi: 10.1128/jvi.73.3.1902-1908.1999. PubMed DOI PMC
Heskin J., Pallett S.J.C., Mughal N., Davies G.W., Moore L.S.P., Rayment M., Jones R. Caution required with use of ritonavir-boosted PF-07321332 in COVID-19 management. Lancet. 2022;399(10319):21–22. doi: 10.1016/S0140-6736(21)02657-X. PubMed DOI PMC
Hézode C. Treatment of hepatitis C: results in real life. Liver Int. 2018;38(Suppl. 1):21–27. doi: 10.1111/liv.13638. PubMed DOI
Hilgenfeld R., Lei J., Zhang L. The structure of the Zika virus protease, NS2B/NS3(pro) Adv. Exp. Med. Biol. 2018;1062:131–145. doi: 10.1007/978-981-10-8727-1_10. PubMed DOI
Ho J.S.Y., Zhu Z., Marazzi I. Unconventional viral gene expression mechanisms as therapeutic targets. Nature. 2021;593(7859):362–371. doi: 10.1038/s41586-021-03511-5. PubMed DOI
Hoffman R.L., Kania R.S., Brothers M.A., Davies J.F., Ferre R.A., Gajiwala K.S., He M., Hogan R.J., Kozminski K., Li L.Y., Lockner J.W., Lou J., Marra M.T., Mitchell L.J., Jr., Murray B.W., Nieman J.A., Noell S., Planken S.P., Rowe T., Ryan K., Smith G.J., 3rd, Solowiej J.E., Steppan C.M., Taggart B. Discovery of ketone-based covalent inhibitors of coronavirus 3CL proteases for the potential therapeutic treatment of COVID-19. J. Med. Chem. 2020;63(21):12725–12747. doi: 10.1021/acs.jmedchem.0c01063. PubMed DOI PMC
Howe A.Y.M., Venkatraman S. The discovery and development of boceprevir: a novel, first-generation inhibitor of the hepatitis C virus NS3/4A serine protease. J. Clin. Transl. Hepatol. 2013;1(1):22–32. doi: 10.14218/JCTH.2013.002XX. PubMed DOI PMC
Huang L., Li L., Tien C., LaBarbera D.V., Chen C. Targeting HIV-1 protease autoprocessing for high-throughput drug discovery and drug resistance assessment. Sci. Rep. 2019;9(1):301. doi: 10.1038/s41598-018-36730-4. PubMed DOI PMC
Hui D.S., E I.A., Madani T.A., Ntoumi F., Kock R., Dar O., Ippolito G., McHugh T.D., Memish Z.A., Drosten C., Zumla A., Petersen E. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - the latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis. 2020;91:264–266. doi: 10.1016/j.ijid.2020.01.009. PubMed DOI PMC
Humpolíčková J., Weber J., Starková J., Mašínová E., Günterová J., Flaisigová I., Konvalinka J., Majerová T. Inhibition of the precursor and mature forms of HIV-1 protease as a tool for drug evaluation. Sci. Rep. 2018;8(1) doi: 10.1038/s41598-018-28638-w. PubMed DOI PMC
Hwang Y.-C., Lu R.-M., Su S.-C., Chiang P.-Y., Ko S.-H., Ke F.-Y., Liang K.-H., Hsieh T.-Y., Wu H.-C. Monoclonal antibodies for COVID-19 therapy and SARS-CoV-2 detection. J. Biomed. Sci. 2022;29(1):1. doi: 10.1186/s12929-021-00784-w. PubMed DOI PMC
Iketani S., Mohri H., Culbertson B., Hong S.J., Duan Y., Luck M.I., Annavajhala M.K., Guo Y., Sheng Z., Uhlemann A.C., Goff S.P., Sabo Y., Yang H., Chavez A., Ho D.D. Multiple pathways for SARS-CoV-2 resistance to nirmatrelvir. Nature. 2022 doi: 10.1038/s41586-022-05514-2. PubMed DOI PMC
Isken O., Walther T., Wong-Dilworth L., Rehders D., Redecke L., Tautz N. Identification of NS2 determinants stimulating intrinsic HCV NS2 protease activity. PLoS Pathog. 2022;18(6) doi: 10.1371/journal.ppat.1010644. PubMed DOI PMC
Jacks T., Power M.D., Masiarz F.R., Luciw P.A., Barr P.J., Varmus H.E. Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature. 1988;331(6153):280–283. doi: 10.1038/331280a0. PubMed DOI
Jacobs J., Grum-Tokars V., Zhou Y., Turlington M., Saldanha S.A., Chase P., Eggler A., Dawson E.S., Baez-Santos Y.M., Tomar S., Mielech A.M., Baker S.C., Lindsley C.W., Hodder P., Mesecar A., Stauffer S.R. Discovery, synthesis, and structure-based optimization of a series of N-(tert-butyl)-2-(N-arylamido)-2-(pyridin-3-yl) acetamides (ML188) as potent noncovalent small molecule inhibitors of the severe acute respiratory syndrome coronavirus (SARS-CoV) 3CL protease. J. Med. Chem. 2013;56(2):534–546. doi: 10.1021/jm301580n. PubMed DOI PMC
Jacobsen H., Yasargil K., Winslow D.L., Craig J.C., Kröhn A., Duncan I.B., Mous J. Characterization of human immunodeficiency virus type 1 mutantswith decreased sensitivity to proteinase inhibitor Ro 31-8959. Virology. 1995;206(1):527–534. doi: 10.1016/S0042-6822(95)80069-7. PubMed DOI
Jacobson I.M., Lawitz E., Gane E.J., Willems B.E., Ruane P.J., Nahass R.G., Borgia S.M., Shafran S.D., Workowski K.A., Pearlman B., Hyland R.H., Stamm L.M., Svarovskaia E., Dvory-Sobol H., Zhu Y., Subramanian G.M., Brainard D.M., McHutchison J.G., Bräu N., Berg T., Agarwal K., Bhandari B.R., Davis M., Feld J.J., Dore G.J., Stedman C.A.M., Thompson A.J., Asselah T., Roberts S.K., Foster G.R. Efficacy of 8 Weeks of sofosbuvir, velpatasvir, and voxilaprevir in patients with chronic HCV infection: 2 phase 3 randomized trials. Gastroenterology. 2017;153(1):113–122. doi: 10.1053/j.gastro.2017.03.047. PubMed DOI
Jacobson I.M., Lawitz E., Kwo P.Y., Hézode C., Peng C.Y., Howe A.Y.M., Hwang P., Wahl J., Robertson M., Barr E., Haber B.A. Safety and efficacy of elbasvir/grazoprevir in patients with hepatitis C virus infection and compensated cirrhosis: an integrated analysis. Gastroenterology. 2017;152(6):1372–1382. doi: 10.1053/j.gastro.2017.01.050. e1372. PubMed DOI
James J.S. Saquinavir (Invirase): first protease inhibitor approved--reimbursement, information hotline numbers. AIDS Treat. News. 1995;(237):1–2. PubMed
Jeong J.H., Chokkakula S., Min S.C., Kim B.K., Choi W.S., Oh S., Yun Y.S., Kang D.H., Lee O.J., Kim E.G., Choi J.H., Lee J.Y., Choi Y.K., Baek Y.H., Song M.S. Combination therapy with nirmatrelvir and molnupiravir improves the survival of SARS-CoV-2 infected mice. Antivir. Res. 2022;208 doi: 10.1016/j.antiviral.2022.105430. PubMed DOI PMC
Jiang M., Mani N., Lin C., Ardzinski A., Nelson M., Reagan D., Bartels D., Zhou Y., Nicolas O., Rao B.G., Müh U., Hanzelka B., Tigges A., Rijnbrand R., Kieffer T.L. In vitro phenotypic characterization of hepatitis C virus NS3 protease variants observed in clinical studies of telaprevir. Antimicrob. Agents Chemother. 2013;57(12):6236–6245. doi: 10.1128/AAC.01578-13. PubMed DOI PMC
Jin Z., Du X., Xu Y., Deng Y., Liu M., Zhao Y., Zhang B., Li X., Zhang L., Peng C., Duan Y., Yu J., Wang L., Yang K., Liu F., Jiang R., Yang X., You T., Liu X., Yang X., Bai F., Liu H., Liu X., Guddat L.W., Xu W., Xiao G., Qin C., Shi Z., Jiang H., Rao Z., Yang H. Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020;582(7811):289–293. doi: 10.1038/s41586-020-2223-y. PubMed DOI
Jochmans D., Anders M., Keuleers I., Smeulders L., Kräusslich H.-G., Kraus G., Müller B. Selective killing of human immunodeficiency virus infected cells by non-nucleoside reverse transcriptase inhibitor-induced activation of HIV protease. Retrovirology. 2010;7(1):89. doi: 10.1186/1742-4690-7-89. PubMed DOI PMC
Jochmans D., Liu C., Donckers K., Stoycheva A., Boland S., Stevens S.K., De Vita C., Vanmechelen B., Maes P., Trüeb B., Ebert N., Thiel V., De Jonghe S., Vangeel L., Bardiot D., Jekle A., Blatt L.M., Beigelman L., Symons J.A., Raboisson P., Chaltin P., Marchand A., Neyts J., Deval J., Vandyck K. The substitutions L50F, E166A and L167F in SARS-CoV-2 3CLpro are selected by a protease inhibitor in vitro and confer resistance to nirmatrelvir. bioRxiv. 2022 doi: 10.1101/2022.06.07.495116. 2022.2006.2007.495116. PubMed DOI PMC
Kabinger F., Stiller C., Schmitzová J., Dienemann C., Kokic G., Hillen H.S., Höbartner C., Cramer P. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat. Struct. Mol. Biol. 2021;28(9):740–746. doi: 10.1038/s41594-021-00651-0. PubMed DOI PMC
Kaldor S.W., Kalish V.J., Davies J.F., Shetty B.V., Fritz J.E., Appelt K., Burgess J.A., Campanale K.M., Chirgadze N.Y., Clawson D.K., Dressman B.A., Hatch S.D., Khalil D.A., Kosa M.B., Lubbehusen P.P., Muesing M.A., Patick A.K., Reich S.H., Su K.S., Tatlock J.H. Viracept (nelfinavir mesylate, AG1343): a potent, orally bioavailable inhibitor of HIV-1 protease. J. Med. Chem. 1997;40(24):3979–3985. doi: 10.1021/jm9704098. PubMed DOI
Kalu N.N., Desai P.J., Shirley C.M., Gibson W., Dennis P.A., Ambinder R.F. Nelfinavir inhibits maturation and export of herpes simplex virus 1. J. Virol. 2014;88(10):5455–5461. doi: 10.1128/JVI.03790-13. PubMed DOI PMC
Kang C., Keller T.H., Luo D. Zika virus protease: an antiviral drug target. Trends Microbiol. 2017;25(10):797–808. doi: 10.1016/j.tim.2017.07.001. PubMed DOI
Kaplan A.H., Swanstrom R. Human immunodeficiency virus type 1 Gag proteins are processed in two cellular compartments. Proc. Natl. Acad. Sci. USA. 1991;88(10):4528–4532. doi: 10.1073/pnas.88.10.4528. PubMed DOI PMC
Kaptein S.J.F., Goethals O., Kiemel D., Marchand A., Kesteleyn B., Bonfanti J.F., Bardiot D., Stoops B., Jonckers T.H.M., Dallmeier K., Geluykens P., Thys K., Crabbe M., Chatel-Chaix L., Münster M., Querat G., Touret F., de Lamballerie X., Raboisson P., Simmen K., Chaltin P., Bartenschlager R., Van Loock M., Neyts J. A pan-serotype dengue virus inhibitor targeting the NS3-NS4B interaction. Nature. 2021;598(7881):504–509. doi: 10.1038/s41586-021-03990-6. PubMed DOI
Kataev V.E., Garifullin B.F. Antiviral nucleoside analogs. Chem. Heterocycl. Compd. 2021;57(4):326–341. doi: 10.1007/s10593-021-02912-8. PubMed DOI PMC
Katsumoto T., Hattori N., Kurimura T. Maturation of human immunodeficiency virus, strain LAV, in vitro. Intervirology. 1987;27(3):148–153. doi: 10.1159/000149733. PubMed DOI
Kausar S., Said Khan F., Ishaq Mujeeb Ur Rehman M., Akram M., Riaz M., Rasool G., Hamid Khan A., Saleem I., Shamim S., Malik A. A review: mechanism of action of antiviral drugs. Int. J. Immunopathol. Pharmacol. 2021;35 doi: 10.1177/20587384211002621. PubMed DOI PMC
Kawabata S., Gills J.J., Mercado-Matos J.R., Lopiccolo J., Wilson W., 3rd, Hollander M.C., Dennis P.A. Synergistic effects of nelfinavir and bortezomib on proteotoxic death of NSCLC and multiple myeloma cells. Cell Death Dis. 2012;3(7):e353. doi: 10.1038/cddis.2012.87. PubMed DOI PMC
Keating G.M. Elbasvir/grazoprevir: first global approval. Drugs. 2016;76(5):617–624. doi: 10.1007/s40265-016-0558-3. PubMed DOI
Kempf D.J., Marsh K.C., Denissen J.F., McDonald E., Vasavanonda S., Flentge C.A., Green B.E., Fino L., Park C.H., Kong X.P. ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability in humans. Proc. Natl. Acad. Sci. U. S. A. 1995;92(7):2484–2488. doi: 10.1073/pnas.92.7.2484. PubMed DOI PMC
Kempf D.J., Marsh K.C., Kumar G., Rodrigues A.D., Denissen J.F., McDonald E., Kukulka M.J., Hsu A., Granneman G.R., Baroldi P.A., Sun E., Pizzuti D., Plattner J.J., Norbeck D.W., Leonard J.M. Pharmacokinetic enhancement of inhibitors of the human immunodeficiency virus protease by coadministration with ritonavir. Antimicrob. Agents Chemother. 1997;41(3):654–660. doi: 10.1128/aac.41.3.654. PubMed DOI PMC
Kempf D.J., Isaacson J.D., King M.S., Brun S.C., Xu Y., Real K., Bernstein B.M., Japour A.J., Sun E., Rode R.A. Identification of genotypic changes in human immunodeficiency virus protease that correlate with reduced susceptibility to the protease inhibitor lopinavir among viral isolates from protease inhibitor-experienced patients. J. Virol. 2001;75(16):7462–7469. doi: 10.1128/jvi.75.16.7462-7469.2001. PubMed DOI PMC
Khayat R., Batra R., Qian C., Halmos T., Bailey M., Tong L. Structural and biochemical studies of inhibitor binding to human cytomegalovirus protease. Biochemistry. 2003;42(4):885–891. doi: 10.1021/bi027045s. PubMed DOI
Kim E., Baker C., Dwyer M., Murcko M., Rao B., Tung R., Navia M. Crystal structure of HIV-1 protease in complex with VX-478, a potent and orally bioavailable inhibitor of the enzyme. J. Am. Chem. Soc. 1995;117(3):1181–1182.
