High-Throughput Fluorescent Assay for Inhibitor Screening of Proteases from RNA Viruses
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000729
European Regional Development Fund
RVO: 61388963
Akademie Věd České Republiky
PubMed
34206406
PubMed Central
PMC8270262
DOI
10.3390/molecules26133792
PII: molecules26133792
Knihovny.cz E-zdroje
- Klíčová slova
- SARS-CoV-2, TBEV, discovery, drug, flavivirus, high-throughput screening, papain-like, protease, virus,
- MeSH
- antivirové látky farmakologie MeSH
- farmakoterapie COVID-19 MeSH
- fluorescenční barviva chemie MeSH
- inhibitory proteas farmakologie MeSH
- koronavirové proteasy podobné papainu antagonisté a inhibitory chemie genetika metabolismus MeSH
- lidé MeSH
- preklinické hodnocení léčiv MeSH
- rezonanční přenos fluorescenční energie metody MeSH
- RNA-helikasy antagonisté a inhibitory chemie genetika metabolismus MeSH
- RNA-viry enzymologie MeSH
- rychlé screeningové testy metody MeSH
- SARS-CoV-2 enzymologie MeSH
- serinové endopeptidasy chemie genetika metabolismus MeSH
- virové nestrukturální proteiny antagonisté a inhibitory chemie genetika metabolismus MeSH
- viry klíšťové encefalitidy enzymologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antivirové látky MeSH
- fluorescenční barviva MeSH
- inhibitory proteas MeSH
- koronavirové proteasy podobné papainu MeSH
- NS3 protein, flavivirus MeSH Prohlížeč
- papain-like protease, SARS-CoV-2 MeSH Prohlížeč
- RNA-helikasy MeSH
- serinové endopeptidasy MeSH
- virové nestrukturální proteiny MeSH
Spanish flu, polio epidemics, and the ongoing COVID-19 pandemic are the most profound examples of severe widespread diseases caused by RNA viruses. The coronavirus pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demands affordable and reliable assays for testing antivirals. To test inhibitors of viral proteases, we have developed an inexpensive high-throughput assay based on fluorescent energy transfer (FRET). We assayed an array of inhibitors for papain-like protease from SARS-CoV-2 and validated it on protease from the tick-borne encephalitis virus to emphasize its versatility. The reaction progress is monitored as loss of FRET signal of the substrate. This robust and reproducible assay can be used for testing the inhibitors in 96- or 384-well plates.
Zobrazit více v PubMed
Woolhouse M.E.J., Brierley L. Epidemiological characteristics of human-infective RNA viruses. Sci. Data. 2018;5:180017. doi: 10.1038/sdata.2018.17. PubMed DOI PMC
Wolf Y.I., Kazlauskas D., Iranzo J., Lucia-Sanz A., Kuhn J.H., Krupovic M., Dolja V.V., Koonin E.V. Origins and evolution of the global RNA virome. MBio. 2018;9:e02329-18. doi: 10.1128/mBio.02329-18. PubMed DOI PMC
Domingo E., Holland J.J. RNA virus mutations and fitness for survival. Annu. Rev. Microbiol. 1997;51:151–178. doi: 10.1146/annurev.micro.51.1.151. PubMed DOI
Bentley K., Evans D.J. Mechanisms and consequences of positive-strand RNA virus recombination. J. Gen. Virol. 2018;99:1345–1356. doi: 10.1099/jgv.0.001142. PubMed DOI
Rosenberg R. Detecting the emergence of novel, zoonotic viruses pathogenic to humans. Cell Mol. Life Sci. 2015;72:1115–1125. doi: 10.1007/s00018-014-1785-y. PubMed DOI PMC
Holmes E.C. The evolutionary genetics of emerging viruses. Annu. Rev. Ecol. Evol. Syst. 2009;40:353–372. doi: 10.1146/annurev.ecolsys.110308.120248. DOI
De Clercq E. Strategies in the design of antiviral drugs. Nat. Rev. Drug Discov. 2002;1:13–25. doi: 10.1038/nrd703. PubMed DOI
Dzimianski J.V., Scholte F.E.M., Bergeron E., Pegan S.D. ISG15: It’s complicated. J. Mol. Biol. 2019;431:4203–4216. doi: 10.1016/j.jmb.2019.03.013. PubMed DOI PMC
Perng Y.C., Lenschow D.J. ISG15 in antiviral immunity and beyond. Nat. Rev. Microbiol. 2018;16:423–439. doi: 10.1038/s41579-018-0020-5. PubMed DOI PMC
