Precursors of Viral Proteases as Distinct Drug Targets
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000729
European Regional Development Fund
PubMed
34696411
PubMed Central
PMC8537868
DOI
10.3390/v13101981
PII: v13101981
Knihovny.cz E-zdroje
- Klíčová slova
- Human Immunodeficiency Virus (HIV), Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), activation, adenoviruses, autoprocessing, flaviviruses, herpesviruses, precursor, protease,
- MeSH
- antivirové látky farmakologie MeSH
- Flavivirus účinky léků metabolismus MeSH
- Herpesviridae účinky léků metabolismus MeSH
- HIV-1 účinky léků MeSH
- inhibitory virových proteáz farmakologie MeSH
- lidé MeSH
- lidské adenoviry účinky léků metabolismus MeSH
- SARS-CoV-2 účinky léků metabolismus MeSH
- virové nemoci farmakoterapie MeSH
- virové proteasy biosyntéza metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- antivirové látky MeSH
- inhibitory virových proteáz MeSH
- virové proteasy MeSH
Viral proteases are indispensable for successful virion maturation, thus making them a prominent drug target. Their enzyme activity is tightly spatiotemporally regulated by expression in the precursor form with little or no activity, followed by activation via autoprocessing. These cleavage events are frequently triggered upon transportation to a specific compartment inside the host cell. Typically, precursor oligomerization or the presence of a co-factor is needed for activation. A detailed understanding of these mechanisms will allow ligands with non-canonical mechanisms of action to be designed, which would specifically modulate the initial irreversible steps of viral protease autoactivation. Binding sites exclusive to the precursor, including binding sites beyond the protease domain, can be exploited. Both inhibition and up-regulation of the proteolytic activity of viral proteases can be detrimental for the virus. All these possibilities are discussed using examples of medically relevant viruses including herpesviruses, adenoviruses, retroviruses, picornaviruses, caliciviruses, togaviruses, flaviviruses, and coronaviruses.
Zobrazit více v PubMed
Kassell B., Kay J. Zymogens of Proteolytic Enzymes. Science. 1973;180:1022–1027. doi: 10.1126/science.180.4090.1022. PubMed DOI
Keil B., Meloun B., Vanecek J., Kostka V., Prusik Z., Sorm F. Partial structure of chymotrypsinogen. Biochim. Biophys. Acta. 1962;56:595–599. doi: 10.1016/0006-3002(62)90612-1. PubMed DOI
Meloun B., Kluh I., Kostka V., Morávek L., Prusík Z., Vanĕcek J., Keil B., Sorm F. Covalent structure of bovine chymotrypsinogen A. Biochim. Biophys. Acta. 1966;130:543–546. doi: 10.1016/0304-4165(66)90258-3. PubMed DOI
Keilova H., Kostka V., Kay J. The first step in the activation of chicken pepsinogen is similar to that of prochymosin. Biochem. J. 1977;167:855–858. doi: 10.1042/bj1670855. PubMed DOI PMC
Pichová I., Kostka V. Molecular characteristics of pepsinogen and pepsin from duck glandular stomach. Comp. Biochem. Physiol. B. 1990;97:89–94. doi: 10.1016/0305-0491(90)90183-T. PubMed DOI
Strop P., Cechová D., Tomásek V. Model study of hydrophobic interactions of alpha- and beta-trypsin and alpha-chymotrypsin. J. Chromatogr. 1983;259:255–268. doi: 10.1016/S0021-9673(01)88006-7. PubMed DOI
Hynek R., Kasicka V., Kucerová Z., Kás J. Fast detection of phosphorylation of human pepsinogen A, human pepsinogen C and swine pepsinogen using a combination of reversed-phase high-performance liquid chromatography and capillary zone electrophoresis for peptide mapping. J. Chromatogr. B Biomed. Sci. Appl. 1997;688:213–220. doi: 10.1016/S0378-4347(96)00293-9. PubMed DOI
Gómez-Outes A., Suárez-Gea M.L., Calvo-Rojas G., Lecumberri R., Rocha E., Pozo-Hernández C., Terleira-Fernández A.I., Vargas-Castrillón E. Discovery of anticoagulant drugs: A historical perspective. Curr. Drug Discov. Technol. 2012;9:83–104. doi: 10.2174/1570163811209020083. PubMed DOI
Foltmann B. A review on prorennin and rennin. C. R. Trav. Lab. Carlsberg. 1966;35:143–231. PubMed
Hasilik A., von Figura K., Conzelmann E., Nehrkorn H., Sandhoff K. Lysosomal enzyme precursors in human fibroblasts. Activation of cathepsin D precursor in vitro and activity of beta-hexosaminidase A precursor towards ganglioside GM2. Eur. J. Biochem. 1982;125:317–321. doi: 10.1111/j.1432-1033.1982.tb06685.x. PubMed DOI
Mása M., Maresová L., Vondrásek J., Horn M., Jezek J., Mares M. Cathepsin D propeptide: Mechanism and regulation of its interaction with the catalytic core. Biochemistry. 2006;45:15474–15482. doi: 10.1021/bi0614986. PubMed DOI
Hánová I., Brynda J., Houštecká R., Alam N., Sojka D., Kopáček P., Marešová L., Vondrášek J., Horn M., Schueler-Furman O., et al. Novel Structural Mechanism of Allosteric Regulation of Aspartic Peptidases via an Evolutionarily Conserved Exosite. Cell Chem. Biol. 2018;25:318–329.e314. doi: 10.1016/j.chembiol.2018.01.001. PubMed DOI
Houštecká R., Hadzima M., Fanfrlík J., Brynda J., Pallová L., Hánová I., Mertlíková-Kaiserová H., Lepšík M., Horn M., Smrčina M., et al. Biomimetic Macrocyclic Inhibitors of Human Cathepsin D: Structure-Activity Relationship and Binding Mode Analysis. J. Med. Chem. 2020;63:1576–1596. doi: 10.1021/acs.jmedchem.9b01351. PubMed DOI
Porter J.A., Young K.E., Beachy P.A. Cholesterol Modification of Hedgehog Signaling Proteins in Animal Development. Science. 1996;274:255–259. doi: 10.1126/science.274.5285.255. PubMed DOI
Shinde U., Fu X., Inouye M. A Pathway for Conformational Diversity in Proteins Mediated by Intramolecular Chaperones. J. Biol. Chem. 1999;274:15615–15621. doi: 10.1074/jbc.274.22.15615. PubMed DOI
Oh H.S., Banerjee S., Aponte-Diaz D., Sharma S.D., Aligo J., Lodeiro M.F., Ning G., Sharma R., Arnold J.J., Cameron C.E. Multiple poliovirus-induced organelles suggested by comparison of spatiotemporal dynamics of membranous structures and phosphoinositides. PLoS Pathg. 2018;14:e1007036. doi: 10.1371/journal.ppat.1007036. PubMed DOI PMC
Konvalinka J., Kräusslich H.G., Müller B. Retroviral proteases and their roles in virion maturation. Virology. 2015;479–480:403–417. doi: 10.1016/j.virol.2015.03.021. PubMed DOI
Renner M., Dejnirattisai W., Carrique L., Martin I.S., Karia D., Ilca S.L., Ho S.F., Kotecha A., Keown J.R., Mongkolsapaya J., et al. Flavivirus maturation leads to the formation of an occupied lipid pocket in the surface glycoproteins. Nat. Commun. 2021;12:1238. doi: 10.1038/s41467-021-21505-9. PubMed DOI PMC
Hagemeijer M.C., Monastyrska I., Griffith J., van der Sluijs P., Voortman J., van Bergen en Henegouwen P.M., Vonk A.M., Rottier P.J., Reggiori F., de Haan C.A. Membrane rearrangements mediated by coronavirus nonstructural proteins 3 and 4. Virology. 2014;458–459:125–135. doi: 10.1016/j.virol.2014.04.027. PubMed DOI PMC
Jin Z., Du X., Xu Y., Deng Y., Liu M., Zhao Y., Zhang B., Li X., Zhang L., Peng C., et al. Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020;582:289–293. doi: 10.1038/s41586-020-2223-y. PubMed DOI
Aleshin A.E., Drag M., Gombosuren N., Wei G., Mikolajczyk J., Satterthwait A.C., Strongin A.Y., Liddington R.C., Salvesen G.S. Activity, Specificity, and Probe Design for the Smallpox Virus Protease K7L. J. Biol. Chem. 2012;287:39470–39479. doi: 10.1074/jbc.M112.388678. PubMed DOI PMC
Qiu X., Culp J.S., DiLella A.G., Hellmig B., Hoog S.S., Janson C.A., Smith W.W., Abdel-Meguid S.S. Unique fold and active site in cytomegalovirus protease. Nature. 1996;383:275–279. doi: 10.1038/383275a0. PubMed DOI
Saribas A.S., Coric P., Bouaziz S., Safak M. Expression of novel proteins by polyomaviruses and recent advances in the structural and functional features of agnoprotein of JC virus, BK virus, and simian virus 40. J. Cell Physiol. 2019;234:8295–8315. doi: 10.1002/jcp.27715. PubMed DOI PMC
Hejtmánková A., Roubalová K., Forejtová A., Žáčková Suchanová J., Forstová J., Viklický O., Španielová H. Prevalence of antibodies against BKPyV subtype I and IV in kidney transplant recipients and in the general Czech population. J. Med. Virol. 2019;91:856–864. doi: 10.1002/jmv.25388. PubMed DOI
Majerová T., Hoffman H., Majer F. Therapeutic targets for influenza-Perspectives in drug development. Collect. Czechoslov. Chem. Commun. 2010;75:81–103. doi: 10.1135/cccc2009087. DOI