Kim J.L., Morgenstern K.A., Lin C., Fox T., Dwyer M.D., Landro J.A., Chambers S.P., Markland W., Lepre C.A., O'Malley E.T., Harbeson S.L., Rice C.M., Murcko M.A., Caron P.R., Thomson J.A. Crystal structure of the hepatitis C virus NS3 protease domain complexed with a synthetic NS4A cofactor peptide. Cell. 1996;87(2):343–355. doi: 10.1016/s0092-8674(00)81351-3. PubMed DOI
Klemm T., Ebert G., Calleja D.J., Allison C.C., Richardson L.W., Bernardini J.P., Lu B.G., Kuchel N.W., Grohmann C., Shibata Y., Gan Z.Y., Cooney J.P., Doerflinger M., Au A.E., Blackmore T.R., van der Heden van Noort G.J., Geurink P.P., Ovaa H., Newman J., Riboldi-Tunnicliffe A., Czabotar P.E., Mitchell J.P., Feltham R., Lechtenberg B.C., Lowes K.N., Dewson G., Pellegrini M., Lessene G., Komander D. Mechanism and inhibition of the papain-like protease, PLpro, of SARS-CoV-2. EMBO J. 2020;39(18) doi: 10.15252/embj.2020106275. PubMed DOI PMC
Koh Y., Nakata H., Maeda K., Ogata H., Bilcer G., Devasamudram T., Kincaid J.F., Boross P., Wang Y.F., Tie Y., Volarath P., Gaddis L., Harrison R.W., Weber I.T., Ghosh A.K., Mitsuya H. Novel bis-tetrahydrofuranylurethane-containing nonpeptidic protease inhibitor (PI) UIC-94017 (TMC114) with potent activity against multi-PI-resistant human immunodeficiency virus in vitro. Antimicrob. Agents Chemother. 2003;47(10):3123–3129. doi: 10.1128/aac.47.10.3123-3129.2003. PubMed DOI PMC
Kohl N.E., Emini E.A., Schleif W.A., Davis L.J., Heimbach J.C., Dixon R.A., Scolnick E.M., Sigal I.S. Active human immunodeficiency virus protease is required for viral infectivity. Proc. Natl. Acad. Sci. U. S. A. 1988;85(13):4686–4690. doi: 10.1073/pnas.85.13.4686. PubMed DOI PMC
Konvalinka J., Litterst M.A., Welker R., Kottler H., Rippmann F., Heuser A.M., Kräusslich H.G. An active-site mutation in the human immunodeficiency virus type 1 proteinase (PR) causes reduced PR activity and loss of PR-mediated cytotoxicity without apparent effect on virus maturation and infectivity. J. Virol. 1995;69(11):7180–7186. doi: 10.1128/jvi.69.11.7180-7186.1995. PubMed DOI PMC
Konvalinka J., Kräusslich H.G., Müller B. Retroviral proteases and their roles in virion maturation. Virology. 2015;479–480:403–417. doi: 10.1016/j.virol.2015.03.021. PubMed DOI
Koster J.C., Remedi M.S., Qiu H., Nichols C.G., Hruz P.W. HIV protease inhibitors acutely impair glucose-stimulated insulin release. Diabetes. 2003;52(7):1695–1700. doi: 10.2337/diabetes.52.7.1695. PubMed DOI PMC
Kožíšek M., Bray J., Řezáčová P., Šašková K., Brynda J., Pokorná J., Mammano F., Rulíšek L., Konvalinka J. Molecular analysis of the HIV-1 resistance development: enzymatic activities, crystal structures, and thermodynamics of nelfinavir-resistant HIV protease mutants. J. Mol. Biol. 2007;374(4):1005–1016. doi: 10.1016/j.jmb.2007.09.083. PubMed DOI
Kozísek M., Henke S., Sasková K.G., Jacobs G.B., Schuch A., Buchholz B., Müller V., Kräusslich H.G., Rezácová P., Konvalinka J., Bodem J. Mutations in HIV-1 gag and pol compensate for the loss of viral fitness caused by a highly mutated protease. Antimicrob. Agents Chemother. 2012;56(8):4320–4330. doi: 10.1128/aac.00465-12. PubMed DOI PMC
Kožíšek M., Lepšík M., Grantz Šašková K., Brynda J., Konvalinka J., Rezáčová P. Thermodynamic and structural analysis of HIV protease resistance to darunavir - analysis of heavily mutated patient-derived HIV-1 proteases. FEBS J. 2014;281(7):1834–1847. doi: 10.1111/febs.12743. PubMed DOI
Kräusslich H.G. Human immunodeficiency virus proteinase dimer as component of the viral polyprotein prevents particle assembly and viral infectivity. Proc. Natl. Acad. Sci. USA. 1991;88(8):3213–3217. doi: 10.1073/pnas.88.8.3213. PubMed DOI PMC
Krishnan P., Tripathi R., Schnell G., Reisch T., Beyer J., Irvin M., Xie W., Larsen L., Cohen D., Podsadecki T., Pilot-Matias T., Collins C. Resistance analysis of baseline and treatment-emergent variants in hepatitis C virus genotype 1 in the AVIATOR study with paritaprevir-ritonavir, ombitasvir, and dasabuvir. Antimicrob. Agents Chemother. 2015;59(9):5445–5454. doi: 10.1128/aac.00998-15. PubMed DOI PMC
Kumar G.N., Rodrigues A.D., Buko A.M., Denissen J.F. Cytochrome P450-mediated metabolism of the HIV-1 protease inhibitor ritonavir (ABT-538) in human liver microsomes. J. Pharmacol. Exp. Therapeut. 1996;277(1):423–431. PubMed
Kuroki A., Tay J., Lee G.H., Yang Y.Y. Broad-spectrum antiviral peptides and polymers. Adv. Healthc. Mater. 2021;10(23) doi: 10.1002/adhm.202101113. PubMed DOI
Kwong A.D., Kim J.L., Rao G., Lipovsek D., Raybuck S.A. Hepatitis C virus NS3/4A protease. Antivir. Res. 1998;40(1–2):1–18. doi: 10.1016/s0166-3542(98)00043-6. PubMed DOI
Kwong A.D., Kauffman R.S., Hurter P., Mueller P. Discovery and development of telaprevir: an NS3-4A protease inhibitor for treating genotype 1 chronic hepatitis C virus. Nat. Biotechnol. 2011;29(11):993–1003. doi: 10.1038/nbt.2020. PubMed DOI
Lamb Y.N. Nirmatrelvir plus ritonavir: first approval. Drugs. 2022;82(5):585–591. doi: 10.1007/s40265-022-01692-5. PubMed DOI PMC
Lander E.S., Linton L.M., Birren B., Nusbaum C., Zody M.C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W., Funke R., Gage D., Harris K., Heaford A., Howland J., Kann L., Lehoczky J., LeVine R., McEwan P., McKernan K., Meldrim J., Mesirov J.P., Miranda C., Morris W., Naylor J., Raymond C., Rosetti M., Santos R., Sheridan A., Sougnez C., Stange-Thomann Y., Stojanovic N., Subramanian A., Wyman D., Rogers J., Sulston J., Ainscough R., Beck S., Bentley D., Burton J., Clee C., Carter N., Coulson A., Deadman R., Deloukas P., Dunham A., Dunham I., Durbin R., French L., Grafham D., Gregory S., Hubbard T., Humphray S., Hunt A., Jones M., Lloyd C., McMurray A., Matthews L., Mercer S., Milne S., Mullikin J.C., Mungall A., Plumb R., Ross M., Shownkeen R., Sims S., Waterston R.H., Wilson R.K., Hillier L.W., McPherson J.D., Marra M.A., Mardis E.R., Fulton L.A., Chinwalla A.T., Pepin K.H., Gish W.R., Chissoe S.L., Wendl M.C., Delehaunty K.D., Miner T.L., Delehaunty A., Kramer J.B., Cook L.L., Fulton R.S., Johnson D.L., Minx P.J., Clifton S.W., Hawkins T., Branscomb E., Predki P., Richardson P., Wenning S., Slezak T., Doggett N., Cheng J.F., Olsen A., Lucas S., Elkin C., Uberbacher E., Frazier M., Gibbs R.A., Muzny D.M., Scherer S.E., Bouck J.B., Sodergren E.J., Worley K.C., Rives C.M., Gorrell J.H., Metzker M.L., Naylor S.L., Kucherlapati R.S., Nelson D.L., Weinstock G.M., Sakaki Y., Fujiyama A., Hattori M., Yada T., Toyoda A., Itoh T., Kawagoe C., Watanabe H., Totoki Y., Taylor T., Weissenbach J., Heilig R., Saurin W., Artiguenave F., Brottier P., Bruls T., Pelletier E., Robert C., Wincker P., Smith D.R., Doucette-Stamm L., Rubenfield M., Weinstock K., Lee H.M., Dubois J., Rosenthal A., Platzer M., Nyakatura G., Taudien S., Rump A., Yang H., Yu J., Wang J., Huang G., Gu J., Hood L., Rowen L., Madan A., Qin S., Davis R.W., Federspiel N.A., Abola A.P., Proctor M.J., Myers R.M., Schmutz J., Dickson M., Grimwood J., Cox D.R., Olson M.V., Kaul R., Raymond C., Shimizu N., Kawasaki K., Minoshima S., Evans G.A., Athanasiou M., Schultz R., Roe B.A., Chen F., Pan H., Ramser J., Lehrach H., Reinhardt R., McCombie W.R., de la Bastide M., Dedhia N., Blöcker H., Hornischer K., Nordsiek G., Agarwala R., Aravind L., Bailey J.A., Bateman A., Batzoglou S., Birney E., Bork P., Brown D.G., Burge C.B., Cerutti L., Chen H.C., Church D., Clamp M., Copley R.R., Doerks T., Eddy S.R., Eichler E.E., Furey T.S., Galagan J., Gilbert J.G., Harmon C., Hayashizaki Y., Haussler D., Hermjakob H., Hokamp K., Jang W., Johnson L.S., Jones T.A., Kasif S., Kaspryzk A., Kennedy S., Kent W.J., Kitts P., Koonin E.V., Korf I., Kulp D., Lancet D., Lowe T.M., McLysaght A., Mikkelsen T., Moran J.V., Mulder N., Pollara V.J., Ponting C.P., Schuler G., Schultz J., Slater G., Smit A.F., Stupka E., Szustakowki J., Thierry-Mieg D., Thierry-Mieg J., Wagner L., Wallis J., Wheeler R., Williams A., Wolf Y.I., Wolfe K.H., Yang S.P., Yeh R.F., Collins F., Guyer M.S., Peterson J., Felsenfeld A., Wetterstrand K.A., Patrinos A., Morgan M.J., de Jong P., Catanese J.J., Osoegawa K., Shizuya H., Choi S., Chen Y.J., Szustakowki J. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921. doi: 10.1038/35057062. PubMed DOI
Lawitz E., Poordad F., Kowdley K.V., Cohen D.E., Podsadecki T., Siggelkow S., Larsen L., Menon R., Koev G., Tripathi R., Pilot-Matias T., Bernstein B. A phase 2a trial of 12-week interferon-free therapy with two direct-acting antivirals (ABT-450/r, ABT-072) and ribavirin in IL28B C/C patients with chronic hepatitis C genotype 1. J. Hepatol. 2013;59(1):18–23. doi: 10.1016/j.jhep.2013.02.009. PubMed DOI
Lawitz E.J., O'Riordan W.D., Asatryan A., Freilich B.L., Box T.D., Overcash J.S., Lovell S., Ng T.I., Liu W., Campbell A., Lin C.W., Yao B., Kort J. Potent antiviral activities of the direct-acting antivirals ABT-493 and ABT-530 with three-day monotherapy for hepatitis C virus genotype 1 infection. Antimicrob. Agents Chemother. 2015;60(3):1546–1555. doi: 10.1128/aac.02264-15. PubMed DOI PMC
Lawitz E., Reau N., Hinestrosa F., Rabinovitz M., Schiff E., Sheikh A., Younes Z., Herring R., Jr., Reddy K.R., Tran T., Bennett M., Nahass R., Yang J.C., Lu S., Dvory-Sobol H., Stamm L.M., Brainard D.M., McHutchison J.G., Pearlman B., Shiffman M., Hawkins T., Curry M., Jacobson I. Efficacy of sofosbuvir, velpatasvir, and GS-9857 in patients with genotype 1 hepatitis C virus infection in an open-label, phase 2 trial. Gastroenterology. 2016;151(5):893–901. doi: 10.1053/j.gastro.2016.07.039. e891. PubMed DOI
