Structural basis for recognition and repair of the 3'-phosphate by NExo, a base excision DNA repair nuclease from Neisseria meningitidis
Language English Country Great Britain, England Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
102908/Z/13/Z
Wellcome Trust - United Kingdom
084369/Z/07/Z
Wellcome Trust - United Kingdom
PubMed
30329088
PubMed Central
PMC6294502
DOI
10.1093/nar/gky934
PII: 5133625
Knihovny.cz E-resources
- MeSH
- Bacterial Proteins chemistry MeSH
- DNA-Binding Proteins chemistry MeSH
- DNA-(Apurinic or Apyrimidinic Site) Lyase chemistry MeSH
- DNA chemistry MeSH
- Endonucleases metabolism MeSH
- Exodeoxyribonucleases chemistry MeSH
- Catalytic Domain MeSH
- Protein Conformation MeSH
- Crystallography, X-Ray MeSH
- Mutation MeSH
- Mutagenesis, Site-Directed MeSH
- Neisseria meningitidis enzymology genetics MeSH
- DNA Repair * MeSH
- Oxidative Stress MeSH
- DNA Damage MeSH
- Substrate Specificity MeSH
- Protein Binding MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bacterial Proteins MeSH
- DNA-Binding Proteins MeSH
- DNA-(Apurinic or Apyrimidinic Site) Lyase MeSH
- DNA MeSH
- Endonucleases MeSH
- Exodeoxyribonucleases MeSH
NExo is an enzyme from Neisseria meningitidis that is specialized in the removal of the 3'-phosphate and other 3'-lesions, which are potential blocks for DNA repair. NExo is a highly active DNA 3'-phosphatase, and although it is from the class II AP family it lacks AP endonuclease activity. In contrast, the NExo homologue NApe, lacks 3'-phosphatase activity but is an efficient AP endonuclease. These enzymes act together to protect the meningococcus from DNA damage arising mainly from oxidative stress and spontaneous base loss. In this work, we present crystal structures of the specialized 3'-phosphatase NExo bound to DNA in the presence and absence of a 3'-phosphate lesion. We have outlined the reaction mechanism of NExo, and using point mutations we bring mechanistic insights into the specificity of the 3'-phosphatase activity of NExo. Our data provide further insight into the molecular origins of plasticity in substrate recognition for this class of enzymes. From this we hypothesize that these specialized enzymes lead to enhanced efficiency and accuracy of DNA repair and that this is important for the biological niche occupied by this bacterium.
Dectris Ltd Täfernweg 1 5405 Baden Dättwil Switzerland
Department of Life Sciences Imperial College London South Kensington London SW7 2AZ UK
Department of Medicine Imperial College London South Kensington London SW7 2AZ UK
Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Czech Republic
Sir William Dunn School of Pathology University of Oxford South Parks Road Oxford OX1 3RE UK
See more in PubMed
Takemoto T., Zhang Q.M., Matsumoto Y., Mito S., Izumi T., Ikehata H., Yonei S.. 3′-blocking damage of DNA as a mutagenic lesion caused by hydrogen peroxide in Escherichia coli. J. Radiat. Res. 1998; 39:137–144. PubMed
Lindahl T., Nyberg B.. Rate of depurination of native deoxyribonucleic acid. Biochemistry. 1972; 11:3610–3618. PubMed
O’Brien P.J. Catalytic promiscuity and the divergent evolution of DNA repair enzymes. Chem. Rev. 2006; 106:720–752. PubMed
Barnes D.E., Lindahl T.. Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu. Rev. Genet. 2004; 38:445–476. PubMed
Hirvensalo E., Lindahl J., Bostman O.. A new approach to the Internal-Fixation of unstable pelvic fractures. Clin. Orthop. Relat. R. 1993; 28–32. PubMed
