Model of abasic site DNA cross-link repair; from the architecture of NEIL3 DNA binding domains to the X-structure model

. 2022 Oct 14 ; 50 (18) : 10436-10448.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36155818

Covalent DNA interstrand crosslinks are toxic DNA damage lesions that block the replication machinery that can cause a genomic instability. Ubiquitous abasic DNA sites are particularly susceptible to spontaneous cross-linking with a base from the opposite DNA strand. Detection of a crosslink induces the DNA helicase ubiquitination that recruits NEIL3, a DNA glycosylase responsible for the lesion removal. NEIL3 utilizes several zinc finger domains indispensable for its catalytic NEI domain repairing activity. They recruit NEIL3 to the repair site and bind the single-stranded DNA. However, the molecular mechanism underlying their roles in the repair process is unknown. Here, we report the structure of the tandem zinc-finger GRF domain of NEIL3 and reveal the molecular details of its interaction with DNA. Our biochemical data indicate the preferential binding of the GRF domain to the replication fork. In addition, we obtained a structure for the catalytic NEI domain in complex with the DNA reaction intermediate that allowed us to construct and validate a model for the interplay between the NEI and GRF domains in the recognition of an interstrand cross-link. Our results suggest a mechanism for recognition of the DNA replication X-structure by NEIL3, a key step in the interstrand cross-link repair.

Zobrazit více v PubMed

Zhang J., Walter J.C.. Mechanism and regulation of incisions during DNA interstrand cross-link repair. DNA Repair (Amst.). 2014; 19:135–142. PubMed PMC

Langevin F., Crossan G.P., Rosado I.V., Arends M.J., Patel K.J.. Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature. 2011; 475:53–59. PubMed

Aqeel A., Zafar J., Ehsan N., Qurat-Ul-Ain, Tariq M., Hannan A.. Behzadi P. Interstrand crosslink repair: new horizons of DNA damage repair. DNA. 2021; Rijeka: IntechOpen.

Coste F., Malinge J.M., Serre L., Shepard W., Roth M., Leng M., Zelwer C.. Crystal structure of a double-stranded DNA containing a cisplatin interstrand cross-link at 1.63 Å resolution: hydration at the platinated site. Nucleic Acids Res. 1999; 27:1837–1846. PubMed PMC

Kellum A.H., Qiu D.Y., Voehler M.W., Martin W., Gates K.S., Stone M.P.. Structure of a stable interstrand DNA cross-link involving a β- N-glycosyl linkage between an N6-dA amino group and an abasic site. Biochemistry. 2021; 60:41–52. PubMed PMC

Huang H., Hopkins P.B.. DNA interstrand cross-linking by formaldehyde: nucleotide sequence preference and covalent structure of the predominant cross-link formed in synthetic oligonucleotides. J. Am. Chem. Soc. 1993; 115:9402–9408.

Cho Y.J., Kozekov I.D., Harris T.M., Rizzo C.J., Stone M.P.. Stereochemistry modulates the stability of reduced interstrand cross-links arising from R-and. Chem. Res. Toxicol. 2001; 14:2608–2621. PubMed PMC

Rink S.M., Solomon M.S., Taylor M.J., Rajur S.B., McLaughlin L.W., Hopkins P.B.. Covalent structure of a nitrogen mustard-induced DNA interstrand cross-link: an N7-to-N7 linkage of deoxyguanosine residues at the duplex sequence 5′-d(GNC). J. Am. Chem. Soc. 1993; 115:2551–2557.

Dutta S., Chowdhury G., Gates K.S.. Interstrand cross-links generated by abasic sites in duplex DNA. J. Am. Chem. Soc. 2007; 129:1852–1853. PubMed PMC

Johnson K.M., Price N.E., Wang J., Fekry M.I., Dutta S., Seiner D.R., Wang Y., Gates K.S.. On the formation and properties of interstrand DNA-DNA cross-links forged by reaction of an abasic site with the opposing guanine residue of 5′-CAp sequences in duplex DNA. J. Am. Chem. Soc. 2013; 135:1015–1025. PubMed PMC