Lawitz E., Poordad F., Wells J., Hyland R.H., Yang Y., Dvory-Sobol H., Stamm L.M., Brainard D.M., McHutchison J.G., Landaverde C., Gutierrez J. Sofosbuvir-velpatasvir-voxilaprevir with or without ribavirin in direct-acting antiviral-experienced patients with genotype 1 hepatitis C virus. Hepatology. 2017;65(6):1803–1809. doi: 10.1002/hep.29130. PubMed DOI
Lebbé C., Blum L., Pellet C., Blanchard G., Vérola O., Morel P., Danne O., Calvo F. Clinical and biological impact of antiretroviral therapy with protease inhibitors on HIV-related Kaposi's sarcoma. AIDS. 1998;12(7):F45–F49. doi: 10.1097/00002030-199807000-00002. PubMed DOI
Lecronier M., Beurton A., Burrel S., Haudebourg L., Deleris R., Le Marec J., Virolle S., Nemlaghi S., Bureau C., Mora P., De Sarcus M., Clovet O., Duceau B., Grisot P.H., Pari M.H., Arzoine J., Clarac U., Boutolleau D., Raux M., Delemazure J., Faure M., Decavele M., Morawiec E., Mayaux J., Demoule A., Dres M. Comparison of hydroxychloroquine, lopinavir/ritonavir, and standard of care in critically ill patients with SARS-CoV-2 pneumonia: an opportunistic retrospective analysis. Crit. Care. 2020;24(1):418. doi: 10.1186/s13054-020-03117-9. PubMed DOI PMC
Lee G.M., Shahian T., Baharuddin A., Gable J.E., Craik C.S. Enzyme inhibition by allosteric capture of an inactive conformation. J. Mol. Biol. 2011;411(5):999–1016. doi: 10.1016/j.jmb.2011.06.032. PubMed DOI PMC
Lee J., Worrall L.J., Vuckovic M., Rosell F.I., Gentile F., Ton A.T., Caveney N.A., Ban F., Cherkasov A., Paetzel M., Strynadka N.C.J. Crystallographic structure of wild-type SARS-CoV-2 main protease acyl-enzyme intermediate with physiological C-terminal autoprocessing site. Nat. Commun. 2020;11(1):5877. doi: 10.1038/s41467-020-19662-4. PubMed DOI PMC
Lei J., Hansen G., Nitsche C., Klein C.D., Zhang L., Hilgenfeld R. Crystal structure of Zika virus NS2B-NS3 protease in complex with a boronate inhibitor. Science. 2016;353(6298):503–505. doi: 10.1126/science.aag2419. PubMed DOI
Lei J., Kusov Y., Hilgenfeld R. Nsp3 of coronaviruses: structures and functions of a large multi-domain protein. Antivir. Res. 2018;149:58–74. doi: 10.1016/j.antiviral.2017.11.001. PubMed DOI PMC
Li H.-C., Yang C.-H., Lo S.-Y. Hepatitis C viral replication complex. Viruses. 2021;13(3):520. doi: 10.3390/v13030520. PubMed DOI PMC
Liang G., Bushman F.D. The human virome: assembly, composition and host interactions. Nat. Rev. Microbiol. 2021;19(8):514–527. doi: 10.1038/s41579-021-00536-5. PubMed DOI PMC
Lin C., Lin K., Luong Y.-P., Rao B.G., Wei Y.-Y., Brennan D.L., Fulghum J.R., Hsiao H.-M., Ma S., Maxwell J.P. In vitro resistance studies of hepatitis C virus serine protease inhibitors, VX-950 and BILN 2061: structural analysis indicates different resistance mechanisms. J. Biol. Chem. 2004;279(17):17508–17514. doi: 10.1074/jbc.M313020200. PubMed DOI
Lin T.I., Lenz O., Fanning G., Verbinnen T., Delouvroy F., Scholliers A., Vermeiren K., Rosenquist A., Edlund M., Samuelsson B., Vrang L., de Kock H., Wigerinck P., Raboisson P., Simmen K. In vitro activity and preclinical profile of TMC435350, a potent hepatitis C virus protease inhibitor. Antimicrob. Agents Chemother. 2009;53(4):1377–1385. doi: 10.1128/aac.01058-08. PubMed DOI PMC
Lin C.W., Dutta S., Asatryan A., Chiu Y.L., Wang H., Clifton J., 2nd, Campbell A., Liu W. Pharmacokinetics, safety, and tolerability of single and multiple doses of ABT-493: a first-in-human study. J. Pharmacol. Sci. 2017;106(2):645–651. doi: 10.1016/j.xphs.2016.10.007. PubMed DOI
Liu C., Shi W., Becker S.T., Schatz D.G., Liu B., Yang Y. Structural basis of mismatch recognition by a SARS-CoV-2 proofreading enzyme. Science. 2021;373(6559):1142–1146. doi: 10.1126/science.abi9310. PubMed DOI PMC
Loharamtaweethong K., Vinyuvat S., Thammasiri J., Chitpakdee S., Supakatitham C., Puripat N. Impact of antiretroviral drugs on PD-L1 expression and copy number gains with clinical outcomes in HIV-positive and -negative locally advanced cervical cancers. Oncol. Lett. 2019;18(6):5747–5758. doi: 10.3892/ol.2019.10963. PubMed DOI PMC
Lohmann V., Koch J.O., Bartenschlager R. Processing pathways of the hepatitis C virus proteins. J. Hepatol. 1996;24(2 Suppl. l):11–19. PubMed
Louis J.M., Aniana A., Weber I.T., Sayer J.M. Inhibition of autoprocessing of natural variants and multidrug resistant mutant precursors of HIV-1 protease by clinical inhibitors. Proc. Natl. Acad. Sci. U. S. A. 2011;108(22):9072–9077. doi: 10.1073/pnas.1102278108. PubMed DOI PMC
Love R.A., Parge H.E., Wickersham J.A., Hostomsky Z., Habuka N., Moomaw E.W., Adachi T., Hostomska Z. The crystal structure of hepatitis C virus NS3 proteinase reveals a trypsin-like fold and a structural zinc binding site. Cell. 1996;87(2):331–342. doi: 10.1016/s0092-8674(00)81350-1. PubMed DOI
Luo D., Vasudevan S.G., Lescar J. The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development. Antivir. Res. 2015;118:148–158. doi: 10.1016/j.antiviral.2015.03.014. PubMed DOI
Lv Z., Cano K.E., Jia L., Drag M., Huang T.T., Olsen S.K. Targeting SARS-CoV-2 proteases for COVID-19 antiviral development. Front. Chem. 2022;9 doi: 10.3389/fchem.2021.819165. PubMed DOI PMC
Ma C., Sacco M.D., Hurst B., Townsend J.A., Hu Y., Szeto T., Zhang X., Tarbet B., Marty M.T., Chen Y., Wang J. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Res. 2020;30(8):678–692. doi: 10.1038/s41422-020-0356-z. PubMed DOI PMC
Madison V., Prongay A.J., Guo Z., Yao N., Pichardo J., Fischmann T., Strickland C., Myers J., Jr., Weber P.C., Beyer B.M., Ingram R., Hong Z., Prosise W.W., Ramanathan L., Taremi S.S., Yarosh-Tomaine T., Zhang R., Senior M., Yang R.S., Malcolm B., Arasappan A., Bennett F., Bogen S.L., Chen K., Jao E., Liu Y.T., Lovey R.G., Saksena A.K., Venkatraman S., Girijavallabhan V., Njoroge F.G. Key steps in the structure-based optimization of the hepatitis C virus NS3/4A protease inhibitor SCH5 03034. J. Synchrotron Radiat. 2008;15(Pt 3):204–207. doi: 10.1107/s0909049507064229. PubMed DOI PMC
Majerová T., Konvalinka J. In: Encyclopedia of Biological Chemistry III. third ed. Jez J., editor. Elsevier; Oxford: 2021. Enyzmes | HIV protease; pp. 264–269.
Majerová T., Novotný P. Precursors of viral proteases as distinct drug targets. Viruses. 2021;13(10):1981. PubMed PMC
Majerová T., Hoffman H., Majer F. Therapeutic targets for influenza-Perspectives in drug development. Collect. Czech Chem. Commun. 2010;75(1):81–103. doi: 10.1135/cccc2009087. DOI
Majerová T., Novotný P., Krýsová E., Konvalinka J. Exploiting the unique features of Zika and Dengue proteases for inhibitor design. Biochimie. 2019;166:132–141. doi: 10.1016/j.biochi.2019.05.004. PubMed DOI
Majerová-Uhlíková T., Dantuma N.P., Lindsten K., Masucci M.G., Konvalinka J. Non-infectious fluorimetric assay for phenotyping of drug-resistant HIV proteinase mutants. J. Clin. Virol. 2006;36(1):50–59. doi: 10.1016/j.jcv.2006.01.014. PubMed DOI
Mancuso P., Chen C., Kaminski R., Gordon J., Liao S., Robinson J.A., Smith M.D., Liu H., Sariyer I.K., Sariyer R., Peterson T.A., Donadoni M., Williams J.B., Siddiqui S., Bunnell B.A., Ling B., MacLean A.G., Burdo T.H., Khalili K. CRISPR based editing of SIV proviral DNA in ART treated non-human primates. Nat. Commun. 2020;11(1):6065. doi: 10.1038/s41467-020-19821-7. PubMed DOI PMC
Manns M.P., Buti M., Gane E., Pawlotsky J.-M., Razavi H., Terrault N., Younossi Z. Hepatitis C virus infection. Nat. Rev. Dis. Prim. 2017;3(1) doi: 10.1038/nrdp.2017.6. PubMed DOI
Marcelin A.G., Affolabi D., Lamotte C., Mohand H.A., Delaugerre C., Wirden M., Voujon D., Bossi P., Ktorza N., Bricaire F., Costagliola D., Katlama C., Peytavin G., Calvez V. Resistance profiles observed in virological failures after 24 weeks of amprenavir/ritonavir containing regimen in protease inhibitor experienced patients. J. Med. Virol. 2004;74(1):16–20. doi: 10.1002/jmv.20140. PubMed DOI
Marcellin P., Forns X., Goeser T., Ferenci P., Nevens F., Carosi G., Drenth J.P., Serfaty L., De Backer K., Van Heeswijk R., Luo D., Picchio G., Beumont M. Telaprevir is effective given every 8 or 12 hours with ribavirin and peginterferon alfa-2a or -2b to patients with chronic hepatitis C. Gastroenterology. 2011;140(2):459–468. doi: 10.1053/j.gastro.2010.10.046. e451; quiz e414. PubMed DOI
Markham A., Keam S.J. Danoprevir: first global approval. Drugs. 2018;78(12):1271–1276. doi: 10.1007/s40265-018-0960-0. PubMed DOI
Marks K.M., Jacobson I.M. The first wave: HCV NS3 protease inhibitors telaprevir and boceprevir. Antivir. Ther. 2012;17(6 Pt B):1119–1131. doi: 10.3851/imp2424. PubMed DOI
Marzolini C., Kuritzkes D.R., Marra F., Boyle A., Gibbons S., Flexner C., Pozniak A., Boffito M., Waters L., Burger D., Back D., Khoo S. Prescribing nirmatrelvir-ritonavir: how to recognize and manage drug-drug interactions. Ann. Intern. Med. 2022;175(5):744–746. doi: 10.7326/m22-0281. PubMed DOI PMC
Mathias A.A., German P., Murray B.P., Wei L., Jain A., West S., Warren D., Hui J., Kearney B.P. Pharmacokinetics and pharmacodynamics of GS-9350: a novel pharmacokinetic enhancer without anti-HIV activity. Clin. Pharmacol. Ther. 2010;87(3):322–329. doi: 10.1038/clpt.2009.228. PubMed DOI
Mattei S., Anders M., Konvalinka J., Kräusslich H.G., Briggs J.A., Müller B. Induced maturation of human immunodeficiency virus. J. Virol. 2014;88(23):13722–13731. doi: 10.1128/jvi.02271-14. PubMed DOI PMC