Yip W.K.W., Cristi F., Trifonov G., Narayan N., Kubanski M., Shmulevitz M. The reovirus μ2 C-terminal loop inversely regulates NTPase and transcription functions versus binding to factory-forming μNS and promotes replication in tumorigenic cells. J. Virol. 2021;95:e02006-20. doi: 10.1128/JVI.02006-20. PubMed DOI PMC
Zając M., Muszalska I., Sobczak A., Dadej A., Tomczak S., Jelińska A. Hepatitis C—New drugs and treatment prospects. Eur. J. Med. Chem. 2019;165:225–249. doi: 10.1016/j.ejmech.2019.01.025. PubMed DOI
Gable J.E., Acker T.M., Craik C.S. Current and Potential Treatments for Ubiquitous but Neglected Herpesvirus Infections. Chem. Rev. 2014;114:11382–11412. doi: 10.1021/cr500255e. PubMed DOI PMC
Clercq E.D., Sakuma T., Baba M., Pauwels R., Balzarini J., Rosenberg I., Holý A. Antiviral activity of phosphonylmethoxyalkyl derivatives of purine and pyrimidines. Antivir. Res. 1987;8:261–272. doi: 10.1016/S0166-3542(87)80004-9. PubMed DOI
Snoeck R., Sakuma T., De Clercq E., Rosenberg I., Holy A. (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine, a potent and selective inhibitor of human cytomegalovirus replication. Antimicrob. Agents Chemother. 1988;32:1839–1844. doi: 10.1128/AAC.32.12.1839. PubMed DOI PMC
Chen P., Tsuge H., Almassy R.J., Gribskov C.L., Katoh S., Vanderpool D.L., Margosiak S.A., Pinko C., Matthews D.A., Kan C.-C. Structure of the Human Cytomegalovirus Protease Catalytic Domain Reveals a Novel Serine Protease Fold and Catalytic Triad. Cell. 1996;86:835–843. doi: 10.1016/S0092-8674(00)80157-9. PubMed DOI
Darke P.L., Cole J.L., Waxman L., Hall D.L., Sardana M.K., Kuo L.C. Active human cytomegalovirus protease is a dimer. J. Biol. Chem. 1996;271:7445–7449. doi: 10.1074/jbc.271.13.7445. PubMed DOI
Tong L., Qian C., Massariol M.J., Bonneau P.R., Cordingley M.G., Lagacé L. A new serine-protease fold revealed by the crystal structure of human cytomegalovirus protease. Nature. 1996;383:272–275. doi: 10.1038/383272a0. PubMed DOI
Shieh H.S., Kurumbail R.G., Stevens A.M., Stegeman R.A., Sturman E.J., Pak J.Y., Wittwer A.J., Palmier M.O., Wiegand R.C., Holwerda B.C., et al. Three-dimensional structure of human cytomegalovirus protease. Nature. 1996;383:279–282. doi: 10.1038/383279a0. PubMed DOI
Liu F.Y., Roizman B. The herpes simplex virus 1 gene encoding a protease also contains within its coding domain the gene encoding the more abundant substrate. J. Virol. 1991;65:5149–5156. doi: 10.1128/jvi.65.10.5149-5156.1991. PubMed DOI PMC
Oien N.L., Thomsen D.R., Wathen M.W., Newcomb W.W., Brown J.C., Homa F.L. Assembly of herpes simplex virus capsids using the human cytomegalovirus scaffold protein: Critical role of the C terminus. J. Virol. 1997;71:1281–1291. doi: 10.1128/jvi.71.2.1281-1291.1997. PubMed DOI PMC
Sheaffer A.K., Newcomb W.W., Brown J.C., Gao M., Weller S.K., Tenney D.J. Evidence for controlled incorporation of herpes simplex virus type 1 UL26 protease into capsids. J. Virol. 2000;74:6838–6848. doi: 10.1128/JVI.74.15.6838-6848.2000. PubMed DOI PMC
Baum E.Z., Bebernitz G.A., Hulmes J.D., Muzithras V.P., Jones T.R., Gluzman Y. Expression and analysis of the human cytomegalovirus UL80-encoded protease: Identification of autoproteolytic sites. J. Virol. 1993;67:497–506. doi: 10.1128/jvi.67.1.497-506.1993. PubMed DOI PMC
Holwerda B.C., Wittwer A.J., Duffin K.L., Smith C., Toth M.V., Carr L.S., Wiegand R.C., Bryant M.L. Activity of two-chain recombinant human cytomegalovirus protease. J. Biol. Chem. 1994;269:25911–25915. doi: 10.1016/S0021-9258(18)47332-2. PubMed DOI
Loveland A.N., Chan C.K., Brignole E.J., Gibson W. Cleavage of human cytomegalovirus protease pUL80a at internal and cryptic sites is not essential but enhances infectivity. J. Virol. 2005;79:12961–12968. doi: 10.1128/JVI.79.20.12961-12968.2005. PubMed DOI PMC
Shimba N., Nomura A.M., Marnett A.B., Craik C.S. Herpesvirus protease inhibition by dimer disruption. J. Virol. 2004;78:6657–6665. doi: 10.1128/JVI.78.12.6657-6665.2004. PubMed DOI PMC
Lee G.M., Shahian T., Baharuddin A., Gable J.E., Craik C.S. Enzyme Inhibition by Allosteric Capture of an Inactive Conformation. J. Mol. Biol. 2011;411:999–1016. doi: 10.1016/j.jmb.2011.06.032. PubMed DOI PMC
Shahian T., Lee G.M., Lazic A., Arnold L.A., Velusamy P., Roels C.M., Guy R.K., Craik C.S. Inhibition of a viral enzyme by a small-molecule dimer disruptor. Nat. Chem. Biol. 2009;5:640–646. doi: 10.1038/nchembio.192. PubMed DOI PMC
Yamanaka G., DiIanni C.L., O’Boyle D.R., II, Stevens J., Weinheimer S.P., Deckman I.C., Matusick-Kumar L., Colonno R.J. Stimulation of the Herpes Simplex Virus Type I Protease by Antichaeotrophic Salts. J. Biol. Chem. 1995;270:30168–30172. doi: 10.1074/jbc.270.50.30168. PubMed DOI
Kattenhorn L.M., Korbel G.A., Kessler B.M., Spooner E., Ploegh H.L. A deubiquitinating enzyme encoded by HSV-1 belongs to a family of cysteine proteases that is conserved across the family Herpesviridae. Mol. Cell. 2005;19:547–557. doi: 10.1016/j.molcel.2005.07.003. PubMed DOI
Wang J., Loveland A.N., Kattenhorn L.M., Ploegh H.L., Gibson W. High-molecular-weight protein (pUL48) of human cytomegalovirus is a competent deubiquitinating protease: Mutant viruses altered in its active-site cysteine or histidine are viable. J. Virol. 2006;80:6003–6012. doi: 10.1128/JVI.00401-06. PubMed DOI PMC
Schlieker C., Korbel G.A., Kattenhorn L.M., Ploegh H.L. A deubiquitinating activity is conserved in the large tegument protein of the herpesviridae. J. Virol. 2005;79:15582–15585. doi: 10.1128/JVI.79.24.15582-15585.2005. PubMed DOI PMC
Kim E.T., Oh S.E., Lee Y.O., Gibson W., Ahn J.H. Cleavage specificity of the UL48 deubiquitinating protease activity of human cytomegalovirus and the growth of an active-site mutant virus in cultured cells. J. Virol. 2009;83:12046–12056. doi: 10.1128/JVI.00411-09. PubMed DOI PMC
Wang S., Wang K., Li J., Zheng C. Herpes simplex virus 1 ubiquitin-specific protease UL36 inhibits beta interferon production by deubiquitinating TRAF3. J. Virol. 2013;87:11851–11860. doi: 10.1128/JVI.01211-13. PubMed DOI PMC
Ye R., Su C., Xu H., Zheng C. Herpes Simplex Virus 1 Ubiquitin-Specific Protease UL36 Abrogates NF-κB Activation in DNA Sensing Signal Pathway. J. Virol. 2017;91:e02417-16. doi: 10.1128/JVI.02417-16. PubMed DOI PMC
Westergren Jakobsson A., Segerman B., Wallerman O., Bergström Lind S., Zhao H., Rubin C.-J., Pettersson U., Akusjärvi G. The Human Adenovirus 2 Transcriptome: An Amazing Complexity of Alternatively Spliced mRNAs. J. Virol. 2021;95:e01869-20. doi: 10.1128/JVI.01869-20. PubMed DOI PMC
Thomas G.P., Mathews M.B. DNA replication and the early to late transition in adenovirus infection. Cell. 1980;22:523–533. doi: 10.1016/0092-8674(80)90362-1. PubMed DOI
Donovan-Banfield I.a., Turnell A.S., Hiscox J.A., Leppard K.N., Matthews D.A. Deep splicing plasticity of the human adenovirus type 5 transcriptome drives virus evolution. Commun. Biol. 2020;3:124. doi: 10.1038/s42003-020-0849-9. PubMed DOI PMC
Pied N., Wodrich H. Imaging the adenovirus infection cycle. FEBS Lett. 2019;593:3419–3448. doi: 10.1002/1873-3468.13690. PubMed DOI
Webster A., Hay R.T., Kemp G. The adenovirus protease is activated by a virus-coded disulphide-linked peptide. Cell. 1993;72:97–104. doi: 10.1016/0092-8674(93)90053-S. PubMed DOI
Mangel W.F., McGrath W.J., Toledo D.L., Anderson C.W. Viral DNA and a viral peptide can act as cofactors of adenovirus virion proteinase activity. Nature. 1993;361:274–275. doi: 10.1038/361274a0. PubMed DOI
Baniecki M.L., McGrath W.J., Mangel W.F. Regulation of a Viral Proteinase by a Peptide and DNA in One-dimensional Space: III. Atomic resolution structure of the nascent form of the adenoirus proteinase. J. Biol. Chem. 2013;288:2081–2091. doi: 10.1074/jbc.M112.407429. PubMed DOI PMC
Brown M.T., McBride K.M., Baniecki M.L., Reich N.C., Marriott G., Mangel W.F. Actin can act as a cofactor for a viral proteinase in the cleavage of the cytoskeleton. J. Biol. Chem. 2002;277:46298–46303. doi: 10.1074/jbc.M202988200. PubMed DOI