Devaraj S.G., Wang N., Chen Z., Chen Z., Tseng M., Barretto N., Lin R., Peters C.J., Tseng C.T., Baker S.C., et al. Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. J. Biol. Chem. 2007;282:32208–32221. doi: 10.1074/jbc.M704870200. PubMed DOI PMC
Bailey-Elkin B.A., Knaap R.C., Johnson G.G., Dalebout T.J., Ninaber D.K., van Kasteren P.B., Bredenbeek P.J., Snijder E.J., Kikkert M., Mark B.L. Crystal structure of the Middle East respiratory syndrome coronavirus (MERS-CoV) papain-like protease bound to ubiquitin facilitates targeted disruption of deubiquitinating activity to demonstrate its role in innate immune suppression. J. Biol. Chem. 2014;289:34667–34682. doi: 10.1074/jbc.M114.609644. PubMed DOI PMC
Ratia K., Pegan S., Takayama J., Sleeman K., Coughlin M., Baliji S., Chaudhuri R., Fu W., Prabhakar B.S., Johnson M.E., et al. A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication. Proc. Natl. Acad. Sci. USA. 2008;105:16119–16124. doi: 10.1073/pnas.0805240105. PubMed DOI PMC
Ruzek D., Zupanc T.A., Borde J., Chrdle A., Eyer L., Karganova G., Kholodilov I., Knap N., Kozlovskaya L., Matveev A., et al. Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antivir. Res. 2019;164:23–51. doi: 10.1016/j.antiviral.2019.01.014. PubMed DOI
Piesman J., Eisen L. Prevention of tick-borne diseases. Annu. Rev. Entomol. 2008;53:323–343. doi: 10.1146/annurev.ento.53.103106.093429. PubMed DOI
Pfeffer M., Dobler G. Emergence of zoonotic arboviruses by animal trade and migration. Parasit. Vectors. 2010;3:35. doi: 10.1186/1756-3305-3-35. PubMed DOI PMC
Dubankova A., Boura E. Structure of the yellow fever NS5 protein reveals conserved drug targets shared among flaviviruses. Antivir. Res. 2019;169:104536. doi: 10.1016/j.antiviral.2019.104536. PubMed DOI
Erbel P., Schiering N., D’Arcy A., Renatus M., Kroemer M., Lim S.P., Yin Z., Keller T.H., Vasudevan S.G., Hommel U. Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nat. Struct. Mol. Biol. 2006;13:372–373. doi: 10.1038/nsmb1073. PubMed DOI
Phoo W.W., Li Y., Zhang Z., Lee M.Y., Loh Y.R., Tan Y.B., Ng E.Y., Lescar J., Kang C., Luo D. Structure of the NS2B-NS3 protease from Zika virus after self- cleavage. Nat. Commun. 2016;7:13410. doi: 10.1038/ncomms13410. PubMed DOI PMC
Hercik K., Brynda J., Nencka R., Boura E. Structural basis of Zika virus methyltransferase inhibition by sinefungin. Arch. Virol. 2017;162:2091–2096. doi: 10.1007/s00705-017-3345-x. PubMed DOI
Hercik K., Kozak J., Sala M., Dejmek M., Hrebabecky H., Zbornikova E., Smola M., Ruzek D., Nencka R., Boura E. Adenosine triphosphate analogs can efficiently inhibit the Zika virus RNA-dependent RNA polymerase. Antivir. Res. 2017;137:131–133. doi: 10.1016/j.antiviral.2016.11.020. PubMed DOI
Konkolova E., Dejmek M., Hrebabecky H., Sala M., Boserle J., Nencka R., Boura E. Remdesivir triphosphate can efficiently inhibit the RNA-dependent RNA polymerase from various flaviviruses. Antivir. Res. 2020;182:104899. doi: 10.1016/j.antiviral.2020.104899. PubMed DOI PMC
da Fonseca N.J., Jr., Afonso M.Q.L., Pedersolli N.G., de Oliveira L.C., Andrade D.S., Bleicher L. Sequence, structure and function relationships in flaviviruses as assessed by evolutive aspects of its conserved non-structural protein domains. Biochem. Biophys. Res. Commun. 2017;492:565–571. doi: 10.1016/j.bbrc.2017.01.041. PubMed DOI
Chambers T.J., Weir R.C., Grakoui A., McCourt D.W., Bazan J.F., Fletterick R.J., Rice C.M. Evidence that the N-terminal domain of nonstructural protein NS3 from yellow fever virus is a serine protease responsible for site-specific cleavages in the viral polyprotein. Proc. Natl. Acad. Sci. USA. 1990;87:8898–8902. doi: 10.1073/pnas.87.22.8898. PubMed DOI PMC
Carnero A. High throughput screening in drug discovery. Clin. Transl. Oncol. 2006;8:482–490. doi: 10.1007/s12094-006-0048-2. PubMed DOI
Lakowicz J.R. Principles of Fluorescence Spectroscopy. 3rd ed. Volume 26. Springer; New York, NY, USA: 2006. p. 945.