Matthew A.N., Zephyr J., Nageswara Rao D., Henes M., Kamran W., Kosovrasti K., Hedger A.K., Lockbaum G.J., Timm J., Ali A., Kurt Yilmaz N., Schiffer C.A. Avoiding drug resistance by substrate envelope-guided design: toward potent and robust HCV NS3/4A protease inhibitors. mBio. 2020;11(2) doi: 10.1128/mBio.00172-20. PubMed DOI PMC
Matthew A.N., Leidner F., Lockbaum G.J., Henes M., Zephyr J., Hou S., Rao D.N., Timm J., Rusere L.N., Ragland D.A., Paulsen J.L., Prachanronarong K., Soumana D.I., Nalivaika E.A., Kurt Yilmaz N., Ali A., Schiffer C.A. Drug design strategies to avoid resistance in direct-acting antivirals and beyond. Chem. Rev. 2021;121(6):3238–3270. doi: 10.1021/acs.chemrev.0c00648. PubMed DOI PMC
Maxwell E. Treatment of herpes keratitis with 5-iodo-2-deoxyuridine (IDU). A clinical evaluation of 1,500 cases. Am. J. Ophthalmol. 1963;56:571–573. doi: 10.1016/0002-9394(63)90006-0. PubMed DOI
McArthur D.B. Emerging infectious diseases. Nurs. Clin. 2019;54(2):297–311. doi: 10.1016/j.cnur.2019.02.006. PubMed DOI PMC
Meganck R.M., Baric R.S. Developing therapeutic approaches for twenty-first-century emerging infectious viral diseases. Nat. Med. 2021;27(3):401–410. doi: 10.1038/s41591-021-01282-0. PubMed DOI
Mehta R.M., Bansal S., Bysani S., Kalpakam H. A shorter symptom onset to remdesivir treatment (SORT) interval is associated with a lower mortality in moderate-to-severe COVID-19: a real-world analysis. Int. J. Infect. Dis. 2021;106:71–77. doi: 10.1016/j.ijid.2021.02.092. PubMed DOI PMC
Mensa F.J., Lovell S., Pilot-Matias T., Liu W. Glecaprevir/pibrentasvir for the treatment of chronic hepatitis C virus infection. Future Microbiol. 2019;14:89–110. doi: 10.2217/fmb-2018-0233. PubMed DOI
Merolli A., Kasaei L., Ramasamy S., Kolloli A., Kumar R., Subbian S., Feldman L.C. An intra-cytoplasmic route for SARS-CoV-2 transmission unveiled by Helium-ion microscopy. Sci. Rep. 2022;12(1):3794. doi: 10.1038/s41598-022-07867-0. PubMed DOI PMC
Miao M., Jing X., De Clercq E., Li G. Danoprevir for the treatment of hepatitis C virus infection: design, development, and place in therapy. Drug Des. Dev. Ther. 2020;14:2759–2774. doi: 10.2147/dddt.S254754. PubMed DOI PMC
Miller S.L. Amprenavir approved for HIV treatment. Am. J. Health Syst. Pharm. 1999;56(11):1057–1058. doi: 10.1093/ajhp/56.11.1057. PubMed DOI
Mitsuya H., Weinhold K.J., Furman P.A., St Clair M.H., Lehrman S.N., Gallo R.C., Bolognesi D., Barry D.W., Broder S. 3'-Azido-3'-deoxythymidine (BW A509U): an antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proc. Natl. Acad. Sci. U. S. A. 1985;82(20):7096–7100. doi: 10.1073/pnas.82.20.7096. PubMed DOI PMC
Mody V., Ho J., Wills S., Mawri A., Lawson L., Ebert M., Fortin G.M., Rayalam S., Taval S. Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as potential anti-SARS-CoV-2 agents. Commun. Biol. 2021;4(1):93. doi: 10.1038/s42003-020-01577-x. PubMed DOI PMC
Morcilla V., Bacchus-Souffan C., Fisher K., Horsburgh B.A., Hiener B., Wang X.Q., Schlub T.E., Fitch M., Hoh R., Hecht F.M., Martin J.N., Deeks S.G., Hellerstein M.K., McCune J.M., Hunt P.W., Palmer S. HIV-1 genomes are enriched in memory CD4(+) T-cells with short half-lives. mBio. 2021;12(5) doi: 10.1128/mBio.02447-21. PubMed DOI PMC
Morello J., Rodriguez-Novoa S., Jimenez-Nacher I., Soriano V. Drug interactions of tipranavir, a new HIV protease inhibitor. Drug Metabol. Lett. 2007;1(1):81–84. doi: 10.2174/187231207779814256. PubMed DOI
Morris A., McCorkindale W., Consortium T.C.M., Drayman N., Chodera J.D., Tay S., London N., Lee A.A. Discovery of SARS-CoV-2 main protease inhibitors using a synthesis-directed de novo design model. Chem. Commun. 2021;57(48):5909–5912. doi: 10.1039/d1cc00050k. PubMed DOI PMC
Murphy R.L., Gulick R.M., DeGruttola V., D'Aquila R.T., Eron J.J., Sommadossi J.P., Currier J.S., Smeaton L., Frank I., Caliendo A.M., Gerber J.G., Tung R., Kuritzkes D.R. Treatment with amprenavir alone or amprenavir with zidovudine and lamivudine in adults with human immunodeficiency virus infection. AIDS Clinical Trials Group 347 Study Team. J. Infect. Dis. 1999;179(4):808–816. doi: 10.1086/314668. PubMed DOI
Nalam M.N.L., Ali A., Altman M.D., Reddy G.S.K.K., Chellappan S., Kairys V., Ozen A., Cao H., Gilson M.K., Tidor B., Rana T.M., Schiffer C.A. Evaluating the substrate-envelope hypothesis: structural analysis of novel HIV-1 protease inhibitors designed to be robust against drug resistance. J. Virol. 2010;84(10):5368–5378. doi: 10.1128/JVI.02531-09. PubMed DOI PMC
Napoli C., Benincasa G., Criscuolo C., Faenza M., Liberato C., Rusciano M. Immune reactivity during COVID-19: implications for treatment. Immunol. Lett. 2021;231:28–34. doi: 10.1016/j.imlet.2021.01.001. PubMed DOI PMC
Nguyen T., McNicholl I., Custodio J.M., Szwarcberg J., Piontkowsky D. Drug interactions with cobicistat- or ritonavir-boosted elvitegravir. AIDS Rev. 2016;18(2):101–111. PubMed
Nie S., Yao Y., Wu F., Wu X., Zhao J., Hua Y., Wu J., Huo T., Lin Y.L., Kneubehl A.R., Vogt M.B., Ferreon J., Rico-Hesse R., Song Y. Synthesis, structure-activity relationships, and antiviral activity of allosteric inhibitors of flavivirus NS2B-NS3 protease. J. Med. Chem. 2021;64(5):2777–2800. doi: 10.1021/acs.jmedchem.0c02070. PubMed DOI PMC
Nijhuis M., van Maarseveen N.M., Lastere S., Schipper P., Coakley E., Glass B., Rovenska M., de Jong D., Chappey C., Goedegebuure I.W., Heilek-Snyder G., Dulude D., Cammack N., Brakier-Gingras L., Konvalinka J., Parkin N., Kräusslich H.G., Brun-Vezinet F., Boucher C.A. A novel substrate-based HIV-1 protease inhibitor drug resistance mechanism. PLoS Med. 2007;4(1):e36. doi: 10.1371/journal.pmed.0040036. PubMed DOI PMC
Nijhuis M., van Maarseveen N.M., Boucher C.A. Antiviral resistance and impact on viral replication capacity: evolution of viruses under antiviral pressure occurs in three phases. Handb. Exp. Pharmacol. 2009;189:299–320. doi: 10.1007/978-3-540-79086-0_11. PubMed DOI
Njoroge F.G., Chen K.X., Shih N.Y., Piwinski J.J. Challenges in modern drug discovery: a case study of boceprevir, an HCV protease inhibitor for the treatment of hepatitis C virus infection. Acc. Chem. Res. 2008;41(1):50–59. doi: 10.1021/ar700109k. PubMed DOI
Oerlemans R., Ruiz-Moreno A.J., Cong Y., Dinesh Kumar N., Velasco-Velazquez M.A., Neochoritis C.G., Smith J., Reggiori F., Groves M.R., Dömling A. Repurposing the HCV NS3–4A protease drug boceprevir as COVID-19 therapeutics. RSC Med. Chem. 2021;12(3):370–379. doi: 10.1039/D0MD00367K. PubMed DOI PMC
Okubo K., Sato A., Isono M., Asano T., Asano T. Nelfinavir induces endoplasmic reticulum stress and sensitizes renal cancer cells to TRAIL. Anticancer Res. 2018;38(8):4505–4514. doi: 10.21873/anticanres.12754. PubMed DOI
Osipiuk J., Azizi S.A., Dvorkin S., Endres M., Jedrzejczak R., Jones K.A., Kang S., Kathayat R.S., Kim Y., Lisnyak V.G., Maki S.L., Nicolaescu V., Taylor C.A., Tesar C., Zhang Y.A., Zhou Z., Randall G., Michalska K., Snyder S.A., Dickinson B.C., Joachimiak A. Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nat. Commun. 2021;12(1):743. doi: 10.1038/s41467-021-21060-3. PubMed DOI PMC
Owen D.R., Allerton C.M.N., Anderson A.S., Aschenbrenner L., Avery M., Berritt S., Boras B., Cardin R.D., Carlo A., Coffman K.J., Dantonio A., Di L., Eng H., Ferre R., Gajiwala K.S., Gibson S.A., Greasley S.E., Hurst B.L., Kadar E.P., Kalgutkar A.S., Lee J.C., Lee J., Liu W., Mason S.W., Noell S., Novak J.J., Obach R.S., Ogilvie K., Patel N.C., Pettersson M., Rai D.K., Reese M.R., Sammons M.F., Sathish J.G., Singh R.S.P., Steppan C.M., Stewart A.E., Tuttle J.B., Updyke L., Verhoest P.R., Wei L., Yang Q., Zhu Y. An oral SARS-CoV-2 M(pro) inhibitor clinical candidate for the treatment of COVID-19. Science. 2021;374(6575):1586–1593. doi: 10.1126/science.abl4784. PubMed DOI
Pablos I., Machado Y., de Jesus H.C.R., Mohamud Y., Kappelhoff R., Lindskog C., Vlok M., Bell P.A., Butler G.S., Grin P.M., Cao Q.T., Nguyen J.P., Solis N., Abbina S., Rut W., Vederas J.C., Szekely L., Szakos A., Drag M., Kizhakkedathu J.N., Mossman K., Hirota J.A., Jan E., Luo H., Banerjee A., Overall C.M. Mechanistic insights into COVID-19 by global analysis of the SARS-CoV-2 3CL(pro) substrate degradome. Cell Rep. 2021;37(4) doi: 10.1016/j.celrep.2021.109892. PubMed DOI PMC
Palich R., Makinson A., Veyri M., Guihot A., Valantin M.A., Brégigeon-Ronot S., Poizot-Martin I., Solas C., Grabar S., Martin-Blondel G., Spano J.P. Kaposi's sarcoma in virally suppressed people living with HIV: an emerging condition. Cancers. 2021;13(22) doi: 10.3390/cancers13225702. PubMed DOI PMC
Palumbo E. Pegylated interferon and ribavirin treatment for hepatitis C virus infection. Ther. Adv. Chronic. Dis. 2011;2(1):39–45. doi: 10.1177/2040622310384308. PubMed DOI PMC
Pan Y.-Y., Wang S.-M., Huang K.-J., Chiang C.-C., Wang C.-T. Placement of leucine zipper motifs at the carboxyl terminus of HIV-1 protease significantly reduces virion production. PLoS One. 2012;7(3) doi: 10.1371/journal.pone.0032845. PubMed DOI PMC
Pankey G.A., Sabath L.D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of gram-positive bacterial infections. Clin. Infect. Dis. 2004;38(6):864–870. doi: 10.1086/381972. PubMed DOI
Pardesbio https://www.pardesbio.com/pipeline/
Paredes R., Clotet B. Clinical management of HIV-1 resistance. Antivir. Res. 2010;85(1):245–265. doi: 10.1016/j.antiviral.2009.09.015. PubMed DOI