Price N.E., Johnson K.M., Wang J., Fekry M.I., Wang Y., Gates K.S.. Interstrand DNA–DNA cross-link formation between adenine residues and abasic sites in duplex DNA. J. Am. Chem. Soc. 2014; 136:3483–3490. PubMed PMC

Huskova A., Landova B., Boura E., Silhan J.. The rate of formation and stability of abasic site interstrand crosslinks in the DNA duplex. DNA Repair (Amst.). 2022; 113:103300. PubMed

Garaycoechea J.I., Crossan G.P., Langevin F., Daly M., Arends M.J., Patel K.J.. Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function. Nature. 2012; 489:571–575. PubMed

Räschle M., Knipsheer P., Enoiu M., Angelov T., Sun J., Griffith J.D., Ellenberger T.E., Schärer O.D., Walter J.C.. Mechanism of replication-coupled DNA interstrand crosslink repair. Cell. 2008; 134:969–980. PubMed PMC

Knipscheer P., Räschle M., Smogorzewska A., Enoiu M., Ho T.V., Schärer O.D., Elledge S.J., Walter J.C.. The fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science. 2009; 326:1698–1701. PubMed PMC

Auerbach A.D., Wolman S.R.. Susceptibility of fanconi's anaemia fibroblasts to chromosome damage by carcinogens. Nature. 1976; 261:494–496. PubMed

Kim H., D’Andrea A.D.. Regulation of DNA cross-link repair by the fanconi anemia/BRCA pathway. Genes Dev. 2012; 26:1393–1408. PubMed PMC

Sasaki M.S., Tonomura A.. A high susceptibility of fanconi's anemia to chromosome breakage by DNA cross-linking agents. Cancer Res. 1973; 33:1829–1836. PubMed

Semlow D.R., Zhang J., Budzowska M., Drohat A.C., Walter J.C.. Replication-Dependent unhooking of DNA interstrand cross-links by the NEIL3 glycosylase. Cell. 2016; 167:498–511. PubMed PMC

Takao M., Oohata Y., Kitadokoro K., Kobayashi K., Iwai S., Yasui A., Yonei S., Zhang Q.M.. Human Nei-like protein NEIL3 has AP lyase activity specific for single-stranded DNA and confers oxidative stress resistance in escherichia coli mutant. Genes Cells. 2009; 14:261–270. PubMed

Liu M., Bandaru V., Bond J.P., Jaruga P., Zhao X., Christov P.P., Burrows C.J., Rizzo C.J., Dizdaroglu M., Wallace S.S.. The mouse ortholog of NEIL3 is a functional DNA glycosylase in vitro and in vivo. Proc. Natl. Acad. Sci. U.S.A. 2010; 107:4925–4930. PubMed PMC

Wallace S.S. Base excision repair: a critical player in many games. DNA Repair (Amst.). 2014; 19:14–26. PubMed PMC

Bandaru V., Sunkara S., Wallace S.S., Bond J.P.. A novel human DNA glycosylase that removes oxidative DNA damage and is homologous to escherichia coli endonuclease VIII. DNA Repair (Amst.). 2002; 1:517–529. PubMed

Hazra T.K., Kow Y.W., Hatahet Z., Imhoff B., Boldogh I., Mokkapati S.K., Mitra S., Izumi T.. Identification and characterization of a novel human DNA glycosylase for repair of cytosine-derived lesions. J. Biol. Chem. 2002; 277:30417–30420. PubMed

Morland I., Rolseth V., Luna L., Rognes T., Bjørås M., Seeberg E.. Human DNA glycosylases of the bacterial Fpg/MutM superfamily: an alternative pathway for the repair of 8-oxoguanine and other oxidation products in DNA. Nucleic Acids Res. 2002; 30:4926–4936. PubMed PMC

Takao M., Kanno S., Shiromoto T., Hasegawa R., Ide H., Ikeda S., Sarker A.H., Seki S., Xing J.Z., Le X.C.et al. .. Novel nuclear and mitochondrial glycosylases revealed by disruption of the mouse nth1 gene encoding an endonuclease III homolog for repair of thymine glycols. EMBO J. 2002; 21:3486–3493. PubMed PMC