Ruzindana-Umunyana A., Sircar S., Weber J.M. The Effect of Mutant Peptide Cofactors on Adenovirus Protease Activity and Virus Infection. Virology. 2000;270:173–179. doi: 10.1006/viro.2000.0253. PubMed DOI
Barré-Sinoussi F., Chermann J.C., Rey F., Nugeyre M.T., Chamaret S., Gruest J., Dauguet C., Axler-Blin C., Vézinet-Brun F., Rouzioux C., et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS) Science. 1983;220:868–871. doi: 10.1126/science.6189183. PubMed DOI
Poiesz B.J., Ruscetti F.W., Gazdar A.F., Bunn P.A., Minna J.D., Gallo R.C. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc. Natl. Acad. Sci. USA. 1980;77:7415–7419. doi: 10.1073/pnas.77.12.7415. PubMed DOI PMC
Gallo R.C., Salahuddin S.Z., Popovic M., Shearer G.M., Kaplan M., Haynes B.F., Palker T.J., Redfield R., Oleske J., Safai B., et al. Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science. 1984;224:500–503. doi: 10.1126/science.6200936. PubMed DOI
Voisset C., Weiss R.A., Griffiths D.J. Human RNA Viruses: The Search for Novel Human Retroviruses in Chronic Disease. Microbiol Mol. Biol. Rev. 2008;72:157–196. doi: 10.1128/MMBR.00033-07. PubMed DOI PMC
De Clercq E. HIV resistance to reverse transcriptase inhibitors. Biochem. Pharmacol. 1994;47:155–169. doi: 10.1016/0006-2952(94)90001-9. PubMed DOI
Holý A., Rosenberg I. Synthesis of 9-(2-phosphonylmethoxyethyl)adenine and related compounds. Collect. Czechoslov. Chem. Commun. 1987;52:2801–2809. doi: 10.1135/cccc19872801. DOI
Balzarini J., Holy A., Jindrich J., Naesens L., Snoeck R., Schols D., De Clercq E. Differential antiherpesvirus and antiretrovirus effects of the (S) and (R) enantiomers of acyclic nucleoside phosphonates: Potent and selective in vitro and in vivo antiretrovirus activities of (R)-9-(2-phosphonomethoxypropyl)-2,6-diaminopurine. Antimicrob. Agents Chemother. 1993;37:332–338. doi: 10.1128/AAC.37.2.332. PubMed DOI PMC
Roberts N.A., Martin J.A., Kinchington D., Broadhurst A.V., Craig J.C., Duncan I.B., Galpin S.A., Handa B.K., Kay J., Kröhn A., et al. Rational design of peptide-based HIV proteinase inhibitors. Science. 1990;248:358–361. doi: 10.1126/science.2183354. PubMed DOI
Pokorná J., Machala L., Rezáčová P., Konvalinka J. Current and Novel Inhibitors of HIV Protease. Viruses. 2009;1:1209–1239. doi: 10.3390/v1031209. PubMed DOI PMC
Wlodawer A., Vondrasek J. Inhibitors of HIV-1 protease: A major success of structure-assisted drug design. Annu. Rev. Biophys. Biomol. Struct. 1998;27:249–284. doi: 10.1146/annurev.biophys.27.1.249. PubMed DOI
Tompa D.R., Immanuel A., Srikanth S., Kadhirvel S. Trends and strategies to combat viral infections: A review on FDA approved antiviral drugs. Int. J. Biol. Macromol. 2021;172:524–541. doi: 10.1016/j.ijbiomac.2021.01.076. PubMed DOI PMC
Johns B.A., Kawasuji T., Weatherhead J.G., Taishi T., Temelkoff D.P., Yoshida H., Akiyama T., Taoda Y., Murai H., Kiyama R., et al. Carbamoyl pyridone HIV-1 integrase inhibitors 3. A diastereomeric approach to chiral nonracemic tricyclic ring systems and the discovery of dolutegravir (S/GSK1349572) and (S/GSK1265744) J. Med. Chem. 2013;56:5901–5916. doi: 10.1021/jm400645w. PubMed DOI
Engelman K.D., Engelman A.N. Long-Acting Cabotegravir for HIV/AIDS Prophylaxis. Biochemistry. 2021;60:1731–1740. doi: 10.1021/acs.biochem.1c00157. PubMed DOI PMC
Snásel J., Rosenberg I., Paces O., Pichová I. The strand transfer oligonucleotide inhibitors of HIV-integrase. J. Enzym. Inhib. Med. Chem. 2009;24:241–246. doi: 10.1080/14756360802051578. PubMed DOI
Hikichi Y., Van Duyne R., Pham P., Groebner J.L., Wiegand A., Mellors J.W., Kearney M.F., Freed E.O. Mechanistic Analysis of the Broad Antiretroviral Resistance Conferred by HIV-1 Envelope Glycoprotein Mutations. mBio. 2021;12:e03134-20. doi: 10.1128/mBio.03134-20. PubMed DOI PMC
De Andrade Arrais C.R., Lima K., Barreiros M., Rodrigues J.K.F., Sousa N.P.S., Costa D.D., Santos F., Pereira G.F.M., AI E.S.V., Barros A.K., et al. HIV-1 subtypes and drug resistance in children during antiretroviral therapy in Brazil. J. Med. Virol. 2021;93:4908–4914. doi: 10.1002/jmv.26988. PubMed DOI
Cilento M.E., Kirby K.A., Sarafianos S.G. Avoiding Drug Resistance in HIV Reverse Transcriptase. Chem. Rev. 2021;121:3271–3296. doi: 10.1021/acs.chemrev.0c00967. PubMed DOI PMC
Nka A.D., Teto G., Santoro M.M., Ngum Ndze V., Takou D., Dambaya B., Ngoufack Jagni Semengue E., Fabeni L., Perno C.F., Colizzi V., et al. HIV-1 Gag gene mutations, treatment response and drug resistance to protease inhibitors: A systematic review and meta-analysis protocol. PLoS ONE. 2021;16:e0253587. doi: 10.1371/journal.pone.0253587. PubMed DOI PMC
Agniswamy J., Kneller D.W., Ghosh A.K., Weber I.T. Novel HIV PR inhibitors with C4-substituted bis-THF and bis-fluoro-benzyl target the two active site mutations of highly drug resistant mutant PR(S17) Biochem. Biophys. Res. Commun. 2021;566:30–35. doi: 10.1016/j.bbrc.2021.05.094. PubMed DOI PMC
Weber I.T., Wang Y.F., Harrison R.W. HIV Protease: Historical Perspective and Current Research. Viruses. 2021;13:839. doi: 10.3390/v13050839. PubMed DOI PMC
Kozísek M., Henke S., Sasková K.G., Jacobs G.B., Schuch A., Buchholz B., Müller V., Kräusslich H.G., Rezácová P., Konvalinka J., et al. Mutations in HIV-1 gag and pol compensate for the loss of viral fitness caused by a highly mutated protease. Antimicrob. Agents Chemother. 2012;56:4320–4330. doi: 10.1128/AAC.00465-12. PubMed DOI PMC
Fun A., van Maarseveen N.M., Pokorná J., Maas R.E., Schipper P.J., Konvalinka J., Nijhuis M. HIV-1 protease inhibitor mutations affect the development of HIV-1 resistance to the maturation inhibitor bevirimat. Retrovirology. 2011;8:70. doi: 10.1186/1742-4690-8-70. PubMed DOI PMC
Sasková K.G., Kozísek M., Rezácová P., Brynda J., Yashina T., Kagan R.M., Konvalinka J. Molecular characterization of clinical isolates of human immunodeficiency virus resistant to the protease inhibitor darunavir. J. Virol. 2009;83:8810–8818. doi: 10.1128/JVI.00451-09. PubMed DOI PMC
Mulato A., Acosta R., Chang S., Martin R., Yant S.R., Cihlar T., White K. Simulating HIV Breakthrough and Resistance Development During Variable Adherence to Antiretroviral Treatment. J. Acquir. Immune Defic. Syndr. 2021;86:369–377. doi: 10.1097/QAI.0000000000002562. PubMed DOI
Borghetti A., Ciccullo A., Lombardi F., Baldin G., Belmonti S., Prosperi M., Incardona F., Heger E., Borghi V., Sönnerborg A., et al. Transmitted drug resistance to NRTIs and risk of virological failure in naïve patients treated with integrase inhibitors. HIV Med. 2021;22:22–27. doi: 10.1111/hiv.12956. PubMed DOI
Berríos-Caro E., Gifford D.R., Galla T. Competition delays multi-drug resistance evolution during combination therapy. J. Theor. Biol. 2021;509:110524. doi: 10.1016/j.jtbi.2020.110524. PubMed DOI
Margolis A.M., Heverling H., Pham P.A., Stolbach A. A review of the toxicity of HIV medications. J. Med. Toxicol. 2014;10:26–39. doi: 10.1007/s13181-013-0325-8. PubMed DOI PMC
Hayashi H., Takamune N., Nirasawa T., Aoki M., Morishita Y., Das D., Koh Y., Ghosh A.K., Misumi S., Mitsuya H. Dimerization of HIV-1 protease occurs through two steps relating to the mechanism of protease dimerization inhibition by darunavir. Proc. Natl. Acad. Sci. USA. 2014;111:12234–12239. doi: 10.1073/pnas.1400027111. PubMed DOI PMC
Aoki M., Danish M.L., Aoki-Ogata H., Amano M., Ide K., Das D., Koh Y., Mitsuya H. Loss of the protease dimerization inhibition activity of tipranavir (TPV) and its association with the acquisition of resistance to TPV by HIV-1. J. Virol. 2012;86:13384–13396. doi: 10.1128/JVI.07234-11. PubMed DOI PMC
Louis J.M., Aniana A., Weber I.T., Sayer J.M. Inhibition of autoprocessing of natural variants and multidrug resistant mutant precursors of HIV-1 protease by clinical inhibitors. Proc. Natl. Acad. Sci. USA. 2011;108:9072–9077. doi: 10.1073/pnas.1102278108. PubMed DOI PMC
Davis D.A., Soule E.E., Davidoff K.S., Daniels S.I., Naiman N.E., Yarchoan R. Activity of human immunodeficiency virus type 1 protease inhibitors against the initial autocleavage in Gag-Pol polyprotein processing. Antimicrob. Agents Chemother. 2012;56:3620–3628. doi: 10.1128/AAC.00055-12. PubMed DOI PMC