Park J.H., Sayer J.M., Aniana A., Yu X., Weber I.T., Harrison R.W., Louis J.M. Binding of clinical inhibitors to a model precursor of a rationally selected multidrug resistant HIV-1 protease is significantly weaker than that to the released mature enzyme. Biochemistry. 2016;55(16):2390–2400. doi: 10.1021/acs.biochem.6b00012. PubMed DOI PMC
Park Y.J., Woo H.Y., Heo J., Park S.G., Hong Y.M., Yoon K.T., Kim D.U., Kim G.H., Kim H.H., Song G.A., Cho M. Real-life effectiveness and safety of glecaprevir/pibrentasvir for Korean patients with chronic hepatitis C at a single institution. Gut Liver. 2021;15(3):440–450. doi: 10.5009/gnl19393. PubMed DOI PMC
Patick A.K., Duran M., Cao Y., Shugarts D., Keller M.R., Mazabel E., Knowles M., Chapman S., Kuritzkes D.R., Markowitz M. Genotypic and phenotypic characterization of human immunodeficiency virus type 1 variants isolated from patients treated with the protease inhibitor nelfinavir. Antimicrob. Agents Chemother. 1998;42(10):2637–2644. doi: 10.1128/AAC.42.10.2637. PubMed DOI PMC
Pawar S.D., Freas C., Weber I.T., Harrison R.W. Analysis of drug resistance in HIV protease. BMC bioinform. 2018;19(Suppl. 11):362. doi: 10.1186/s12859-018-2331-y. 362. PubMed DOI PMC
Payne S. Introduction to RNA viruses. Viruses. 2017:97–105. doi: 10.1016/B978-0-12-803109-4.00010-6. PubMed DOI
Perni R.B., Britt S.D., Court J.C., Courtney L.F., Deininger D.D., Farmer L.J., Gates C.A., Harbeson S.L., Kim J.L., Landro J.A., Levin R.B., Luong Y.P., O'Malley E.T., Pitlik J., Rao B.G., Schairer W.C., Thomson J.A., Tung R.D., Van Drie J.H., Wei Y. Inhibitors of hepatitis C virus NS3.4A protease 1. Non-charged tetrapeptide variants. Bioorg. Med. Chem. Lett. 2003;13(22):4059–4063. doi: 10.1016/j.bmcl.2003.08.050. PubMed DOI
Perni R.B., Farmer L.J., Cottrell K.M., Court J.J., Courtney L.F., Deininger D.D., Gates C.A., Harbeson S.L., Kim J.L., Lin C., Lin K., Luong Y.P., Maxwell J.P., Murcko M.A., Pitlik J., Rao B.G., Schairer W.C., Tung R.D., Van Drie J.H., Wilson K., Thomson J.A. Inhibitors of hepatitis C virus NS3.4A protease. Part 3: P2 proline variants. Bioorg. Med. Chem. Lett. 2004;14(8):1939–1942. doi: 10.1016/j.bmcl.2004.01.078. PubMed DOI
Perni R.B., Pitlik J., Britt S.D., Court J.J., Courtney L.F., Deininger D.D., Farmer L.J., Gates C.A., Harbeson S.L., Levin R.B., Lin C., Lin K., Moon Y.C., Luong Y.P., O'Malley E.T., Rao B.G., Thomson J.A., Tung R.D., Van Drie J.H., Wei Y. Inhibitors of hepatitis C virus NS3.4A protease 2. Warhead SAR and optimization. Bioorg. Med. Chem. Lett. 2004;14(6):1441–1446. doi: 10.1016/j.bmcl.2004.01.022. PubMed DOI
Perni R.B., Chandorkar G., Cottrell K.M., Gates C.A., Lin C., Lin K., Luong Y.P., Maxwell J.P., Murcko M.A., Pitlik J., Rao G., Schairer W.C., Van Drie J., Wei Y. Inhibitors of hepatitis C virus NS3.4A protease. Effect of P4 capping groups on inhibitory potency and pharmacokinetics. Bioorg. Med. Chem. Lett. 2007;17(12):3406–3411. doi: 10.1016/j.bmcl.2007.03.090. PubMed DOI
Pettit S.C., Gulnik S., Everitt L., Kaplan A.H. The dimer interfaces of protease and extra-protease domains influence the activation of protease and the specificity of GagPol cleavage. J. Virol. 2003;77(1):366–374. doi: 10.1128/jvi.77.1.366-374.2003. PubMed DOI PMC
Pettit S.C., Everitt L.E., Choudhury S., Dunn B.M., Kaplan A.H. Initial cleavage of the human immunodeficiency virus type 1 GagPol precursor by its activated protease occurs by an intramolecular mechanism. J. Virol. 2004;78(16):8477–8485. doi: 10.1128/jvi.78.16.8477-8485.2004. PubMed DOI PMC
Pettit S.C., Clemente J.C., Jeung J.A., Dunn B.M., Kaplan A.H. Ordered processing of the human immunodeficiency virus type 1 GagPol precursor is influenced by the context of the embedded viral protease. J. Virol. 2005;79(16):10601–10607. doi: 10.1128/jvi.79.16.10601-10607.2005. PubMed DOI PMC
Pia L., Rowland-Jones S. Omicron entry route. Nat. Rev. Immunol. 2022;22(144) doi: 10.1038/s41577-022-00681-9. PubMed DOI PMC
Pierson T.C., Diamond M.S. The continued threat of emerging flaviviruses. Nat. Microbiol. 2020;5(6):796–812. doi: 10.1038/s41564-020-0714-0. PubMed DOI PMC
Piliero P.J. Atazanavir: a novel HIV-1 protease inhibitor. Expet Opin. Invest. Drugs. 2002;11(9):1295–1301. doi: 10.1517/13543784.11.9.1295. PubMed DOI
Pokorná J., Machala L., Rezáčová P., Konvalinka J. Current and novel inhibitors of HIV protease. Viruses. 2009;1(3):1209–1239. doi: 10.3390/v1031209. PubMed DOI PMC
Pol S., Lagaye S. The remarkable history of the hepatitis C virus. Gene Immun. 2019;20(5):436–446. doi: 10.1038/s41435-019-0066-z. PubMed DOI
Preston B.D., Poiesz B.J., Loeb L.A. Fidelity of HIV-1 reverse transcriptase. Science. 1988;242(4882):1168–1171. doi: 10.1126/science.2460924. PubMed DOI
Priya S., Tripathi G., Singh D.B., Jain P., Kumar A. Machine learning approaches and their applications in drug discovery and design. Chem. Biol. Drug Des. 2022;100(1):136–153. doi: 10.1111/cbdd.14057. PubMed DOI
Proia E., Ragno A., Antonini L., Sabatino M., Mladenovič M., Capobianco R., Ragno R. Ligand-based and structure-based studies to develop predictive models for SARS-CoV-2 main protease inhibitors through the 3d-qsar.com portal. J. Comput. Aided Mol. Des. 2022;36(7):483–505. doi: 10.1007/s10822-022-00460-7. PubMed DOI PMC
Prongay A.J., Guo Z., Yao N., Pichardo J., Fischmann T., Strickland C., Myers J., Jr., Weber P.C., Beyer B.M., Ingram R., Hong Z., Prosise W.W., Ramanathan L., Taremi S.S., Yarosh-Tomaine T., Zhang R., Senior M., Yang R.S., Malcolm B., Arasappan A., Bennett F., Bogen S.L., Chen K., Jao E., Liu Y.T., Lovey R.G., Saksena A.K., Venkatraman S., Girijavallabhan V., Njoroge F.G., Madison V. Discovery of the HCV NS3/4A protease inhibitor (1R,5S)-N-[3-amino-1-(cyclobutylmethyl)-2,3-dioxopropyl]-3- [2(S)-[[[(1,1-dimethylethyl)amino]carbonyl]amino]-3,3-dimethyl-1-oxobutyl]- 6,6-dimethyl-3-azabicyclo[3.1.0]hexan-2(S)-carboxamide (Sch 503034) II. Key steps in structure-based optimization. J. Med. Chem. 2007;50(10):2310–2318. doi: 10.1021/jm060173k. PubMed DOI
Prusoff W.H. Synthesis and biological activities of iododeoxyuridine, an analog of thymidine. Biochim. Biophys. Acta. 1959;32(1):295–296. doi: 10.1016/0006-3002(59)90597-9. PubMed DOI
Qin E., Zhu Q., Yu M., Fan B., Chang G., Si B., Yang B., Peng W., Jiang T., Liu B., Deng Y., Liu H., Zhang Y., Wang C., Li Y., Gan Y., Li X., Lü F., Tan G., Cao W., Yang R., Wang J., Li W., Xu Z., Li Y., Wu Q., Lin W., Chen W., Tang L., Deng Y., Han Y., Li C., Lei M., Li G., Li W., Lü H., Shi J., Tong Z., Zhang F., Li S., Liu B., Liu S., Dong W., Wang J., Wong G.K., Yu J., Yang H. A complete sequence and comparative analysis of a SARS-associated virus (Isolate BJ01) Chin. Sci. Bull. 2003;48(10):941–948. doi: 10.1007/bf03184203. PubMed DOI PMC
Raboisson P., de Kock H., Rosenquist A., Nilsson M., Salvador-Oden L., Lin T.I., Roue N., Ivanov V., Wähling H., Wickström K., Hamelink E., Edlund M., Vrang L., Vendeville S., Van de Vreken W., McGowan D., Tahri A., Hu L., Boutton C., Lenz O., Delouvroy F., Pille G., Surleraux D., Wigerinck P., Samuelsson B., Simmen K. Structure-activity relationship study on a novel series of cyclopentane-containing macrocyclic inhibitors of the hepatitis C virus NS3/4A protease leading to the discovery of TMC435350. Bioorg. Med. Chem. Lett. 2008;18(17):4853–4858. doi: 10.1016/j.bmcl.2008.07.088. PubMed DOI
Ramanathan S., Custodio J.M., Wei X., Wang H., Fordyce M., Dave A., Ling K.H., Szwarcberg J., Kearney B.P. Pharmacokinetics of Co-formulated elvitegravir/cobicistat/emtricitabine/tenofovir disoproxil fumarate after switch from efavirenz/emtricitabine/tenofovir disoproxil fumarate in healthy subjects. J. Acquir. Immune Defic. Syndr. 2016;72(3):281–288. doi: 10.1097/qai.0000000000000959. PubMed DOI
Ratia K., Pegan S., Takayama J., Sleeman K., Coughlin M., Baliji S., Chaudhuri R., Fu W., Prabhakar B.S., Johnson M.E., Baker S.C., Ghosh A.K., Mesecar A.D. A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication. Proc. Natl. Acad. Sci. U. S. A. 2008;105(42):16119–16124. doi: 10.1073/pnas.0805240105. PubMed DOI PMC
Reesink H.W., Fanning G.C., Farha K.A., Weegink C., Van Vliet A., Van 't Klooster G., Lenz O., Aharchi F., Mariën K., Van Remoortere P., de Kock H., Broeckaert F., Meyvisch P., Van Beirendonck E., Simmen K., Verloes R. Rapid HCV-RNA decline with once daily TMC435: a phase I study in healthy volunteers and hepatitis C patients. Gastroenterology. 2010;138(3):913–921. doi: 10.1053/j.gastro.2009.10.033. PubMed DOI
Ribeiro R.M., Li H., Wang S., Stoddard M.B., Learn G.H., Korber B.T., Bhattacharya T., Guedj J., Parrish E.H., Hahn B.H., Shaw G.M., Perelson A.S. Quantifying the diversification of hepatitis C virus (HCV) during primary infection: estimates of the in vivo mutation rate. PLoS Pathog. 2012;8(8) doi: 10.1371/journal.ppat.1002881. PubMed DOI PMC
Rittweger M., Arastéh K. Clinical pharmacokinetics of darunavir. Clin. Pharmacokinet. 2007;46(9):739–756. doi: 10.2165/00003088-200746090-00002. PubMed DOI
Roberts J.D., Bebenek K., Kunkel T.A. The accuracy of reverse transcriptase from HIV-1. Science. 1988;242(4882):1171–1173. doi: 10.1126/science.2460925. PubMed DOI
Roberts N.A., Martin J.A., Kinchington D., Broadhurst A.V., Craig J.C., Duncan I.B., Galpin S.A., Handa B.K., Kay J., Kröhn A., et al. Rational design of peptide-based HIV proteinase inhibitors. Science. 1990;248(4953):358–361. doi: 10.1126/science.2183354. PubMed DOI
Robins M.J., Robins R.K. The synthesis of 2′,3′-dideoxyadenosine from 2′-deoxyadenosine. J. Am. Chem. Soc. 1964;86(17):3585–3586.