Loeb L.A., Preston B.D.. Mutagenesis by apurinic apyrimidinic sites. Annu. Rev. Genet. 1986; 20:201–230. PubMed
Parikh S.S., Mol C.D., Tainer J.A.. Base excision repair enzyme family portrait: integrating the structure and chemistry of an entire DNA repair pathway. Structure. 1997; 5:1543–1550. PubMed
Demple B., Harrison L.. Repair of oxidative damage to DNA - Enzymology and biology. Annu. Rev. Biochem. 1994; 63:915–948. PubMed
Nash H.M., Bruner S.D., Scharer O.D., Kawate T., Addona T.A., Sponner E., Lane W.S., Verdine G.L.. Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily. Curr. Biol. 1996; 6:968–980. PubMed
Radman M. An endonuclease from Escherichia coli that introduces single polynucleotide chain scissions in ultraviolet-irradiated DNA. J. Biol. Chem. 1976; 251:1438–1445. PubMed
Demple B., Linn S.. DNA N-glycosylases and UV repair. Nature. 1980; 287:203–208. PubMed
Boiteux S., Oconnor T.R., Laval J.. Formamidopyrimidine-DNA glycosylase of Escherichia-Coli - Cloning and sequencing of the Fpg structural gene and overproduction of the protein. EMBO J. 1987; 6:3177–3183. PubMed PMC
Chetsanga C.J., Lindahl T.. Release of 7-Methylguanine residues whose imidazole rings have been opened from damaged DNA by a DNA glycosylase from Escherichia-Coli. Nucleic Acids Res. 1979; 6:3673–3684. PubMed PMC
Zharkov D.O., Shoham G., Grollman A.P.. Structural characterization of the Fpg family of DNA glycosylases. DNA Repair. 2003; 2:839–862. PubMed
Boiteux S., Guillet M.. Abasic sites in DNA: repair and biological consequences in Saccharomyces cerevisiae. DNA Repair (Amst.). 2004; 3:1–12. PubMed
Demple B., Johnson A., Fung D.. Exonuclease III and endonuclease IV remove 3′ blocks from DNA synthesis primers in H2O2-damaged Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1986; 83:7731–7735. PubMed PMC
Richardson C.C., Lehman I.R., Kornberg A.. A deoxyribonucleic acid Phosphatase-Exonuclease from escherichia Coli. Ii. characterization of the exonuclease activity. J. Biol. Chem. 1964; 239:251–258. PubMed
Davidsen T., Tuven H.K., Bjoras M., Rodland E.A., Tonjum T.. Genetic interactions of DNA repair pathways in the pathogen Neisseria meningitidis. J. Bacteriol. 2007; 189:5728–5737. PubMed PMC
Stefanelli P., Rezza G.. Impact of vaccination on meningococcal epidemiology. Hum. Vaccines Immunother. 2015; 12:1051–1055. PubMed PMC
Tettelin H., Saunders N.J., Heidelberg J., Jeffries A.C., Nelson K.E., Eisen J.A., Ketchum K.A., Hood D.W., Peden J.F., Dodson R.J. et al. .. Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science. 2000; 287:1809–1815. PubMed
van der Veen S, Tang C.M.. The BER necessities: the repair of DNA damage in human-adapted bacterial pathogens. Nat. Rev. Microbiol. 2015; 13:83–94. PubMed
Mol C.D., Hosfield D.J., Tainer J.A.. Abasic site recognition by two apurinic/apyrimidinic endonuclease families in DNA base excision repair: the 3′ ends justify the means. Mutat. Res. 2000; 460:211–229. PubMed
Carpenter E.P., Corbett A., Thomson H., Adacha J., Jensen K., Bergeron J., Kasampalidis I., Exley R., Winterbotham M., Tang C. et al. .. AP endonuclease paralogues with distinct activities in DNA repair and bacterial pathogenesis. EMBO J. 2007; 26:1363–1372. PubMed PMC
Silhan J., Nagorska K., Zhao Q.Y., Jensen K., Freemont P.S., Tang C.M., Baldwin G.S.. Specialization of an Exonuclease III family enzyme in the repair of 3′ DNA lesions during base excision repair in the human pathogen Neisseria meningitidis. Nucleic Acids Res. 2012; 40:2065–2075. PubMed PMC