Park J.H., Sayer J.M., Aniana A., Yu X., Weber I.T., Harrison R.W., Louis J.M. Binding of Clinical Inhibitors to a Model Precursor of a Rationally Selected Multidrug Resistant HIV-1 Protease Is Significantly Weaker Than That to the Released Mature Enzyme. Biochemistry. 2016;55:2390–2400. doi: 10.1021/acs.biochem.6b00012. PubMed DOI PMC
Humpolíčková J., Weber J., Starková J., Mašínová E., Günterová J., Flaisigová I., Konvalinka J., Majerová T. Inhibition of the precursor and mature forms of HIV-1 protease as a tool for drug evaluation. Sci. Rep. 2018;8:10438. doi: 10.1038/s41598-018-28638-w. PubMed DOI PMC
Hollenberg N.K. Direct renin inhibition and the kidney. Nat. Rev. Nephrol. 2010;6:49–55. doi: 10.1038/nrneph.2009.201. PubMed DOI
Shen C.-H., Chang Y.-C., Agniswamy J., Harrison R.W., Weber I.T. Conformational variation of an extreme drug resistant mutant of HIV protease. J. Mol. Graph. Model. 2015;62:87–96. doi: 10.1016/j.jmgm.2015.09.006. PubMed DOI PMC
Zhang Y., Chang Y.-C.E., Louis J.M., Wang Y.-F., Harrison R.W., Weber I.T. Structures of Darunavir-Resistant HIV-1 Protease Mutant Reveal Atypical Binding of Darunavir to Wide Open Flaps. ACS Chem. Biol. 2014;9:1351–1358. doi: 10.1021/cb4008875. PubMed DOI PMC
Huang L., Li L., Tien C., LaBarbera D.V., Chen C. Targeting HIV-1 Protease Autoprocessing for High-throughput Drug Discovery and Drug Resistance Assessment. Sci. Rep. 2019;9:301. doi: 10.1038/s41598-018-36730-4. PubMed DOI PMC
Aoki M., Das D., Hayashi H., Aoki-Ogata H., Takamatsu Y., Ghosh A.K., Mitsuya H., Prasad V.R., Shafer R., Kovari L. Mechanism of Darunavir (DRV)’s High Genetic Barrier to HIV-1 Resistance: A Key V32I Substitution in Protease Rarely Occurs, but Once It Occurs, It Predisposes HIV-1 To Develop DRV Resistance. mBio. 2018;9:e02425-17. doi: 10.1128/mBio.02425-17. PubMed DOI PMC
Gupta S., Balasubramanian S., Senapati S. Understanding the mechanism of HIV-1 protease inhibition by monoclonal antibodies. J. Mol. Graph. Model. 2021;103:107826. doi: 10.1016/j.jmgm.2020.107826. PubMed DOI
Bowman M.J., Byrne S., Chmielewski J. Switching between allosteric and dimerization inhibition of HIV-1 protease. Chem. Biol. 2005;12:439–444. doi: 10.1016/j.chembiol.2005.02.004. PubMed DOI
Pietrucci F., Vargiu A.V., Kranjc A. HIV-1 Protease Dimerization Dynamics Reveals a Transient Druggable Binding Pocket at the Interface. Sci. Rep. 2015;5:18555. doi: 10.1038/srep18555. PubMed DOI PMC
Koh Y., Matsumi S., Das D., Amano M., Davis D.A., Li J., Leschenko S., Baldridge A., Shioda T., Yarchoan R., et al. Potent inhibition of HIV-1 replication by novel non-peptidyl small molecule inhibitors of protease dimerization. J. Biol. Chem. 2007;282:28709–28720. doi: 10.1074/jbc.M703938200. PubMed DOI
Zhang Z.Y., Poorman R.A., Maggiora L.L., Heinrikson R.L., Kézdy F.J. Dissociative inhibition of dimeric enzymes. Kinetic characterization of the inhibition of HIV-1 protease by its COOH-terminal tetrapeptide. J. Biol. Chem. 1991;266:15591–15594. doi: 10.1016/S0021-9258(18)98445-0. PubMed DOI
Uhlíková T., Konvalinka J., Pichová I., Soucek M., Kräusslich H.G., Vondrásek J. A modular approach to HIV-1 proteinase inhibitor design. Biochem. Biophys. Res. Commun. 1996;222:38–43. doi: 10.1006/bbrc.1996.0694. PubMed DOI
Strisovsky K., Tessmer U., Langner J., Konvalinka J., Kräusslich H.G. Systematic mutational analysis of the active-site threonine of HIV-1 proteinase: Rethinking the “fireman’s grip” hypothesis. Protein Sci. 2000;9:1631–1641. doi: 10.1110/ps.9.9.1631. PubMed DOI PMC
Ingr M., Uhlíková T., Strísovský K., Majerová E., Konvalinka J. Kinetics of the dimerization of retroviral proteases: The “fireman’s grip” and dimerization. Protein Sci. 2003;12:2173–2182. doi: 10.1110/ps.03171903. PubMed DOI PMC
Shehu-Xhilaga M., Crowe S.M., Mak J. Maintenance of the Gag/Gag-Pol ratio is important for human immunodeficiency virus type 1 RNA dimerization and viral infectivity. J. Virol. 2001;75:1834–1841. doi: 10.1128/JVI.75.4.1834-1841.2001. PubMed DOI PMC
Pettit S.C., Everitt L.E., Choudhury S., Dunn B.M., Kaplan A.H. Initial cleavage of the human immunodeficiency virus type 1 GagPol precursor by its activated protease occurs by an intramolecular mechanism. J. Virol. 2004;78:8477–8485. doi: 10.1128/JVI.78.16.8477-8485.2004. PubMed DOI PMC
Pettit S.C., Clemente J.C., Jeung J.A., Dunn B.M., Kaplan A.H. Ordered processing of the human immunodeficiency virus type 1 GagPol precursor is influenced by the context of the embedded viral protease. J. Virol. 2005;79:10601–10607. doi: 10.1128/JVI.79.16.10601-10607.2005. PubMed DOI PMC
Pettit S.C., Gulnik S., Everitt L., Kaplan A.H. The dimer interfaces of protease and extra-protease domains influence the activation of protease and the specificity of GagPol cleavage. J. Virol. 2003;77:366–374. doi: 10.1128/JVI.77.1.366-374.2003. PubMed DOI PMC
Tien C., Huang L., Watanabe S.M., Speidel J.T., Carter C.A., Chen C. Context-dependent autoprocessing of human immunodeficiency virus type 1 protease precursors. PLoS ONE. 2018;13:e0191372. doi: 10.1371/journal.pone.0191372. PubMed DOI PMC
Zábranský A., Andreánsky M., Hrusková-Heidingsfeldová O., Havlícek V., Hunter E., Ruml T., Pichová I. Three active forms of aspartic proteinase from Mason-Pfizer monkey virus. Virology. 1998;245:250–256. doi: 10.1006/viro.1998.9173. PubMed DOI
Veverka V., Bauerová H., Zábranský A., Lang J., Ruml T., Pichová I., Hrabal R. Three-dimensional structure of a monomeric form of a retroviral protease. J. Mol. Biol. 2003;333:771–780. doi: 10.1016/j.jmb.2003.08.049. PubMed DOI
Khatib F., DiMaio F., Cooper S., Kazmierczyk M., Gilski M., Krzywda S., Zabranska H., Pichova I., Thompson J., Popović Z., et al. Crystal structure of a monomeric retroviral protease solved by protein folding game players. Nat. Struct. Mol. Biol. 2011;18:1175–1177. doi: 10.1038/nsmb.2119. PubMed DOI PMC
Wosicki S., Kazmierczyk M., Gilski M., Zabranska H., Pichova I., Jaskolski M. Crystal structures of inhibitor complexes of M-PMV protease with visible flap loops. Protein Sci. 2021;30:1258–1263. doi: 10.1002/pro.4072. PubMed DOI PMC
Hrusková-Heidingsfeldová O., Andreansky M., Fábry M., Bláha I., Strop P., Hunter E. Cloning, Bacterial Expression, and Characterization of the Mason-Pfizer Monkey Virus Proteinase. J. Biol. Chem. 1995;270:15053–15058. doi: 10.1074/jbc.270.25.15053. PubMed DOI
Nijhuis M., van Maarseveen N.M., Lastere S., Schipper P., Coakley E., Glass B., Rovenska M., de Jong D., Chappey C., Goedegebuure I.W., et al. A novel substrate-based HIV-1 protease inhibitor drug resistance mechanism. PLoS Med. 2007;4:e36. doi: 10.1371/journal.pmed.0040036. PubMed DOI PMC
Xue B., Mizianty M.J., Kurgan L., Uversky V.N. Protein intrinsic disorder as a flexible armor and a weapon of HIV-1. Cell Mol. Life Sci. 2012;69:1211–1259. doi: 10.1007/s00018-011-0859-3. PubMed DOI PMC
Jochmans D., Anders M., Keuleers I., Smeulders L., Kräusslich H.-G., Kraus G., Müller B. Selective killing of human immunodeficiency virus infected cells by non-nucleoside reverse transcriptase inhibitor-induced activation of HIV protease. Retrovirology. 2010;7:89. doi: 10.1186/1742-4690-7-89. PubMed DOI PMC
Sudo S., Haraguchi H., Hirai Y., Gatanaga H., Sakuragi J.-I., Momose F., Morikawa Y. Efavirenz enhances HIV-1 gag processing at the plasma membrane through Gag-Pol dimerization. J. Virol. 2013;87:3348–3360. doi: 10.1128/JVI.02306-12. PubMed DOI PMC
Rumlová M., Křížová I., Keprová A., Hadravová R., Doležal M., Strohalmová K., Pichová I., Hájek M., Ruml T. HIV-1 protease-induced apoptosis. Retrovirology. 2014;11:37. doi: 10.1186/1742-4690-11-37. PubMed DOI PMC
Buzon M.J., Erkizia I., Pou C., Minuesa G., Puertas M.C., Esteve A., Castello A., Santos J.R., Prado J.G., Izquierdo-Useros N., et al. A non-infectious cell-based phenotypic assay for the assessment of HIV-1 susceptibility to protease inhibitors. J. Antimicrob. Chemother. 2012;67:32–38. doi: 10.1093/jac/dkr433. PubMed DOI
Lindsten K., Uhlíková T., Konvalinka J., Masucci M.G., Dantuma N.P. Cell-based fluorescence assay for human immunodeficiency virus type 1 protease activity. Antimicrob. Agents Chemother. 2001;45:2616–2622. doi: 10.1128/AAC.45.9.2616-2622.2001. PubMed DOI PMC