Albertazzi L., Arosio D., Marchetti L., Ricci F., Beltram F. Quantitative FRET analysis with the E0GFP-mCherry fluorescent protein pair. Photochem. Photobiol. 2009;85:287–297. doi: 10.1111/j.1751-1097.2008.00435.x. PubMed DOI
Jin S., Ellis E., Veetil J.V., Yao H., Ye K. Visualization of human immunodeficiency virus protease inhibition using a novel Förster resonance energy transfer molecular probe. Biotechnol. Prog. 2011;27:1107–1114. doi: 10.1002/btpr.628. PubMed DOI PMC
Neefjes J., Dantuma N.P. Fluorescent probes for proteolysis: Tools for drug discovery. Nat. Rev. Drug Discov. 2004;3:58–69. doi: 10.1038/nrd1282. PubMed DOI PMC
Shannon A.E., Pedroso M.M., Chappell K.J., Watterson D., Liebscher S., Kok W.M., Fairlie D.P., Schenk G., Young P.R. Product release is rate-limiting for catalytic processing by the Dengue virus protease. Sci. Rep. 2016;6:37539. doi: 10.1038/srep37539. PubMed DOI PMC
Shin D., Mukherjee R., Grewe D., Bojkova D., Baek K., Bhattacharya A., Schulz L., Widera M., Mehdipour A.R., Tascher G., et al. Papain-like protease regulates SARS-CoV- 2 viral spread and innate immunity. Nature. 2020;587:657–662. doi: 10.1038/s41586-020-2601-5. PubMed DOI PMC
Voss S., Nitsche C. Inhibitors of the Zika virus protease NS2B-NS3. Bioorg. Med. Chem. Lett. 2020;30:126965. doi: 10.1016/j.bmcl.2020.126965. PubMed DOI
Billinger E., Viljanen J., Lind S.B., Johansson G. Inhibition properties of free and conjugated leupeptin analogues. FEBS Open Bio. 2020;10:2605–2615. doi: 10.1002/2211-5463.12994. PubMed DOI PMC
Ghosh A.K., Takayama J., Aubin Y., Ratia K., Chaudhuri R., Baez Y., Sleeman K., Coughlin M., Nichols D.B., Mulhearn D.C., et al. Structure-based design, synthesis, and biological evaluation of a series of novel and reversible inhibitors for the severe acute respiratory syndrome- coronavirus papain-like protease. J. Med. Chem. 2009;52:5228–5240. doi: 10.1021/jm900611t. PubMed DOI PMC
Galkin A., Kulakova L., Lim K., Chen C.Z., Zheng W., Turko I.V., Herzberg O. Structural basis for inactivation of Giardia lamblia carbamate Kinase by disulfiram. J. Biol. Chem. 2014;289:10502–10509. doi: 10.1074/jbc.M114.553123. PubMed DOI PMC
Lin M.H., Moses D.C., Hsieh C.H., Cheng S.C., Chen Y.H., Sun C.Y., Chou C.Y. Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes. Antivir. Res. 2018;150:155–163. doi: 10.1016/j.antiviral.2017.12.015. PubMed DOI PMC
Shiryaev S.A., Ratnikov B.I., Chekanov A.V., Sikora S., Rozanov D.V., Godzik A., Wang J., Smith J.W., Huang Z., Lindberg I., et al. Cleavage targets and the D-arginine-based inhibitors of the West Nile virus NS3 processing proteinase. Biochem. J. 2006;393 Pt 2:503–511. doi: 10.1042/BJ20051374. PubMed DOI PMC
Leung D., Schroder K., White H., Fang N.X., Stoermer M.J., Abbenante G., Martin J.L., Young P.R., Fairlie D.P. Activity of recombinant dengue 2 virus NS3 protease in the presence of a truncated NS2B co-factor, small peptide substrates, and inhibitors. J. Biol. Chem. 2001;276:45762–45771. doi: 10.1074/jbc.M107360200. PubMed DOI
Liu Y., Song Y., Madahar V., Liao J. Quantitative Forster resonance energy transfer analysis for kinetic determinations of SUMO-specific protease. Anal. Biochem. 2012;422:14–21. doi: 10.1016/j.ab.2011.12.019. PubMed DOI
Nakata H., Ohtsuki T., Sisido M. A protease inhibitor discovery method using fluorescence correlation spectroscopy with position-specific labeled protein substrates. Anal. Biochem. 2009;390:121–125. doi: 10.1016/j.ab.2009.03.049. PubMed DOI
Degorce F., Card A., Soh S., Trinquet E., Knapik G.P., Xie B. HTRF: A technology tailored for drug discovery—a review of theoretical aspects and recent applications. Curr. Chem. Genom. 2009;3:22–32. doi: 10.2174/1875397300903010022. PubMed DOI PMC
Gibson D.G., Young L., Chuang R.Y., Venter J.C., Hutchison C.A., 3rd, Smith H.O. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods. 2009;6:343–345. doi: 10.1038/nmeth.1318. PubMed DOI
Zhang J.H., Chung T.D., Oldenburg K.R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 1999;4:67–73. doi: 10.1177/108705719900400206. PubMed DOI
A Helquat-like Compound as a Potent Inhibitor of Flaviviral and Coronaviral Polymerases
Coronaviral RNA-methyltransferases: function, structure and inhibition