Rodriguez-Torres M., Glass S., Hill J., Freilich B., Hassman D., Di Bisceglie A.M., Taylor J.G., Kirby B.J., Dvory-Sobol H., Yang J.C., An D., Stamm L.M., Brainard D.M., Kim S., Krefetz D., Smith W., Marbury T., Lawitz E. GS-9857 in patients with chronic hepatitis C virus genotype 1-4 infection: a randomized, double-blind, dose-ranging phase 1 study. J. Viral Hepat. 2016;23(8):614–622. doi: 10.1111/jvh.12527. PubMed DOI
Rosenberg S. Recent advances in the molecular biology of hepatitis C virus. J. Mol. Biol. 2001;313(3):451–464. doi: 10.1006/jmbi.2001.5055. PubMed DOI
Rosenquist Å., Samuelsson B., Johansson P.O., Cummings M.D., Lenz O., Raboisson P., Simmen K., Vendeville S., de Kock H., Nilsson M., Horvath A., Kalmeijer R., de la Rosa G., Beumont-Mauviel M. Discovery and development of simeprevir (TMC435), a HCV NS3/4A protease inhibitor. J. Med. Chem. 2014;57(5):1673–1693. doi: 10.1021/jm401507s. PubMed DOI
Rubin R. Baricitinib is first approved COVID-19 immunomodulatory treatment. JAMA. 2022;327(23):2281. doi: 10.1001/jama.2022.9846. 2281. PubMed DOI
Rubin R. From positive to negative to positive again-the mystery of why COVID-19 rebounds in some patients who take Paxlovid. JAMA. 2022;327(24):2380–2382. doi: 10.1001/jama.2022.9925. PubMed DOI
Rut W., Lv Z., Zmudzinski M., Patchett S., Nayak D., Snipas S.J., El Oualid F., Huang T.T., Bekes M., Drag M., Olsen S.K. Activity profiling and crystal structures of inhibitor-bound SARS-CoV-2 papain-like protease: a framework for anti-COVID-19 drug design. Sci. Adv. 2020;6(42) doi: 10.1126/sciadv.abd4596. PubMed DOI PMC
Rut W., Groborz K., Zhang L., Sun X., Zmudzinski M., Pawlik B., Wang X., Jochmans D., Neyts J., Młynarski W., Hilgenfeld R., Drag M. SARS-CoV-2 M(pro) inhibitors and activity-based probes for patient-sample imaging. Nat. Chem. Biol. 2021;17(2):222–228. doi: 10.1038/s41589-020-00689-z. PubMed DOI
Saab S., Gonzalez Y.S., Huber C., Wang A., Juday T. Cost-effectiveness of ombitasvir/paritaprevir/ritonavir, Dasabuvir+Ribavirin for US post-liver transplant recurrent genotype 1 HCV. Liver Int. 2016;36(4):515–521. doi: 10.1111/liv.13033. PubMed DOI
Sadybekov A.A., Sadybekov A.V., Liu Y., Iliopoulos-Tsoutsouvas C., Huang X.P., Pickett J., Houser B., Patel N., Tran N.K., Tong F., Zvonok N., Jain M.K., Savych O., Radchenko D.S., Nikas S.P., Petasis N.A., Moroz Y.S., Roth B.L., Makriyannis A., Katritch V. Synthon-based ligand discovery in virtual libraries of over 11 billion compounds. Nature. 2022;601(7893):452–459. doi: 10.1038/s41586-021-04220-9. PubMed DOI PMC
Santolini E., Pacini L., Fipaldini C., Migliaccio G., Monica N. The NS2 protein of hepatitis C virus is a transmembrane polypeptide. J. Virol. 1995;69(12):7461–7471. doi: 10.1128/jvi.69.12.7461-7471.1995. PubMed DOI PMC
Saribas A.S., Coric P., Bouaziz S., Safak M. Expression of novel proteins by polyomaviruses and recent advances in the structural and functional features of agnoprotein of JC virus, BK virus, and simian virus 40. J. Cell. Physiol. 2019;234(6):8295–8315. doi: 10.1002/jcp.27715. PubMed DOI PMC
Sarrazin C., Hézode C., Zeuzem S., Pawlotsky J.M. Antiviral strategies in hepatitis C virus infection. J. Hepatol. 2012;56(Suppl. 1):S88–S100. doi: 10.1016/s0168-8278(12)60010-5. PubMed DOI
Sasaki M., Tabata K., Kishimoto M., Itakura Y., Kobayashi H., Ariizumi T., Uemura K., Toba S., Kusakabe S., Maruyama Y., Iida S., Nakajima N., Suzuki T., Yoshida S., Nobori H., Sanaki T., Kato T., Shishido T., Hall W.W., Orba Y., Sato A., Sawa H. S-217622, a SARS-CoV-2 main protease inhibitor, decreases viral load and ameliorates COVID-19 severity in hamsters. Sci. Transl. Med. 2022 doi: 10.1126/scitranslmed.abq4064. eabq4064. PubMed DOI PMC
Sasková K.G., Kozísek M., Lepsík M., Brynda J., Rezácová P., Václavíková J., Kagan R.M., Machala L., Konvalinka J. Enzymatic and structural analysis of the I47A mutation contributing to the reduced susceptibility to HIV protease inhibitor lopinavir. Protein Sci. 2008;17(9):1555–1564. doi: 10.1110/ps.036079.108. PubMed DOI PMC
Sasková K.G., Kozísek M., Rezácová P., Brynda J., Yashina T., Kagan R.M., Konvalinka J. Molecular characterization of clinical isolates of human immunodeficiency virus resistant to the protease inhibitor darunavir. J. Virol. 2009;83(17):8810–8818. doi: 10.1128/jvi.00451-09. PubMed DOI PMC
Schneider J., Kent S.B. Enzymatic activity of a synthetic 99 residue protein corresponding to the putative HIV-1 protease. Cell. 1988;54(3):363–368. doi: 10.1016/0092-8674(88)90199-7. PubMed DOI
Schrödinger L., DeLano W. 2020. PyMOL.http://www.pymol.org/pymol Retrieved from.
Seelmeier S., Schmidt H., Turk V., von der Helm K. Human immunodeficiency virus has an aspartic-type protease that can be inhibited by pepstatin A. Proc. Natl. Acad. Sci. U. S. A. 1988;85(18):6612–6616. doi: 10.1073/pnas.85.18.6612. PubMed DOI PMC
Seiwert S.D., Andrews S.W., Jiang Y., Serebryany V., Tan H., Kossen K., Rajagopalan P.T., Misialek S., Stevens S.K., Stoycheva A., Hong J., Lim S.R., Qin X., Rieger R., Condroski K.R., Zhang H., Do M.G., Lemieux C., Hingorani G.P., Hartley D.P., Josey J.A., Pan L., Beigelman L., Blatt L.M. Preclinical characteristics of the hepatitis C virus NS3/4A protease inhibitor ITMN-191 (R7227) Antimicrob. Agents Chemother. 2008;52(12):4432–4441. doi: 10.1128/aac.00699-08. PubMed DOI PMC
Shah D., Freas C., Weber I.T., Harrison R.W. Evolution of drug resistance in HIV protease. BMC Bioinf. 2020;21(Suppl. 18):497. doi: 10.1186/s12859-020-03825-7. PubMed DOI PMC
Sham H.L., Kempf D.J., Molla A., Marsh K.C., Kumar G.N., Chen C.M., Kati W., Stewart K., Lal R., Hsu A., Betebenner D., Korneyeva M., Vasavanonda S., McDonald E., Saldivar A., Wideburg N., Chen X., Niu P., Park C., Jayanti V., Grabowski B., Granneman G.R., Sun E., Japour A.J., Leonard J.M., Plattner J.J., Norbeck D.W. ABT-378, a highly potent inhibitor of the human immunodeficiency virus protease. Antimicrob. Agents Chemother. 1998;42(12):3218–3224. doi: 10.1128/aac.42.12.3218. PubMed DOI PMC
Shaqra A.M., Zvornicanin S.N., Huang Q.Y.J., Lockbaum G.J., Knapp M., Tandeske L., Bakan D.T., Flynn J., Bolon D.N.A., Moquin S., Dovala D., Kurt Yilmaz N., Schiffer C.A. Defining the substrate envelope of SARS-CoV-2 main protease to predict and avoid drug resistance. Nat. Commun. 2022;13(1):3556. doi: 10.1038/s41467-022-31210-w. PubMed DOI PMC
Sharp P.M., Hahn B.H. Origins of HIV and the AIDS pandemic. Cold Spring Harb. Perspect. Med. 2011;1(1):a006841. doi: 10.1101/cshperspect.a006841. PubMed DOI PMC
Sheahan T.P., Sims A.C., Graham R.L., Menachery V.D., Gralinski L.E., Case J.B., Leist S.R., Pyrc K., Feng J.Y., Trantcheva I., Bannister R., Park Y., Babusis D., Clarke M.O., Mackman R.L., Spahn J.E., Palmiotti C.A., Siegel D., Ray A.S., Cihlar T., Jordan R., Denison M.R., Baric R.S. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci. Transl. Med. 2017;9(396) doi: 10.1126/scitranslmed.aal3653. PubMed DOI PMC
Shehu-Xhilaga M., Crowe S.M., Mak J. Maintenance of the gag/gag-pol ratio is important for human immunodeficiency virus type 1 RNA dimerization and viral infectivity. J. Virol. 2001;75(4):1834–1841. doi: 10.1128/JVI.75.4.1834-1841.2001. PubMed DOI PMC
Sheik Amamuddy O., Afriyie Boateng R., Barozi V., Wavinya Nyamai D., Tastan Bishop Ö. Novel dynamic residue network analysis approaches to study allosteric modulation: SARS-CoV-2 Mpro and its evolutionary mutations as a case study. Comput. Struct. Biotechnol. J. 2021;19:6431–6455. doi: 10.1016/j.csbj.2021.11.016. PubMed DOI PMC
Shekhar C., Nasam R., Paipuri S.R., Kumar P., Nayani K., Pabbaraja S., Mainkar P.S., Chandrasekhar S. Total synthesis of antiviral drug, nirmatrelvir (PF-07321332) Tetrahedron Chem. 2022;4 doi: 10.1016/j.tchem.2022.100033. PubMed DOI PMC
Shepherd S.J., Abdelrahman T., MacLean A.R., Thomson E.C., Aitken C., Gunson R.N. Prevalence of HCV NS3 pre-treatment resistance associated amino acid variants within a Scottish cohort. J. Clin. Virol. 2015;65:50–53. doi: 10.1016/j.jcv.2015.02.005. PubMed DOI PMC
Sherman E.M., Worley M.V., Unger N.R., Gauthier T.P., Schafer J.J. Cobicistat: review of a pharmacokinetic enhancer for HIV infection. Clin. Therapeut. 2015;37(9):1876–1893. doi: 10.1016/j.clinthera.2015.07.022. PubMed DOI
Shetty B.V., Kosa M.B., Khalil D.A., Webber S. Preclinical pharmacokinetics and distribution to tissue of AG1343, an inhibitor of human immunodeficiency virus type 1 protease. Antimicrob. Agents Chemother. 1996;40(1):110–114. doi: 10.1128/aac.40.1.110. PubMed DOI PMC
Shimba N., Nomura A.M., Marnett A.B., Craik C.S. Herpesvirus protease inhibition by dimer disruption. J. Virol. 2004;78(12):6657–6665. doi: 10.1128/jvi.78.12.6657-6665.2004. PubMed DOI PMC
Shin D., Mukherjee R., Grewe D., Bojkova D., Baek K., Bhattacharya A., Schulz L., Widera M., Mehdipour A.R., Tascher G., Geurink P.P., Wilhelm A., van der Heden van Noort G.J., Ovaa H., Müller S., Knobeloch K.-P., Rajalingam K., Schulman B.A., Cinatl J., Hummer G., Ciesek S., Dikic I. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature. 2020;587(7835):657–662. doi: 10.1038/s41586-020-2601-5. PubMed DOI PMC
Shuai H., Chan J.F., Hu B., Chai Y., Yuen T.T., Yin F., Huang X., Yoon C., Hu J.C., Liu H., Shi J., Liu Y., Zhu T., Zhang J., Hou Y., Wang Y., Lu L., Cai J.P., Zhang A.J., Zhou J., Yuan S., Brindley M.A., Zhang B.Z., Huang J.D., To K.K., Yuen K.Y., Chu H. Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature. 2022;603(7902):693–699. doi: 10.1038/s41586-022-04442-5. PubMed DOI
Siegel R.D. 2018. Classification of Human Viruses. Principles and Practice of Pediatric Infectious Diseases. 1044-1048. DOI
Simmonds P., Aiewsakun P., Katzourakis A. Prisoners of war - host adaptation and its constraints on virus evolution. Nat. Rev. Microbiol. 2019;17(5):321–328. doi: 10.1038/s41579-018-0120-2. PubMed DOI PMC
Singh T.U., Parida S., Lingaraju M.C., Kesavan M., Kumar D., Singh R.K. Drug repurposing approach to fight COVID-19. Pharmacol. Rep. 2020;72(6):1479–1508. doi: 10.1007/s43440-020-00155-6. PubMed DOI PMC
Skwarecki A.S., Nowak M.G., Milewska M.J. Amino acid and peptide-based antiviral agents. ChemMedChem. 2021;16(20):3106–3135. doi: 10.1002/cmdc.202100397. PubMed DOI
Smart T. FDA triple header. Food and Drug Administration. GMHC Treat. Iss. 1995;9(11):1–3. PubMed
Smith D.B., Bukh J., Kuiken C., Muerhoff A.S., Rice C.M., Stapleton J.T., Simmonds P. Expanded classification of hepatitis C virus into 7 genotypes and 67 subtypes: updated criteria and genotype assignment web resource. Hepatology. 2014;59(1):318–327. doi: 10.1002/hep.26744. PubMed DOI PMC