Majerová-Uhlíková T., Dantuma N.P., Lindsten K., Masucci M.G., Konvalinka J. Non-infectious fluorimetric assay for phenotyping of drug-resistant HIV proteinase mutants. J. Clin. Virol. 2006;36:50–59. doi: 10.1016/j.jcv.2006.01.014. PubMed DOI
Kaplan A.H., Swanstrom R. Human immunodeficiency virus type 1 Gag proteins are processed in two cellular compartments. Proc. Natl. Acad. Sci. USA. 1991;88:4528–4532. doi: 10.1073/pnas.88.10.4528. PubMed DOI PMC
Trinité B., Zhang H., Levy D.N. NNRTI-induced HIV-1 protease-mediated cytotoxicity induces rapid death of CD4 T cells during productive infection and latency reversal. Retrovirology. 2019;16:17. doi: 10.1186/s12977-019-0479-9. PubMed DOI PMC
Jurado K.A., Engelman A. Multimodal mechanism of action of allosteric HIV-1 integrase inhibitors. Expert Rev. Mol. Med. 2013;15:e14. doi: 10.1017/erm.2013.15. PubMed DOI PMC
Kräusslich H.G. Human immunodeficiency virus proteinase dimer as component of the viral polyprotein prevents particle assembly and viral infectivity. Proc. Natl. Acad. Sci. USA. 1991;88:3213–3217. doi: 10.1073/pnas.88.8.3213. PubMed DOI PMC
Pan Y.Y., Wang S.M., Huang K.J., Chiang C.C., Wang C.T. Placement of leucine zipper motifs at the carboxyl terminus of HIV-1 protease significantly reduces virion production. PLoS ONE. 2012;7:e32845. doi: 10.1371/journal.pone.0032845. PubMed DOI PMC
Chiu H.C., Wang F.D., Chen Y.A., Wang C.T. Effects of human immunodeficiency virus type 1 transframe protein p6* mutations on viral protease-mediated Gag processing. J. Gen. Virol. 2006;87:2041–2046. doi: 10.1099/vir.0.81601-0. PubMed DOI
Zábranský A., Hadravová R., Stokrová J., Sakalian M., Pichová I. Premature processing of mouse mammary tumor virus Gag polyprotein impairs intracellular capsid assembly. Virology. 2009;384:33–37. doi: 10.1016/j.virol.2008.10.038. PubMed DOI
Schur F.K., Hagen W.J., Rumlová M., Ruml T., Müller B., Kräusslich H.G., Briggs J.A. Structure of the immature HIV-1 capsid in intact virus particles at 8.8 Å resolution. Nature. 2015;517:505–508. doi: 10.1038/nature13838. PubMed DOI
Bohmová K., Hadravová R., Stokrová J., Tuma R., Ruml T., Pichová I., Rumlová M. Effect of dimerizing domains and basic residues on in vitro and in vivo assembly of Mason-Pfizer monkey virus and human immunodeficiency virus. J. Virol. 2010;84:1977–1988. doi: 10.1128/JVI.02022-09. PubMed DOI PMC
Junková P., Pleskot R., Prchal J., Sýs J., Ruml T. Differences and commonalities in plasma membrane recruitment of the two morphogenetically distinct retroviruses HIV-1 and MMTV. J. Biol. Chem. 2020;295:8819–8833. doi: 10.1074/jbc.RA119.011991. PubMed DOI PMC
Kulkarni M.M., Ratcliff A.N., Bhat M., Alwarawrah Y., Hughes P., Arcos J., Loiselle D., Torrelles J.B., Funderburg N.T., Haystead T.A., et al. Cellular fatty acid synthase is required for late stages of HIV-1 replication. Retrovirology. 2017;14:45. doi: 10.1186/s12977-017-0368-z. PubMed DOI PMC
Lindwasser O.W., Resh M.D. Myristoylation as a target for inhibiting HIV assembly: Unsaturated fatty acids block viral budding. Proc. Natl. Acad. Sci. USA. 2002;99:13037–13042. doi: 10.1073/pnas.212409999. PubMed DOI PMC
Zell R. Picornaviridae-the ever-growing virus family. Arch. Virol. 2018;163:299–317. doi: 10.1007/s00705-017-3614-8. PubMed DOI
Sárkány Z., Polgár L. The unusual catalytic triad of poliovirus protease 3C. Biochemistry. 2003;42:516–522. doi: 10.1021/bi027004w. PubMed DOI
Horova V., Lyoo H., Różycki B., Chalupska D., Smola M., Humpolickova J., Strating J.R.P.M., van Kuppeveld F.J.M., Boura E., Klima M. Convergent evolution in the mechanisms of ACBD3 recruitment to picornavirus replication sites. PLoS Pathog. 2019;15:e1007962. doi: 10.1371/journal.ppat.1007962. PubMed DOI PMC
Parsley T.B., Cornell C.T., Semler B.L. Modulation of the RNA binding and protein processing activities of poliovirus polypeptide 3CD by the viral RNA polymerase domain. J. Biol. Chem. 1999;274:12867–12876. doi: 10.1074/jbc.274.18.12867. PubMed DOI
Marcotte L.L., Wass A.B., Gohara D.W., Pathak H.B., Arnold J.J., Filman D.J., Cameron C.E., Hogle J.M. Crystal structure of poliovirus 3CD protein: Virally encoded protease and precursor to the RNA-dependent RNA polymerase. J. Virol. 2007;81:3583–3596. doi: 10.1128/JVI.02306-06. PubMed DOI PMC
Winston D.S., Boehr D.D. The Picornavirus Precursor 3CD Has Different Conformational Dynamics Compared to 3C(pro) and 3D(pol) in Functionally Relevant Regions. Viruses. 2021;13:442. doi: 10.3390/v13030442. PubMed DOI PMC
Spear A., Ogram S.A., Morasco B.J., Smerage L.E., Flanegan J.B. Viral precursor protein P3 and its processed products perform discrete and essential functions in the poliovirus RNA replication complex. Virology. 2015;485:492–501. doi: 10.1016/j.virol.2015.07.018. PubMed DOI PMC
Chan Y.M., Moustafa I.M., Arnold J.J., Cameron C.E., Boehr D.D. Long-Range Communication between Different Functional Sites in the Picornaviral 3C Protein. Structure. 2016;24:509–517. doi: 10.1016/j.str.2016.02.019. PubMed DOI PMC
Meng B., Lan K., Xie J., Lerner R.A., Wilson I.A., Yang B. Inhibitory antibodies identify unique sites of therapeutic vulnerability in rhinovirus and other enteroviruses. Proc. Natl. Acad. Sci. USA. 2020;117:13499–13508. doi: 10.1073/pnas.1918844117. PubMed DOI PMC
Rahnefeld A., Klingel K., Schuermann A., Diny N.L., Althof N., Lindner A., Bleienheuft P., Savvatis K., Respondek D., Opitz E., et al. Ubiquitin-like protein ISG15 (interferon-stimulated gene of 15 kDa) in host defense against heart failure in a mouse model of virus-induced cardiomyopathy. Circulation. 2014;130:1589–1600. doi: 10.1161/CIRCULATIONAHA.114.009847. PubMed DOI
Bergmann E.M., James M.N.G. The 3C proteinases of picornaviruses. In: von der Helm K., Korant B.D., Cheronis J.C., editors. Proteases as Targets for Therapy. Springer; Berlin/Heidelberg, Germany: 2000. pp. 117–143.
Green K.Y., Kaufman S.S., Nagata B.M., Chaimongkol N., Kim D.Y., Levenson E.A., Tin C.M., Yardley A.B., Johnson J.A., Barletta A.B.F., et al. Human norovirus targets enteroendocrine epithelial cells in the small intestine. Nat. Commun. 2020;11:2759. doi: 10.1038/s41467-020-16491-3. PubMed DOI PMC
Muzzarelli K.M., Kuiper B., Spellmon N., Brunzelle J., Hackett J., Amblard F., Zhou S., Liu P., Kovari I.A., Yang Z., et al. Structural and Antiviral Studies of the Human Norovirus GII.4 Protease. Biochemistry. 2019;58:900–907. doi: 10.1021/acs.biochem.8b01063. PubMed DOI PMC
Viskovska M.A., Zhao B., Shanker S., Choi J.-M., Deng L., Song Y., Palzkill T., Hu L., Estes M.K., Prasad B.V.V., et al. GII.4 Norovirus Protease Shows pH-Sensitive Proteolysis with a Unique Arg-His Pairing in the Catalytic Site. J. Virol. 2019;93:e01479-18. doi: 10.1128/JVI.01479-18. PubMed DOI PMC
Chang K.O., Kim Y., Lovell S., Rathnayake A.D., Groutas W.C. Antiviral Drug Discovery: Norovirus Proteases and Development of Inhibitors. Viruses. 2019;11:197. doi: 10.3390/v11020197. PubMed DOI PMC
Abu Bakar F., Ng L.F.P. Nonstructural Proteins of Alphavirus—Potential Targets for Drug Development. Viruses. 2018;10:71. doi: 10.3390/v10020071. PubMed DOI PMC
Chung B.Y., Firth A.E., Atkins J.F. Frameshifting in alphaviruses: A diversity of 3’ stimulatory structures. J. Mol. Biol. 2010;397:448–456. doi: 10.1016/j.jmb.2010.01.044. PubMed DOI
Potužník J.F., Cahová H. It’s the Little Things (in Viral RNA) mBio. 2020;11:e02131-20. doi: 10.1128/mBio.02131-20. PubMed DOI PMC
De Groot R.J., Hardy W.R., Shirako Y., Strauss J.H. Cleavage-site preferences of Sindbis virus polyproteins containing the non-structural proteinase. Evidence for temporal regulation of polyprotein processing in vivo. EMBO J. 1990;9:2631–2638. doi: 10.1002/j.1460-2075.1990.tb07445.x. PubMed DOI PMC
Jones R., Bragagnolo G., Arranz R., Reguera J. Capping pores of alphavirus nsP1 gate membranous viral replication factories. Nature. 2021;589:615–619. doi: 10.1038/s41586-020-3036-8. PubMed DOI PMC
Hellström K., Kallio K., Utt A., Quirin T., Jokitalo E., Merits A., Ahola T., Simon A.E. Partially Uncleaved Alphavirus Replicase Forms Spherule Structures in the Presence and Absence of RNA Template. J. Virol. 2017;91:e00787-17. doi: 10.1128/JVI.00787-17. PubMed DOI PMC