Bhagwat M., Gerlt J.. 3′- and 5′-strand cleavage reactions catalyzed by the fpg protein from escherichia coli occur via successive beta- and delta-elimination mechanisms, respectively. Biochemistry. 1996; 35:659–665. PubMed

Bruner S.D., Norman D.P., Verdine G.L.. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature. 2000; 403:859–866. PubMed

Krokan H.E., Bjoras M.. Chapter 06: base excision repair. Cold Spring Harb. Perspect. Biol. 2013; 5:a012583. PubMed PMC

Silhan J., Zhao Q., Boura E., Thomson H., Förster A., Tang C.M., Freemont P.S., Baldwin G.S.. Structural basis for recognition and repair of the 3′-phosphate by NExo, a base excision DNA repair nuclease from neisseria meningitidis. Nucleic Acids Res. 2018; 46:11980–11989. PubMed PMC

Zhou J., Liu M., Fleming A.M., Burrows C.J., Wallace S.S.. Neil3 and NEIL1 DNA glycosylases remove oxidative damages from quadruplex DNA and exhibit preferences for lesions in the telomeric sequence context. J. Biol. Chem. 2013; 288:27263–27272. PubMed PMC

Wu R.A., Semlow D.R., Kamimae-Lanning A.N., Kochenova O.V, Chistol G., Hodskinson M.R.G., Amunugama R., Sparks J.L., Wang M., Deng L.et al. .. TRAIP is a master regulator of DNA interstrand crosslink repair. Nature. 2019; 567:267–272. PubMed PMC

Wallace B.D., Berman Z., Mueller G.A., Lin Y., Chang T., Andres S.N., Wojtaszek J.L., DeRose E.F., Appel C.D., London R.E.et al. .. APE2 Zf-GRF facilitates 3′-5′ resection of DNA damage following oxidative stress. Proc. Natl Acad. Sci. U.S.A. 2017; 114:304–309. PubMed PMC

Ha A., Lin Y., Yan S.. A non-canonical role for the DNA glycosylase NEIL3 in suppressing APE1 endonuclease-mediated ssDNA damage. J. Biol. Chem. 2020; 295:14222–14235. PubMed PMC

Rodriguez A.A., Wojtaszek J.L., Greer B.H., Haldar T., Gates K.S., Williams R.S., Eichman B.F.. An autoinhibitory role for the GRF zinc finger domain of DNA glycosylase NEIL3. J. Biol. Chem. 2020; 295:15566–15575. PubMed PMC

Gibson D.G., Young L., Chuang R.-Y., Venter J.C., Hutchison C.A., Smith H.O.. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods. 2009; 6:343–345. PubMed

Cihlova B., Huskova A., Böserle J., Nencka R., Boura E., Silhan J.. High-throughput fluorescent assay for inhibitor screening of proteases from rna viruses. Molecules. 2021; 26:3792. PubMed PMC

Landova B., Silhan J.. Conformational changes of DNA repair glycosylase MutM triggered by DNA binding. FEBS Lett. 2020; 594:3032–3044. PubMed

Renshaw P.S., Lightbody K.L., Veverka V., Muskett F.W., Kelly G., Frenkiel T.A., Gordon S.V., Hewinson R.G., Burke B., Norman J.et al. .. Structure and function of the complex formed by the tuberculosis virulence factors CFP-10 and ESAT-6. EMBO J. 2005; 24:2491–2498. PubMed PMC

Veverka V., Lennie G., Crabbe T., Bird I., Taylor R.J., Carr M.D.. NMR assignment of the mTOR domain responsible for rapamycin binding. J. Biomol. NMR. 2006; 36:3. PubMed

Herrmann T., Güntert P., Wüthrich K.. Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol. 2002; 319:209–227. PubMed

Shen Y., Delaglio F., Cornilescu G., Bax A.. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR. 2009; 44:213–223. PubMed PMC

Harjes E., Harjes S., Wohlgemuth S., Müller K.H., Krieger E., Herrmann C., Bayer P.. GTP-Ras disrupts the intramolecular complex of C1 and RA domains of nore1. Structure. 2006; 14:881–888. PubMed