Sorbo M.C., Cento V., Di Maio V.C., Howe A.Y.M., Garcia F., Perno C.F., Ceccherini-Silberstein F. Hepatitis C virus drug resistance associated substitutions and their clinical relevance: update 2018. Drug Resist. Updates. 2018;37:17–39. doi: 10.1016/j.drup.2018.01.004. PubMed DOI
Spira S., Wainberg M.A., Loemba H., Turner D., Brenner B.G. Impact of clade diversity on HIV-1 virulence, antiretroviral drug sensitivity and drug resistance. J. Antimicrob. Chemother. 2003;51(2):229–240. doi: 10.1093/jac/dkg079. PubMed DOI
Steinkühler C., Biasiol G., Brunetti M., Urbani A., Koch U., Cortese R., Pessi A., De Francesco R. Product inhibition of the hepatitis C virus NS3 protease. Biochemistry. 1998;37(25):8899–8905. doi: 10.1021/bi980313v. PubMed DOI
Subeha M.R., Telleria C.M. The anti-cancer properties of the HIV protease inhibitor nelfinavir. Cancers. 2020;12(11) doi: 10.3390/cancers12113437. PubMed DOI PMC
Sudo S., Haraguchi H., Hirai Y., Gatanaga H., Sakuragi J.-i., Momose F., Morikawa Y. Efavirenz enhances HIV-1 gag processing at the plasma membrane through gag-pol dimerization. J. Virol. 2013;87(6):3348–3360. doi: 10.1128/JVI.02306-12. PubMed DOI PMC
Summa V., Ludmerer S.W., McCauley J.A., Fandozzi C., Burlein C., Claudio G., Coleman P.J., Dimuzio J.M., Ferrara M., Di Filippo M., Gates A.T., Graham D.J., Harper S., Hazuda D.J., Huang Q., McHale C., Monteagudo E., Pucci V., Rowley M., Rudd M.T., Soriano A., Stahlhut M.W., Vacca J.P., Olsen D.B., Liverton N.J., Carroll S.S. MK-5172, a selective inhibitor of hepatitis C virus NS3/4a protease with broad activity across genotypes and resistant variants. Antimicrob. Agents Chemother. 2012;56(8):4161–4167. doi: 10.1128/aac.00324-12. PubMed DOI PMC
Sun L., Niu L., Zhu X., Hao J., Wang P., Wang H. Antitumour effects of a protease inhibitor, nelfinavir, in hepatocellular carcinoma cancer cells. J. Chemother. 2012;24(3):161–166. doi: 10.1179/1973947812y.0000000011. PubMed DOI
Sutton S.S., Magagnoli J., Cummings T., Hardin J. Association between the use of antibiotics, antivirals, and hospitalizations among patients with laboratory-confirmed influenza. Clin. Infect. Dis. 2021;72(4):566–573. doi: 10.1093/cid/ciaa074. PubMed DOI
Svicher V., Ceccherini-Silberstein F., Erba F., Santoro M., Gori C., Bellocchi M.C., Giannella S., Trotta M.P., Monforte A., Antinori A., Perno C.F. Novel human immunodeficiency virus type 1 protease mutations potentially involved in resistance to protease inhibitors. Antimicrob. Agents Chemother. 2005;49(5):2015–2025. doi: 10.1128/aac.49.5.2015-2025.2005. PubMed DOI PMC
Tabler C.O., Wegman S.J., Chen J., Shroff H., Alhusaini N., Tilton J.C. The HIV-1 viral protease is activated during assembly and budding prior to particle release. J. Virol. 2022;96(9) doi: 10.1128/jvi.02198-21. PubMed DOI PMC
Tanramluk D., Pakotiprapha D., Phoochaijaroen S., Chantravisut P., Thampradid S., Vanichtanankul J., Narupiyakul L., Akavipat R., Yuvaniyama J. MANORAA: a machine learning platform to guide protein-ligand design by anchors and influential distances. Structure. 2022;30(1):181–189. doi: 10.1016/j.str.2021.09.004. e185. PubMed DOI
Taylor J.G., Zipfel S., Ramey K., Vivian R., Schrier A., Karki K.K., Katana A., Kato D., Kobayashi T., Martinez R., Sangi M., Siegel D., Tran C.V., Yang Z.-Y., Zablocki J., Yang C.Y., Wang Y., Wang K., Chan K., Barauskas O., Cheng G., Jin D., Schultz B.E., Appleby T., Villaseñor A.G., Link J.O. Discovery of the pan-genotypic hepatitis C virus NS3/4A protease inhibitor voxilaprevir (GS-9857): a component of Vosevi. Bioorg. Med. Chem. Lett. 2019;29(16):2428–2436. doi: 10.1016/j.bmcl.2019.03.037. PubMed DOI
Thaisrivongs S., Strohbach J.W. Structure-based discovery of Tipranavir disodium (PNU-140690E): a potent, orally bioavailable, nonpeptidic HIV protease inhibitor. Biopolymers. 1999;51(1):51–58. doi: 10.1002/(sici)1097-0282(1999)51:1<51::Aid-bip6>3.0.Co;2-u. PubMed DOI
Thaisrivongs S., Skulnick H.I., Turner S.R., Strohbach J.W., Tommasi R.A., Johnson P.D., Aristoff P.A., Judge T.M., Gammill R.B., Morris J.K., Romines K.R., Chrusciel R.A., Hinshaw R.R., Chong K.-T., Tarpley W.G., Poppe S.M., Slade D.E., Lynn J.C., Horng M.-M., Tomich P.K., Seest E.P., Dolak L.A., Howe W.J., Howard G.M., Schwende F.J., Toth L.N., Padbury G.E., Wilson G.J., Shiou L., Zipp G.L., Wilkinson K.F., Rush B.D., Ruwart M.J., Koeplinger K.A., Zhao Z., Cole S., Zaya R.M., Kakuk T.J., Janakiraman M.N., Watenpaugh K.D. Structure-based design of HIV protease inhibitors: sulfonamide-containing 5,6-Dihydro-4-hydroxy-2-pyrones as non-peptidic inhibitors. J. Med. Chem. 1996;39(22):4349–4353. doi: 10.1021/jm960541s. PubMed DOI
Thompson W.J., Ghosh A.K., Holloway M.K., Lee H.Y., Munson P.M., Schwering J.E., Wai J., Darke P.L., Zugay J., Emini E.A., Schleif W.A., Huff J.R., Anderson P.S. 3'-Tetrahydrofuranylglycine as a novel, unnatural amino acid surrogate for asparagine in the design of inhibitors of the HIV protease. J. Am. Chem. Soc. 1993;115(2):801–803. doi: 10.1021/ja00055a069. PubMed DOI PMC
Todosmedical https://todosmedical.com/tollovir
Tomei L., Failla C., Vitale R.L., Bianchi E., De Francesco R. A central hydrophobic domain of the hepatitis C virus NS4A protein is necessary and sufficient for the activation of the NS3 protease. J. Gen. Virol. 1996;77(Pt 5):1065–1070. doi: 10.1099/0022-1317-77-5-1065. PubMed DOI
Tong L., Qian C., Massariol M.J., Bonneau P.R., Cordingley M.G., Lagacé L. A new serine-protease fold revealed by the crystal structure of human cytomegalovirus protease. Nature. 1996;383(6597):272–275. doi: 10.1038/383272a0. PubMed DOI
Tong L., Qian C., Massariol M.J., Déziel R., Yoakim C., Lagacé L. Conserved mode of peptidomimetic inhibition and substrate recognition of human cytomegalovirus protease. Nat. Struct. Biol. 1998;5(9):819–826. doi: 10.1038/1860. PubMed DOI
Tong X., Chase R., Skelton A., Chen T., Wright-Minogue J., Malcolm B.A. Identification and analysis of fitness of resistance mutations against the HCV protease inhibitor SCH 503034. Antivir. Res. 2006;70(2):28–38. doi: 10.1016/j.antiviral.2005.12.003. PubMed DOI
Tong X., Arasappan A., Bennett F., Chase R., Feld B., Guo Z., Hart A., Madison V., Malcolm B., Pichardo J., Prongay A., Ralston R., Skelton A., Xia E., Zhang R., Njoroge F.G. Preclinical characterization of the antiviral activity of SCH 900518 (narlaprevir), a novel mechanism-based inhibitor of hepatitis C virus NS3 protease. Antimicrob. Agents Chemother. 2010;54(6):2365–2370. doi: 10.1128/aac.00135-10. PubMed DOI PMC
Toots M., Yoon J.J., Cox R.M., Hart M., Sticher Z.M., Makhsous N., Plesker R., Barrena A.H., Reddy P.G., Mitchell D.G., Shean R.C., Bluemling G.R., Kolykhalov A.A., Greninger A.L., Natchus M.G., Painter G.R., Plemper R.K. Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelia. Sci. Transl. Med. 2019;11(515) doi: 10.1126/scitranslmed.aax5866. PubMed DOI PMC
Toots M., Yoon J.J., Hart M., Natchus M.G., Painter G.R., Plemper R.K. Quantitative efficacy paradigms of the influenza clinical drug candidate EIDD-2801 in the ferret model. Transl. Res. 2020;218:16–28. doi: 10.1016/j.trsl.2019.12.002. PubMed DOI PMC
Traynor K. Two drugs approved for chronic hepatitis C infection. Am. J. Health Syst. Pharm. 2011;68(13):1176. doi: 10.2146/news110042. PubMed DOI
Tremblay C.L. Combating HIV resistance - focus on darunavir. Therapeut. Clin. Risk Manag. 2008;4(4):759–766. doi: 10.2147/tcrm.s1709. PubMed DOI PMC
Trinité B., Zhang H., Levy D.N. NNRTI-induced HIV-1 protease-mediated cytotoxicity induces rapid death of CD4 T cells during productive infection and latency reversal. Retrovirology. 2019;16(1):17. doi: 10.1186/s12977-019-0479-9. PubMed DOI PMC
Trovato M., Sartorius R., D'Apice L., Manco R., De Berardinis P. Viral emerging diseases: challenges in developing vaccination strategies. Front. Immunol. 2020;11:2130. doi: 10.3389/fimmu.2020.02130. PubMed DOI PMC
Tseng A., Seet J., Phillips E.J. The evolution of three decades of antiretroviral therapy: challenges, triumphs and the promise of the future. Br. J. Clin. Pharmacol. 2015;79(2):182–194. doi: 10.1111/bcp.12403. PubMed DOI PMC
Tsu B.V., Fay E.J., Nguyen K.T., Corley M.R., Hosuru B., Dominguez V.A., Daugherty M.D. Running with scissors: evolutionary conflicts between viral proteases and the host immune system. Front. Immunol. 2021;12 doi: 10.3389/fimmu.2021.769543. PubMed DOI PMC
Unoh Y., Uehara S., Nakahara K., Nobori H., Yamatsu Y., Yamamoto S., Maruyama Y., Taoda Y., Kasamatsu K., Suto T., Kouki K., Nakahashi A., Kawashima S., Sanaki T., Toba S., Uemura K., Mizutare T., Ando S., Sasaki M., Orba Y., Sawa H., Sato A., Sato T., Kato T., Tachibana Y. Discovery of S-217622, a noncovalent oral SARS-CoV-2 3CL protease inhibitor clinical candidate for treating COVID-19. J. Med. Chem. 2022;65(9):6499–6512. doi: 10.1021/acs.jmedchem.2c00117. PubMed DOI PMC
Utkina-Sosunova I.V., Niatsetskaya Z.V., Sosunov S.A., Ratner V.I., Matsiukevich D., Ten V.S. Nelfinavir inhibits intra-mitochondrial calcium influx and protects brain against hypoxic-ischemic injury in neonatal mice. PLoS One. 2013;8(4) doi: 10.1371/journal.pone.0062448. PubMed DOI PMC
V'Kovski P., Kratzel A., Steiner S., Stalder H., Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat. Rev. Microbiol. 2021;19(3):155–170. doi: 10.1038/s41579-020-00468-6. PubMed DOI PMC
Vacca J.P., Guare J.P., deSolms S.J., Sanders W.M., Giuliani E.A., Young S.D., Darke P.L., Zugay J., Sigal I.S., Schleif W.A., et al. L-687,908, a potent hydroxyethylene-containing HIV protease inhibitor. J. Med. Chem. 1991;34(3):1225–1228. doi: 10.1021/jm00107a050. PubMed DOI
Vacca J.P., Dorsey B.D., Schleif W.A., Levin R.B., McDaniel S.L., Darke P.L., Zugay J., Quintero J.C., Blahy O.M., Roth E., et al. L-735,524: an orally bioavailable human immunodeficiency virus type 1 protease inhibitor. Proc. Natl. Acad. Sci. U. S. A. 1994;91(9):4096–4100. doi: 10.1073/pnas.91.9.4096. PubMed DOI PMC
van Boheemen S., de Graaf M., Lauber C., Bestebroer T.M., Raj V.S., Zaki A.M., Osterhaus A.D., Haagmans B.L., Gorbalenya A.E., Snijder E.J., Fouchier R.A. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. mBio. 2012;3(6) doi: 10.1128/mBio.00473-12. PubMed DOI PMC