Shirako Y., Strauss J.H. Regulation of Sindbis virus RNA replication: Uncleaved P123 and nsP4 function in minus-strand RNA synthesis, whereas cleaved products from P123 are required for efficient plus-strand RNA synthesis. J. Virol. 1994;68:1874–1885. doi: 10.1128/jvi.68.3.1874-1885.1994. PubMed DOI PMC
Lemm J.A., Rümenapf T., Strauss E.G., Strauss J.H., Rice C.M. Polypeptide requirements for assembly of functional Sindbis virus replication complexes: A model for the temporal regulation of minus- and plus-strand RNA synthesis. EMBO J. 1994;13:2925–2934. doi: 10.1002/j.1460-2075.1994.tb06587.x. PubMed DOI PMC
Shin G., Yost S.A., Miller M.T., Elrod E.J., Grakoui A., Marcotrigiano J. Structural and functional insights into alphavirus polyprotein processing and pathogenesis. Proc. Natl. Acad. Sci. USA. 2012;109:16534–16539. doi: 10.1073/pnas.1210418109. PubMed DOI PMC
Lulla A., Lulla V., Tints K., Ahola T., Merits A. Molecular determinants of substrate specificity for Semliki Forest virus nonstructural protease. J. Virol. 2006;80:5413–5422. doi: 10.1128/JVI.00229-06. PubMed DOI PMC
Lulla V., Karo-Astover L., Rausalu K., Saul S., Merits A., Lulla A. Timeliness of Proteolytic Events Is Prerequisite for Efficient Functioning of the Alphaviral Replicase. J. Virol. 2018;92:e00151-18. doi: 10.1128/JVI.00151-18. PubMed DOI PMC
Neufeldt C.J., Cortese M., Acosta E.G., Bartenschlager R. Rewiring cellular networks by members of the Flaviviridae family. Nat. Rev. Microbiol. 2018;16:125–142. doi: 10.1038/nrmicro.2017.170. PubMed DOI PMC
Castle E., Nowak T., Leidner U., Wengler G., Wengler G. Sequence analysis of the viral core protein and the membrane-associated proteins V1 and NV2 of the flavivirus west nile virus and of the genome sequence for these proteins. Virology. 1985;145:227–236. doi: 10.1016/0042-6822(85)90156-4. PubMed DOI
Nowak T., Färber P.M., Wengler G., Wengler G. Analyses of the terminal sequences of west nile virus structural proteins and of the in vitro translation of these proteins allow the proposal of a complete scheme of the proteolytic cleavages involved in their synthesis. Virology. 1989;169:365–376. doi: 10.1016/0042-6822(89)90162-1. PubMed DOI
Falgout B., Pethel M., Zhang Y.M., Lai C.J. Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. J. Virol. 1991;65:2467–2475. doi: 10.1128/jvi.65.5.2467-2475.1991. PubMed DOI PMC
Amberg S.M., Nestorowicz A., McCourt D.W., Rice C.M. NS2B-3 proteinase-mediated processing in the yellow fever virus structural region: In vitro and in vivo studies. J. Virol. 1994;68:3794–3802. doi: 10.1128/jvi.68.6.3794-3802.1994. PubMed DOI PMC
Rana J., Burrone O.R. DENV2 Pseudoviral Particles with Unprocessed Capsid Protein Are Assembled and Infectious. Viruses. 2019;12:27. doi: 10.3390/v12010027. PubMed DOI PMC
Kurz M., Stefan N., Zhu J., Skern T. NS2B/3 proteolysis at the C-prM junction of the tick-borne encephalitis virus polyprotein is highly membrane dependent. Virus Res. 2012;168:48–55. doi: 10.1016/j.virusres.2012.06.012. PubMed DOI PMC
Stadler K., Allison S.L., Schalich J., Heinz F.X. Proteolytic activation of tick-borne encephalitis virus by furin. J. Virol. 1997;71:8475–8481. doi: 10.1128/jvi.71.11.8475-8481.1997. PubMed DOI PMC
Yu I.-M., Zhang W., Holdaway H.A., Li L., Kostyuchenko V.A., Chipman P.R., Kuhn R.J., Rossmann M.G., Chen J. Structure of the Immature Dengue Virus at Low pH Primes Proteolytic Maturation. Science. 2008;319:1834–1837. doi: 10.1126/science.1153264. PubMed DOI
Plevka P., Battisti A.J., Sheng J., Rossmann M.G. Mechanism for maturation-related reorganization of flavivirus glycoproteins. J. Struct. Biol. 2014;185:27–31. doi: 10.1016/j.jsb.2013.11.001. PubMed DOI PMC
Lin C., Rice C.M. The hepatitis C virus NS3 serine proteinase and NS4A cofactor: Establishment of a cell-free trans-processing assay. Proc. Natl. Acad. Sci. USA. 1995;92:7622–7626. doi: 10.1073/pnas.92.17.7622. PubMed DOI PMC
Clark V.C., Peter J.A., Nelson D.R. New therapeutic strategies in HCV: Second-generation protease inhibitors. Liver Int. 2013;33(Suppl 1):80–84. doi: 10.1111/liv.12061. PubMed DOI
Majerová T., Novotný P., Krýsová E., Konvalinka J. Exploiting the unique features of Zika and Dengue proteases for inhibitor design. Biochimie. 2019;166:132–141. doi: 10.1016/j.biochi.2019.05.004. PubMed DOI
Li Q., Kang C. Structure and Dynamics of Zika Virus Protease and Its Insights into Inhibitor Design. Biomedicines. 2021;9:1044. doi: 10.3390/biomedicines9081044. PubMed DOI PMC
Gupta G., Lim L., Song J. NMR and MD Studies Reveal That the Isolated Dengue NS3 Protease Is an Intrinsically Disordered Chymotrypsin Fold Which Absolutely Requests NS2B for Correct Folding and Functional Dynamics. PLoS ONE. 2015;10:e0134823. doi: 10.1371/journal.pone.0134823. PubMed DOI PMC
Yusof R., Clum S., Wetzel M., Murthy H.M.K., Padmanabhan R. Purified NS2B/NS3 Serine Protease of Dengue Virus Type 2 Exhibits Cofactor NS2B Dependence for Cleavage of Substrates with Dibasic Amino Acids. J. Biol. Chem. 2000;275:9963–9969. doi: 10.1074/jbc.275.14.9963. PubMed DOI
Brinkworth R.I., Fairlie D.P., Leung D., Young P.R. Homology model of the dengue 2 virus NS3 protease: Putative interactions with both substrate and NS2B cofactor. J. Gen. Virol. 1999;80:1167–1177. doi: 10.1099/0022-1317-80-5-1167. PubMed DOI
Leung D., Schroder K., White H., Fang N.-X., Stoermer M.J., Abbenante G., Martin J.L., Young P.R., Fairlie D.P. Activity of Recombinant Dengue 2 Virus NS3 Protease in the Presence of a Truncated NS2B Co-factor, Small Peptide Substrates, and Inhibitors. J. Biol. Chem. 2001;276:45762–45771. doi: 10.1074/jbc.M107360200. PubMed DOI
Lei J., Hansen G., Nitsche C., Klein C.D., Zhang L., Hilgenfeld R. Crystal structure of Zika virus NS2B-NS3 protease in complex with a boronate inhibitor. Science. 2016;353:503–505. doi: 10.1126/science.aag2419. PubMed DOI
Behnam M.A.M., Klein C.D.P. Conformational selection in the flaviviral NS2B-NS3 protease. Biochimie. 2020;174:117–125. doi: 10.1016/j.biochi.2020.04.014. PubMed DOI
Mastrangelo E., Milani M., Bollati M., Selisko B., Peyrane F., Pandini V., Sorrentino G., Canard B., Konarev P.V., Svergun D.I., et al. Crystal Structure and Activity of Kunjin Virus NS3 Helicase; Protease and Helicase Domain Assembly in the Full Length NS3 Protein. J. Mol. Biol. 2007;372:444–455. doi: 10.1016/j.jmb.2007.06.055. PubMed DOI
Xu T., Sampath A., Chao A., Wen D., Nanao M., Chene P., Vasudevan S.G., Lescar J. Structure of the Dengue Virus Helicase/Nucleoside Triphosphatase Catalytic Domain at a Resolution of 2.4 A. J. Virol. 2005;79:10278–10288. doi: 10.1128/JVI.79.16.10278-10288.2005. PubMed DOI PMC
Luo D., Wei N., Doan D.N., Paradkar P.N., Chong Y., Davidson A.D., Kotaka M., Lescar J., Vasudevan S.G. Flexibility between the protease and helicase domains of the dengue virus NS3 protein conferred by the linker region and its functional implications. J. Biol. Chem. 2010;285:18817–18827. doi: 10.1074/jbc.M109.090936. PubMed DOI PMC
Yao Y., Huo T., Lin Y.L., Nie S., Wu F., Hua Y., Wu J., Kneubehl A.R., Vogt M.B., Rico-Hesse R., et al. Discovery, X-ray Crystallography and Antiviral Activity of Allosteric Inhibitors of Flavivirus NS2B-NS3 Protease. J. Am. Chem. Soc. 2019;141:6832–6836. doi: 10.1021/jacs.9b02505. PubMed DOI PMC
Teo K.F., Wright P.J. Internal proteolysis of the NS3 protein specified by dengue virus 2. J. Gen. Virol. 1997;78:337–341. doi: 10.1099/0022-1317-78-2-337. PubMed DOI
Kümmerer B.M., Rice C.M. Mutations in the yellow fever virus nonstructural protein NS2A selectively block production of infectious particles. J. Virol. 2002;76:4773–4784. doi: 10.1128/JVI.76.10.4773-4784.2002. PubMed DOI PMC
Constant D.A., Mateo R., Nagamine C.M., Kirkegaard K. Targeting intramolecular proteinase NS2B/3 cleavages for trans-dominant inhibition of dengue virus. Proc. Natl. Acad. Sci. USA. 2018;115:10136–10141. doi: 10.1073/pnas.1805195115. PubMed DOI PMC
Chu J.J.H., Lee R.C.H., Ang M.J.Y., Wang W.-L., Lim H.A., Wee J.L.K., Joy J., Hill J., Brian Chia C.S. Antiviral activities of 15 dengue NS2B-NS3 protease inhibitors using a human cell-based viral quantification assay. Antivir. Res. 2015;118:68–74. doi: 10.1016/j.antiviral.2015.03.010. PubMed DOI