Ferrage F., Reichel A., Battacharya S., Cowburn D., Ghose R.. On the measurement of 15N-{1H} nuclear overhauser effects. 2. Effects of the saturation scheme and water signal suppression. J. Magn. Reson. 2010; 207:294–303. PubMed PMC

Ferrage F. Shekhtman A., Burz D.S.. Protein dynamics by 15N nuclear magnetic relaxation. Protein NMR Techniques. 2012; Totowa, NJ: Humana Press; 141–163. PubMed

Veverka V., Crabbe T., Bird I., Lennie G., Muskett F.W., Taylor R.J., Carr M.D.. Structural characterization of the interaction of mTOR with phosphatidic acid and a novel class of inhibitor: compelling evidence for a central role of the FRB domain in small molecule-mediated regulation of mTOR. Oncogene. 2008; 27:585–595. PubMed

Harper C.C., Berg J.M., Gould S.J.. PEX5 binds the PTS1 independently of hsp70 and the peroxin PEX12. J. Biol. Chem. 2003; 278:7897–7901. PubMed

Obsilova V., Herman P., Vecer J., Sulc M., Teisinger J., Obsil T.. 14-3-3ζ C-terminal stretch changes its conformation upon ligand binding and phosphorylation at thr232. J. Biol. Chem. 2004; 279:4531–4540. PubMed

Silhan J., Obsilova V., Vecer J., Herman P., Sulc M., Teisinger J., Obsil T.. 14-3-3 protein C-terminal stretch occupies ligand binding groove and is displaced by phosphopeptide binding. J. Biol. Chem. 2004; 279:49113–49119. PubMed

Kabsch W. xds. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010; 66:125–132. PubMed PMC

Evans P.R., Murshudov G.N.. How good are my data and what is the resolution. Acta Crystallogr. Sect D Biol. Crystallogr. 2013; 69:1204–1214. PubMed PMC

Liu M., Imamura K., Averill A.M., Wallace S.S., Doublié S.. Structural characterization of a mouse ortholog of human NEIL3 with a marked preference for single-stranded DNA. Structure. 2013; 21:247–256. PubMed PMC

Emsley P., Lohkamp B., Scott W.G., Cowtan K.. Features and development of coot. Acta Crystallogr. Sect D Biol. Crystallogr. 2010; 66:486–501. PubMed PMC

Liebschner D., Afonine P.V., Baker M.L., Bunkoczi G., Chen V.B., Croll T.I., Hintze B., Hung L.W., Jain S., McCoy A.J.et al. .. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in phenix. Acta Crystallogr. Sect. D Struct. Biol. 2019; 75:861–877. PubMed PMC

Tan K., Zhou Q., Cheng B., Zhang Z., Joachimiak A., Tse-Dinh Y.C.. Structural basis for suppression of hypernegative DNA supercoiling by E. coli topoisomerase I. Nucleic Acids Res. 2015; 43:11031–11046. PubMed PMC

Imani Nejad M., Housh K., Rodriguez A.A., Haldar T., Kathe S., Wallace S.S., Eichman B.F., Gates K.S.. Unhooking of an interstrand cross-link at DNA fork structures by the DNA glycosylase NEIL3. DNA Repair (Amst.). 2020; 86:102752. PubMed PMC

Gilboa R., Zharkov D.O., Golan G., Fernandes A.S., Gerchman S.E., Matz E., Kycia J.H., Grollman A.P., Shoham G.. Structure of formamidopyrimidine-DNA glycosylase covalently complexed to DNA. J. Biol. Chem. 2002; 277:19811–19816. PubMed

Liu M., Doublié S., Wallace S.S.. Neil3, the final frontier for the DNA glycosylases that recognize oxidative damage. Mutat. Res. - Fundam. Mol. Mech. Mutagen. 2013; 743–744:4–11. PubMed PMC

Sugahara M., Mikawa T., Kumasaka T., Yamamoto M., Kato R., Fukuyama K., Inoue Y., Kuramitsu S.. Crystal structure of a repair enzyme of oxidatively damaged DNA, MutM (Fpg), from an extreme thermophile, thermus thermophilus HB8. EMBO J. 2000; 19:3857–3869. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...