van Heeswijk R.P., Veldkamp A., Mulder J.W., Meenhorst P.L., Lange J.M., Beijnen J.H., Hoetelmans R.M. Combination of protease inhibitors for the treatment of HIV-1-infected patients: a review of pharmacokinetics and clinical experience. Antivir. Ther. 2001;6(4):201–229. PubMed
Vangeel L., Chiu W., De Jonghe S., Maes P., Slechten B., Raymenants J., André E., Leyssen P., Neyts J., Jochmans D. Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern. Antivir. Res. 2022;198 doi: 10.1016/j.antiviral.2022.105252. PubMed DOI PMC
Venkatraman S. Discovery of boceprevir, a direct-acting NS3/4A protease inhibitor for treatment of chronic hepatitis C infections. Trends Pharmacol. Sci. 2012;33(5):289–294. doi: 10.1016/j.tips.2012.03.012. PubMed DOI
Venkatraman S., Bogen S.L., Arasappan A., Bennett F., Chen K., Jao E., Liu Y.T., Lovey R., Hendrata S., Huang Y., Pan W., Parekh T., Pinto P., Popov V., Pike R., Ruan S., Santhanam B., Vibulbhan B., Wu W., Yang W., Kong J., Liang X., Wong J., Liu R., Butkiewicz N., Chase R., Hart A., Agrawal S., Ingravallo P., Pichardo J., Kong R., Baroudy B., Malcolm B., Guo Z., Prongay A., Madison V., Broske L., Cui X., Cheng K.C., Hsieh Y., Brisson J.M., Prelusky D., Korfmacher W., White R., Bogdanowich-Knipp S., Pavlovsky A., Bradley P., Saksena A.K., Ganguly A., Piwinski J., Girijavallabhan V., Njoroge F.G. Discovery of (1R,5S)-N-[3-amino-1-(cyclobutylmethyl)-2,3-dioxopropyl]- 3-[2(S)-[[[(1,1-dimethylethyl)amino]carbonyl]amino]-3,3-dimethyl-1-oxobutyl]- 6,6-dimethyl-3-azabicyclo[3.1.0]hexan-2(S)-carboxamide (SCH 503034), a selective, potent, orally bioavailable hepatitis C virus NS3 protease inhibitor: a potential therapeutic agent for the treatment of hepatitis C infection. J. Med. Chem. 2006;49(20):6074–6086. doi: 10.1021/jm060325b. PubMed DOI
Vitoria M., Rangaraj A., Ford N., Doherty M. Current and future priorities for the development of optimal HIV drugs. Curr. Opin. HIV AIDS. 2019;14(2) PubMed
Vogel M., Rockstroh J.K. Safety of lopinavir/ritonavir for the treatment of HIV-infection. Expet Opin. Drug Saf. 2005;4(3):403–420. doi: 10.1517/14740338.4.3.403. PubMed DOI
von Hentig N. Atazanavir/ritonavir: a review of its use in HIV therapy. Drugs Today. 2008;44(2):103–132. doi: 10.1358/dot.2008.44.2.1137107. PubMed DOI
Wang Q., Gao H., Clark K.M., Mugisha C.S., Davis K., Tang J.P., Harlan G.H., DeSelm C.J., Presti R.M., Kutluay S.B., Shan L. CARD8 is an inflammasome sensor for HIV-1 protease activity. Science. 2021;371(6535) doi: 10.1126/science.abe1707. PubMed DOI PMC
Ward A.R., Mota T.M., Jones R.B. Immunological approaches to HIV cure. Semin. Immunol. 2021;51 doi: 10.1016/j.smim.2020.101412. PubMed DOI
Warren T.K., Jordan R., Lo M.K., Ray A.S., Mackman R.L., Soloveva V., Siegel D., Perron M., Bannister R., Hui H.C., Larson N., Strickley R., Wells J., Stuthman K.S., Van Tongeren S.A., Garza N.L., Donnelly G., Shurtleff A.C., Retterer C.J., Gharaibeh D., Zamani R., Kenny T., Eaton B.P., Grimes E., Welch L.S., Gomba L., Wilhelmsen C.L., Nichols D.K., Nuss J.E., Nagle E.R., Kugelman J.R., Palacios G., Doerffler E., Neville S., Carra E., Clarke M.O., Zhang L., Lew W., Ross B., Wang Q., Chun K., Wolfe L., Babusis D., Park Y., Stray K.M., Trancheva I., Feng J.Y., Barauskas O., Xu Y., Wong P., Braun M.R., Flint M., McMullan L.K., Chen S.-S., Fearns R., Swaminathan S., Mayers D.L., Spiropoulou C.F., Lee W.A., Nichol S.T., Cihlar T., Bavari S. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature. 2016;531(7594):381–385. doi: 10.1038/nature17180. PubMed DOI PMC
Weber J., Mesters J.R., Lepsík M., Prejdová J., Svec M., Sponarová J., Mlcochová P., Skalická K., Strísovský K., Uhlíková T., Soucek M., Machala L., Stanková M., Vondrásek J., Klimkait T., Kraeusslich H.G., Hilgenfeld R., Konvalinka J. Unusual binding mode of an HIV-1 protease inhibitor explains its potency against multi-drug-resistant virus strains. J. Mol. Biol. 2002;324(4):739–754. doi: 10.1016/s0022-2836(02)01139-7. PubMed DOI
Weber I.T., Kneller D.W., Wong-Sam A. Highly resistant HIV-1 proteases and strategies for their inhibition. Future Med. Chem. 2015;7(8):1023–1038. doi: 10.4155/fmc.15.44. PubMed DOI PMC
Weichseldorfer M., Reitz M., Latinovic O.S. Past HIV-1 medications and the current status of combined antiretroviral therapy options for HIV-1 patients. Pharmaceutics. 2021;13(11):1798. doi: 10.3390/pharmaceutics13111798. PubMed DOI PMC
Weikl T.R., Hemmateenejad B. Accessory mutations balance the marginal stability of the HIV-1 protease in drug resistance. Proteins. 2020;88(3):476–484. doi: 10.1002/prot.25826. PubMed DOI
Wen W., Chen C., Tang J., Wang C., Zhou M., Cheng Y., Zhou X., Wu Q., Zhang X., Feng Z., Wang M., Mao Q. Efficacy and safety of three new oral antiviral treatment (molnupiravir, fluvoxamine and Paxlovid) for COVID-19:a meta-analysis. Ann. Med. 2022;54(1):516–523. doi: 10.1080/07853890.2022.2034936. PubMed DOI PMC
Wensing A.M., van Maarseveen N.M., Nijhuis M. Fifteen years of HIV Protease Inhibitors: raising the barrier to resistance. Antivir. Res. 2010;85(1):59–74. doi: 10.1016/j.antiviral.2009.10.003. PubMed DOI
WHO https://www.who.int/news-room/fact-sheets/detail/hepatitis-c
Williamson B.N., Feldmann F., Schwarz B., Meade-White K., Porter D.P., Schulz J., van Doremalen N., Leighton I., Yinda C.K., Pérez-Pérez L., Okumura A., Lovaglio J., Hanley P.W., Saturday G., Bosio C.M., Anzick S., Barbian K., Cihlar T., Martens C., Scott D.P., Munster V.J., de Wit E. Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. Nature. 2020;585(7824):273–276. doi: 10.1038/s41586-020-2423-5. PubMed DOI PMC
Wire M.B., Shelton M.J., Studenberg S. Fosamprenavir : clinical pharmacokinetics and drug interactions of the amprenavir prodrug. Clin. Pharmacokinet. 2006;45(2):137–168. doi: 10.2165/00003088-200645020-00002. PubMed DOI
Wutzler P., Thust R. Genetic risks of antiviral nucleoside analogues--a survey. Antivir. Res. 2001;49(2):55–74. doi: 10.1016/s0166-3542(00)00139-x. PubMed DOI
Xia C., He Z., Liang S., Chen R., Xu W., Yang J., Xiao G., Jiang S. Metformin combined with nelfinavir induces SIRT3/mROS-dependent autophagy in human cervical cancer cells and xenograft in nude mice. Eur. J. Pharmacol. 2019;848:62–69. doi: 10.1016/j.ejphar.2019.01.045. PubMed DOI
Yang K.S., Leeuwon S.Z., Xu S., Liu W.R. Evolutionary and structural insights about potential SARS-CoV-2 evasion of nirmatrelvir. J. Med. Chem. 2022 doi: 10.1021/acs.jmedchem.2c00404. PubMed DOI PMC
You D.M., Pockros P.J. Simeprevir for the treatment of chronic hepatitis C. Expet Opin. Pharmacother. 2013;14(18):2581–2589. doi: 10.1517/14656566.2013.850074. PubMed DOI
Yousefi H., Mashouri L., Okpechi S.C., Alahari N., Alahari S.K. Repurposing existing drugs for the treatment of COVID-19/SARS-CoV-2 infection: a review describing drug mechanisms of action. Biochem. Pharmacol. 2021;183 doi: 10.1016/j.bcp.2020.114296. PubMed DOI PMC
Zehbe I., Richard C., Lee K.F., Campbell M., Hampson L., Hampson I.N. Lopinavir shows greater specificity than zinc finger ejecting compounds as a potential treatment for human papillomavirus-related lesions. Antivir. Res. 2011;91(2):161–166. doi: 10.1016/j.antiviral.2011.05.016. PubMed DOI
Zephyr J., Kurt Yilmaz N., Schiffer C.A. Viral proteases: structure, mechanism and inhibition. Enzymes. 2021;50:301–333. doi: 10.1016/bs.enz.2021.09.004. PubMed DOI PMC
Zephyr J., Nageswara Rao D., Vo S.V., Henes M., Kosovrasti K., Matthew A.N., Hedger A.K., Timm J., Chan E.T., Ali A., Kurt Yilmaz N., Schiffer C.A. Deciphering the molecular mechanism of HCV protease inhibitor fluorination as a general approach to avoid drug resistance. J. Mol. Biol. 2022;434(9) doi: 10.1016/j.jmb.2022.167503. PubMed DOI PMC
Zeuzem S., Ghalib R., Reddy K.R., Pockros P.J., Ben Ari Z., Zhao Y., Brown D.D., Wan S., DiNubile M.J., Nguyen B.Y., Robertson M.N., Wahl J., Barr E., Butterton J.R. Grazoprevir-elbasvir combination therapy for treatment-naive cirrhotic and noncirrhotic patients with chronic hepatitis C virus genotype 1, 4, or 6 infection: a randomized trial. Ann. Intern. Med. 2015;163(1):1–13. doi: 10.7326/m15-0785. PubMed DOI
Zhang Y., Lee A.A. Bayesian semi-supervised learning for uncertainty-calibrated prediction of molecular properties and active learning. Chem. Sci. 2019;10(35):8154–8163. doi: 10.1039/c9sc00616h. PubMed DOI PMC
Zhang Y.M., Imamichi H., Imamichi T., Lane H.C., Falloon J., Vasudevachari M.B., Salzman N.P. Drug resistance during indinavir therapy is caused by mutations in the protease gene and in its Gag substrate cleavage sites. J. Virol. 1997;71(9):6662–6670. doi: 10.1128/jvi.71.9.6662-6670.1997. PubMed DOI PMC
Zhang L., Lin D., Sun X., Curth U., Drosten C., Sauerhering L., Becker S., Rox K., Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020;368(6489):409–412. doi: 10.1126/science.abb3405. PubMed DOI PMC
Zhang T.-h., Dai L., Barton J.P., Du Y., Tan Y., Pang W., Chakraborty A.K., Lloyd-Smith J.O., Sun R. Predominance of positive epistasis among drug resistance-associated mutations in HIV-1 protease. PLoS Genet. 2020;16(10) doi: 10.1371/journal.pgen.1009009. PubMed DOI PMC
Zhang X., Shang L., Fan G., Gu X., Xu J., Wang Y., Huang L., Cao B. The efficacy and safety of Janus kinase inhibitors for patients with COVID-19: a living systematic review and meta-analysis. Front. Med. 2021;8 doi: 10.3389/fmed.2021.800492. PubMed DOI PMC
Zhang Y., Luo M., Wu P., Wu S., Lee T.Y., Bai C. Application of computational biology and artificial intelligence in drug design. Int. J. Mol. Sci. 2022;23(21) doi: 10.3390/ijms232113568. PubMed DOI PMC
Zhao Y., Fang C., Zhang Q., Zhang R., Zhao X., Duan Y., Wang H., Zhu Y., Feng L., Zhao J., Shao M., Yang X., Zhang L., Peng C., Yang K., Ma D., Rao Z., Yang H. 2021. Crystal Structure of SARS-CoV-2 Main Protease in Complex with Protease Inhibitor PF-07321332. Protein & Cell. PubMed DOI PMC
Zhou S., Hill C.S., Sarkar S., Tse L.V., Woodburn B.M.D., Schinazi R.F., Sheahan T.P., Baric R.S., Heise M.T., Swanstrom R. β-d-N4-hydroxycytidine inhibits SARS-CoV-2 through lethal mutagenesis but is also mutagenic to mammalian cells. J. Infect. Dis. 2021;224(3):415–419. doi: 10.1093/infdis/jiab247. PubMed DOI PMC
Zhou Y., Gammeltoft K.A., Ryberg L.A., Pham L.V., Fahnøe U., Binderup A., Hernandez C.R.D., Offersgaard A., Fernandez-Antunez C., Peters G.H.J., Ramirez S., Bukh J., Gottwein J.M. bioRxiv; 2022. Nirmatrelvir Resistant SARS-CoV-2 Variants with High Fitness in Vitro. 2022.2006.2006.494921. PubMed DOI PMC
The zymogenic form of SARS-CoV-2 main protease: A discrete target for drug discovery