Tomlinson S.M., Watowich S.J. Anthracene-based inhibitors of dengue virus NS2B–NS3 protease. Antivir. Res. 2011;89:127–135. doi: 10.1016/j.antiviral.2010.12.006. PubMed DOI PMC
Swarbrick C., Zogali V., Chan K.W.K., Kiousis D., Gwee C.P., Wang S., Lescar J., Luo D., von Itzstein M., Matsoukas M.-T., et al. Amidoxime prodrugs convert to potent cell-active multimodal inhibitors of the dengue virus protease. Eur. J. Med. Chem. 2021;224:113695. doi: 10.1016/j.ejmech.2021.113695. PubMed DOI
Richter M., Leuthold M.M., Graf D., Bartenschlager R., Klein C.D. Prodrug Activation by a Viral Protease: Evaluating Combretastatin Peptide Hybrids to Selectively Target Infected Cells. ACS Med. Chem. Lett. 2019;10:1115–1121. doi: 10.1021/acsmedchemlett.9b00058. PubMed DOI PMC
Luo D., Xu T., Hunke C., Grüber G., Vasudevan S.G., Lescar J. Crystal structure of the NS3 protease-helicase from dengue virus. J. Virol. 2008;82:173–183. doi: 10.1128/JVI.01788-07. PubMed DOI PMC
Woo P.C.Y., Lau S.K.P., Li K.S.M., Poon R.W.S., Wong B.H.L., Tsoi H.-W., Yip B.C.K., Huang Y., Chan K.-H., Yuen K.-Y. Molecular diversity of coronaviruses in bats. Virology. 2006;351:180–187. doi: 10.1016/j.virol.2006.02.041. PubMed DOI PMC
Liya G., Yuguang W., Jian L., Huaiping Y., Xue H., Jianwei H., Jiaju M., Youran L., Chen M., Yiqing J. Studies on viral pneumonia related to novel coronavirus SARS-CoV-2, SARS-CoV, and MERS-CoV: A literature review. APMIS. 2020;128:423–432. doi: 10.1111/apm.13047. PubMed DOI
Spaan W., Cavanagh D., Horzinek M.C. Coronaviruses: Structure and Genome Expression. J. Gen. Virol. 1988;69:2939–2952. doi: 10.1099/0022-1317-69-12-2939. PubMed DOI
Rota P.A., Oberste M.S., Monroe S.S., Nix W.A., Campagnoli R., Icenogle J.P., Peñaranda S., Bankamp B., Maher K., Chen M.-h., et al. Characterization of a Novel Coronavirus Associated with Severe Acute Respiratory Syndrome. Science. 2003;300:1394–1399. doi: 10.1126/science.1085952. PubMed DOI
Ratia K., Saikatendu K.S., Santarsiero B.D., Barretto N., Baker S.C., Stevens R.C., Mesecar A.D. Severe acute respiratory syndrome coronavirus papain-like protease: Structure of a viral deubiquitinating enzyme. Proc. Natl. Acad. Sci. USA. 2006;103:5717–5722. doi: 10.1073/pnas.0510851103. PubMed DOI PMC
Ziebuhr J., Herold J., Siddell S.G. Characterization of a human coronavirus (strain 229E) 3C-like proteinase activity. J. Virol. 1995;69:4331–4338. doi: 10.1128/jvi.69.7.4331-4338.1995. PubMed DOI PMC
Bhatt P.R., Scaiola A., Loughran G., Leibundgut M., Kratzel A., Meurs R., Dreos R., O’Connor K.M., McMillan A., Bode J.W., et al. Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome. Science. 2021;372:1306–1313. doi: 10.1126/science.abf3546. PubMed DOI PMC
Grum-Tokars V., Ratia K., Begaye A., Baker S.C., Mesecar A.D. Evaluating the 3C-like protease activity of SARS-Coronavirus: Recommendations for standardized assays for drug discovery. Virus Res. 2008;133:63–73. doi: 10.1016/j.virusres.2007.02.015. PubMed DOI PMC
Zhang S., Zhong N., Xue F., Kang X., Ren X., Chen J., Jin C., Lou Z., Xia B. Three-dimensional domain swapping as a mechanism to lock the active conformation in a super-active octamer of SARS-CoV main protease. Protein Cell. 2010;1:371–383. doi: 10.1007/s13238-010-0044-8. PubMed DOI PMC
Chen H., Wei P., Huang C., Tan L., Liu Y., Lai L. Only one protomer is active in the dimer of SARS 3C-like proteinase. J. Biol. Chem. 2006;281:13894–13898. doi: 10.1074/jbc.M510745200. PubMed DOI PMC
Zhang L., Lin D., Sun X., Curth U., Drosten C., Sauerhering L., Becker S., Rox K., Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020;368:409–412. doi: 10.1126/science.abb3405. PubMed DOI PMC
Jaskolski M., Dauter Z., Shabalin I.G., Gilski M., Brzezinski D., Kowiel M., Rupp B., Wlodawer A. Crystallographic models of SARS-CoV-2 3CLpro: In-depth assessment of structure quality and validation. IUCrJ. 2021;8:238–256. doi: 10.1107/S2052252521001159. PubMed DOI PMC
Jaffrelot Inizan T., Célerse F., Adjoua O., El Ahdab D., Jolly L.H., Liu C., Ren P., Montes M., Lagarde N., Lagardère L., et al. High-resolution mining of the SARS-CoV-2 main protease conformational space: Supercomputer-driven unsupervised adaptive sampling. Chem. Sci. 2021;12:4889–4907. doi: 10.1039/D1SC00145K. PubMed DOI PMC
Barrila J., Bacha U., Freire E. Long-range cooperative interactions modulate dimerization in SARS 3CLpro. Biochemistry. 2006;45:14908–14916. doi: 10.1021/bi0616302. PubMed DOI PMC
Hsu M.F., Kuo C.J., Chang K.T., Chang H.C., Chou C.C., Ko T.P., Shr H.L., Chang G.G., Wang A.H., Liang P.H. Mechanism of the maturation process of SARS-CoV 3CL protease. J. Biol. Chem. 2005;280:31257–31266. doi: 10.1074/jbc.M502577200. PubMed DOI PMC
Muramatsu T., Kim Y.-T., Nishii W., Terada T., Shirouzu M., Yokoyama S. Autoprocessing mechanism of severe acute respiratory syndrome coronavirus 3C-like protease (SARS-CoV 3CLpro) from its polyproteins. FEBS J. 2013;280:2002–2013. doi: 10.1111/febs.12222. PubMed DOI PMC
Chen S., Jonas F., Shen C., Hilgenfeld R. Liberation of SARS-CoV main protease from the viral polyprotein: N-terminal autocleavage does not depend on the mature dimerization mode. Protein Cell. 2010;1:59–74. doi: 10.1007/s13238-010-0011-4. PubMed DOI PMC
Noske G.D., Nakamura A.M., Gawriljuk V.O., Fernandes R.S., Lima G.M.A., Rosa H.V.D., Pereira H.D., Zeri A.C.M., Nascimento A.F.Z., Freire M.C.L.C., et al. A Crystallographic Snapshot of SARS-CoV-2 Main Protease Maturation Process. J. Mol. Biol. 2021;433:167118. doi: 10.1016/j.jmb.2021.167118. PubMed DOI PMC
Roe M.K., Junod N.A., Young A.R., Beachboard D.C., Stobart C.C. Targeting novel structural and functional features of coronavirus protease nsp5 (3CLpro, Mpro) in the age of COVID-19. J. Gen. Virol. 2021;102:1558. doi: 10.1099/jgv.0.001558. PubMed DOI PMC
Lee J., Worrall L.J., Vuckovic M., Rosell F.I., Gentile F., Ton A.-T., Caveney N.A., Ban F., Cherkasov A., Paetzel M., et al. Crystallographic structure of wild-type SARS-CoV-2 main protease acyl-enzyme intermediate with physiological C-terminal autoprocessing site. Nat. Commun. 2020;11:5877. doi: 10.1038/s41467-020-19662-4. PubMed DOI PMC
Fan K., Wei P., Feng Q., Chen S., Huang C., Ma L., Lai B., Pei J., Liu Y., Chen J., et al. Biosynthesis, Purification, and Substrate Specificity of Severe Acute Respiratory Syndrome Coronavirus 3C-like Proteinase. J. Biol. Chem. 2004;279:1637–1642. doi: 10.1074/jbc.M310875200. PubMed DOI PMC
Shi J., Sivaraman J., Song J. Mechanism for Controlling the Dimer-Monomer Switch and Coupling Dimerization to Catalysis of the Severe Acute Respiratory Syndrome Coronavirus 3C-Like Protease. J. Virol. 2008;82:4620–4629. doi: 10.1128/JVI.02680-07. PubMed DOI PMC
Cheng S.-C., Chang G.-G., Chou C.-Y. Mutation of Glu-166 blocks the substrate-induced dimerization of SARS coronavirus main protease. Biophys. J. 2010;98:1327–1336. doi: 10.1016/j.bpj.2009.12.4272. PubMed DOI PMC
Muhaxhiri Z., Deng L., Shanker S., Sankaran B., Estes M.K., Palzkill T., Song Y., Prasad B.V.V. Structural basis of substrate specificity and protease inhibition in Norwalk virus. J. Virol. 2013;87:4281–4292. doi: 10.1128/JVI.02869-12. PubMed DOI PMC
Ingr M., Lange R., Halabalová V., Yehya A., Hrnčiřík J., Chevalier-Lucia D., Palmade L., Blayo C., Konvalinka J., Dumay E. Inhibitor and substrate binding induced stability of HIV-1 protease against sequential dissociation and unfolding revealed by high pressure spectroscopy and kinetics. PLoS ONE. 2015;10:e0119099. doi: 10.1371/journal.pone.0119099. PubMed DOI PMC
Shi J., Song J. The catalysis of the SARS 3C-like protease is under extensive regulation by its extra domain. FEBS J. 2006;273:1035–1045. doi: 10.1111/j.1742-4658.2006.05130.x. PubMed DOI PMC
Lim L., Gupta G., Roy A., Kang J., Srivastava S., Shi J., Song J. Structurally- and dynamically-driven allostery of the chymotrypsin-like proteases of SARS, Dengue and Zika viruses. Prog. Biophys. Mol. Biol. 2019;143:52–66. doi: 10.1016/j.pbiomolbio.2018.08.009. PubMed DOI PMC
Kokkonen P., Slanska M., Dockalova V., Pinto G.P., Sánchez-Carnerero E.M., Damborsky J., Klán P., Prokop Z., Bednar D. The impact of tunnel mutations on enzymatic catalysis depends on the tunnel-substrate complementarity and the rate-limiting step. Comput. Struct. Biotechnol. J. 2020;18:805–813. doi: 10.1016/j.csbj.2020.03.017. PubMed DOI PMC
Rathnayake A.D., Zheng J., Kim Y., Perera K.D., Mackin S., Meyerholz D.K., Kashipathy M.M., Battaile K.P., Lovell S., Perlman S., et al. 3C-like protease inhibitors block coronavirus replication in vitro and improve survival in MERS-CoV–infected mice. Sci. Transl. Med. 2020;12:eabc5332. doi: 10.1126/scitranslmed.abc5332. PubMed DOI PMC
Kim Y., Shivanna V., Narayanan S., Prior A.M., Weerasekara S., Hua D.H., Kankanamalage A.C.G., Groutas W.C., Chang K.-O. Broad-spectrum inhibitors against 3C-like proteases of feline coronaviruses and feline caliciviruses. J. Virol. 2015;89:4942–4950. doi: 10.1128/JVI.03688-14. PubMed DOI PMC
Vuong W., Khan M.B., Fischer C., Arutyunova E., Lamer T., Shields J., Saffran H.A., McKay R.T., van Belkum M.J., Joyce M.A., et al. Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nat. Commun. 2020;11:4282. doi: 10.1038/s41467-020-18096-2. PubMed DOI PMC
Vandyck K., Deval J. Considerations for the discovery and development of 3-chymotrypsin-like cysteine protease inhibitors targeting SARS-CoV-2 infection. Curr. Opin. Virol. 2021;49:36–40. doi: 10.1016/j.coviro.2021.04.006. PubMed DOI PMC
Günther S., Reinke P.Y.A., Fernández-García Y., Lieske J., Lane T.J., Ginn H.M., Koua F.H.M., Ehrt C., Ewert W., Oberthuer D., et al. X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease. Science. 2021;372:642–646. doi: 10.1126/science.abf7945. PubMed DOI PMC
Lo H.S., Hui K.P.Y., Lai H.M., He X., Khan K.S., Kaur S., Huang J., Li Z., Chan A.K.N., Cheung H.H., et al. Simeprevir Potently Suppresses SARS-CoV-2 Replication and Synergizes with Remdesivir. ACS Cent. Sci. 2021;7:792–802. doi: 10.1021/acscentsci.0c01186. PubMed DOI PMC
Mody V., Ho J., Wills S., Mawri A., Lawson L., Ebert M.C.C.J.C., Fortin G.M., Rayalam S., Taval S. Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as potential anti-SARS-CoV-2 agents. Commun. Biol. 2021;4:93. doi: 10.1038/s42003-020-01577-x. PubMed DOI PMC
Drayman N., DeMarco J.K., Jones K.A., Azizi S.A., Froggatt H.M., Tan K., Maltseva N.I., Chen S., Nicolaescu V., Dvorkin S., et al. Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2. Science. 2021;373:931–936. doi: 10.1126/science.abg5827. PubMed DOI PMC
Tian D., Liu Y., Liang C., Xin L., Xie X., Zhang D., Wan M., Li H., Fu X., Liu H., et al. An update review of emerging small-molecule therapeutic options for COVID-19. Biomed. Pharmacother. 2021;137:111313. doi: 10.1016/j.biopha.2021.111313. PubMed DOI PMC
Yang H., Yang J. A review of the latest research on M(pro) targeting SARS-COV inhibitors. RSC Med. Chem. 2021;12:1026–1036. doi: 10.1039/D1MD00066G. PubMed DOI PMC
El-Baba T.J., Lutomski C.A., Kantsadi A.L., Malla T.R., John T., Mikhailov V., Bolla J.R., Schofield C.J., Zitzmann N., Vakonakis I., et al. Allosteric Inhibition of the SARS-CoV-2 Main Protease: Insights from Mass Spectrometry Based Assays. Angew. Chem. Int. Ed. Engl. 2020;59:23544–23548. doi: 10.1002/anie.202010316. PubMed DOI PMC
Su H., Yao S., Zhao W., Zhang Y., Liu J., Shao Q., Wang Q., Li M., Xie H., Shang W., et al. Identification of pyrogallol as a warhead in design of covalent inhibitors for the SARS-CoV-2 3CL protease. Nat. Commun. 2021;12:3623. doi: 10.1038/s41467-021-23751-3. PubMed DOI PMC
Rizzuti B., Grande F., Conforti F., Jimenez-Alesanco A., Ceballos-Laita L., Ortega-Alarcon D., Vega S., Reyburn H.T., Abian O., Velazquez-Campoy A. Rutin Is a Low Micromolar Inhibitor of SARS-CoV-2 Main Protease 3CLpro: Implications for Drug Design of Quercetin Analogs. Biomedicines. 2021;9:375. doi: 10.3390/biomedicines9040375. PubMed DOI PMC
Rizzuti B., Ceballos-Laita L., Ortega-Alarcon D., Jimenez-Alesanco A., Vega S., Grande F., Conforti F., Abian O., Velazquez-Campoy A. Sub-Micromolar Inhibition of SARS-CoV-2 3CLpro by Natural Compounds. Pharmaceuticals. 2021;14:892. doi: 10.3390/ph14090892. PubMed DOI PMC
Peñalver L., Schmid P., Szamosvári D., Schildknecht S., Globisch C., Sawade K., Peter C., Böttcher T.A. Ligand Selection Strategy Identifies Chemical Probes Targeting the Proteases of SARS-CoV-2. Angew. Chem. Int. Ed. 2021;60:6799–6806. doi: 10.1002/anie.202016113. PubMed DOI PMC
Kneller D.W., Galanie S., Phillips G., O’Neill H.M., Coates L., Kovalevsky A. Malleability of the SARS-CoV-2 3CL M(pro) Active-Site Cavity Facilitates Binding of Clinical Antivirals. Structure. 2020;28:1313–1320. doi: 10.1016/j.str.2020.10.007. PubMed DOI PMC
Behnam M.A.M. Protein structural heterogeneity: A hypothesis for the basis of proteolytic recognition by the main protease of SARS-CoV and SARS-CoV-2. Biochimie. 2021;182:177–184. doi: 10.1016/j.biochi.2021.01.010. PubMed DOI PMC
Mattei S., Anders M., Konvalinka J., Kräusslich H.-G., Briggs J.A.G., Müller B. Induced maturation of human immunodeficiency virus. J. Virol. 2014;88:13722–13731. doi: 10.1128/JVI.02271-14. PubMed DOI PMC
Klemm T., Ebert G., Calleja D.J., Allison C.C., Richardson L.W., Bernardini J.P., Lu B.G., Kuchel N.W., Grohmann C., Shibata Y., et al. Mechanism and inhibition of the papain-like protease, PLpro, of SARS-CoV-2. EMBO J. 2020;39:e106275. doi: 10.15252/embj.2020106275. PubMed DOI PMC
Harcourt B.H., Jukneliene D., Kanjanahaluethai A., Bechill J., Severson K.M., Smith C.M., Rota P.A., Baker S.C. Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity. J. Virol. 2004;78:13600–13612. doi: 10.1128/JVI.78.24.13600-13612.2004. PubMed DOI PMC
Kanjanahaluethai A., Baker S.C. Identification of mouse hepatitis virus papain-like proteinase 2 activity. J. Virol. 2000;74:7911–7921. doi: 10.1128/JVI.74.17.7911-7921.2000. PubMed DOI PMC
Sawicki S.G., Sawicki D.L., Younker D., Meyer Y., Thiel V., Stokes H., Siddell S.G. Functional and Genetic Analysis of Coronavirus Replicase-Transcriptase Proteins. PLoS Pathog. 2005;1:e39. doi: 10.1371/journal.ppat.0010039. PubMed DOI PMC
Barretto N., Jukneliene D., Ratia K., Chen Z., Mesecar A.D., Baker S.C. The Papain-Like Protease of Severe Acute Respiratory Syndrome Coronavirus Has Deubiquitinating Activity. J. Virol. 2005;79:15189–15198. doi: 10.1128/JVI.79.24.15189-15198.2005. PubMed DOI PMC
Chen Z., Wang Y., Ratia K., Mesecar A.D., Wilkinson K.D., Baker S.C. Proteolytic Processing and Deubiquitinating Activity of Papain-Like Proteases of Human Coronavirus NL63. J. Virol. 2007;81:6007–6018. doi: 10.1128/JVI.02747-06. PubMed DOI PMC
Shin D., Mukherjee R., Grewe D., Bojkova D., Baek K., Bhattacharya A., Schulz L., Widera M., Mehdipour A.R., Tascher G., et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature. 2020;587:657–662. doi: 10.1038/s41586-020-2601-5. PubMed DOI PMC
Yan S., Wu G. Spatial and temporal roles of SARS-CoV PLpro—A snapshot. FASEB J. 2021;35:e21197. doi: 10.1096/fj.202002271. PubMed DOI PMC
Cihlova B., Huskova A., Böserle J., Nencka R., Boura E., Silhan J. High-Throughput Fluorescent Assay for Inhibitor Screening of Proteases from RNA Viruses. Molecules. 2021;26:3792. doi: 10.3390/molecules26133792. PubMed DOI PMC
Lin M.H., Moses D.C., Hsieh C.H., Cheng S.C., Chen Y.H., Sun C.Y., Chou C.Y. Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes. Antivir. Res. 2018;150:155–163. doi: 10.1016/j.antiviral.2017.12.015. PubMed DOI PMC
Ara A., Kadoya R., Ishimura H., Shimamura K., Sylte I., Kurita N. Specific interactions between zinc metalloproteinase anditsinhibitors: Ab initio fragment molecular orbital calculations. J. Mol. Graph. Model. 2017;75:277–286. doi: 10.1016/j.jmgm.2017.05.013. PubMed DOI
Armstrong L.A., Lange S.M., Dee Cesare V., Matthews S.P., Nirujogi R.S., Cole I., Hope A., Cunningham F., Toth R., Mukherjee R., et al. Biochemical characterization of protease activity of Nsp3 from SARS-CoV-2 and its inhibition bynanobodies. PLoS ONE. 2021;16:e0253364. doi: 10.1371/journal.pone.0253364. PubMed DOI PMC
The zymogenic form of SARS-CoV-2 main protease: A discrete target for drug discovery
Viral proteases as therapeutic targets