Nagorska K., Silhan J., Li Y., Pelicic V., Freemont P.S., Baldwin G.S., Tang C.M.. A network of enzymes involved in repair of oxidative DNA damage in Neisseria meningitidis. Mol. Microbiol. 2012; 83:1064–1079. PubMed PMC
Lakomek K., Dickmanns A., Ciirdaeva E., Schomacher L., Ficner R.. Crystal structure analysis of DNA uridine endonuclease Mth212 bound to DNA. J. Mol. Biol. 2010; 399:604–617. PubMed
Lu D., Silhan J., MacDonald J.T., Carpenter E.P., Jensen K., Tang C.M., Baldwin G.S., Freemont P.S.. Structural basis for the recognition and cleavage of abasic DNA in Neisseria meningitidis. Proc. Natl. Acad. Sci. U.S.A. 2012; 109:16852–16857. PubMed PMC
Mol C.D., Hosfield D.J., Tainer J.A.. Abasic site recognition by two apurinic/apyrimidinic endonuclease families in DNA base excision repair: the 3′ ends justify the means. Mutat. Res. 2000; 460:211–229. PubMed
Freudenthal B.D., Beard W.A., Cuneo M.J., Dyrkheeva N.S., Wilson S.H.. Capturing snapshots of APE1 processing DNA damage. Nat. Struct. Mol. Biol. 2015; 22:924–931. PubMed PMC
Kabsch W. Xds. Acta Crystallogr. D, Biol. Crystallogr. 2010; 66:125–132. PubMed PMC
Leslie A.G.W., Powell H.R.. Processing diffraction data with MOSFLM. Nato Sci. Ser. II Math. 2007; 245:41–51.
Adams P.D., Afonine P.V., Bunkoczi G., Chen V.B., Davis I.W., Echols N., Headd J.J., Hung L.W., Kapral G.J., Grosse-Kunstleve R.W. et al. .. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D, Biol. Crystallogr. 2010; 66:213–221. PubMed PMC
Emsley P., Lohkamp B., Scott W.G., Cowtan K.. Features and development of Coot. Acta Crystallogr. D, Biol. Crystallogr. 2010; 66:486–501. PubMed PMC
Johnson K.A., Simpson Z.B., Blom T.. Global kinetic explorer: a new computer program for dynamic simulation and fitting of kinetic data. Anal. Biochem. 2009; 387:20–29. PubMed
Bellamy S.R., Krusong K., Baldwin G.S.. A rapid reaction analysis of uracil DNA glycosylase indicates an active mechanism of base flipping. Nucleic Acids Res. 2007; 35:1478–1487. PubMed PMC
Lim K.W., Phan A.T.. Structural basis of DNA Quadruplex–Duplex junction formation. Angew. Chem. Int. Ed. 2013; 52:8566–8569. PubMed
Erzberger J.P., Wilson D.M. 3rd. The role of Mg2+ and specific amino acid residues in the catalytic reaction of the major human abasic endonuclease: new insights from EDTA-resistant incision of acyclic abasic site analogs and site-directed mutagenesis. J. Mol. Biol. 1999; 290:447–457. PubMed
Gorman M.A., Morera S., Rothwell D.G., delaFortelle E., Mol C.D., Tainer J.A., Hickson I.D., Freemont P.S.. The crystal structure of the human DNA repair endonuclease HAP1 suggests the recognition of extra-helical deoxyribose at DNA abasic sites. EMBO J. 1997; 16:6548–6558. PubMed PMC
Rothwell D.G., Hang B., Gorman M.A., Freemont P.S., Singer B., Hickson I.D.. Substitution of Asp-210 in HAP1 (APE/Ref-1) eliminates endonuclease activity but stabilises substrate binding. Nucleic Acids Res. 2000; 28:2207–2213. PubMed PMC
Mol C.D., Kuo C.-F., Thayer M.M., Cunningham R.P., Tainer J.A.. Structure and function of the multifunctional DNA-repair enzyme exonuclease III. Nature. 1995; 374:381. PubMed
Boura E., Rezabkova L., Brynda J., Obsilova V., Obsil T.. Structure of the human FOXO4-DBD-DNA complex at 1.9 A resolution reveals new details of FOXO binding to the DNA. Acta Crystallogr. D. 2010; 66:1351–1357. PubMed
Baldwin G.S., Sessions R.B., Erskine S.G., Halford S.E.. DNA cleavage by the EcoRV restriction endonuclease: roles of divalent metal ions in specificity and catalysis. J. Mol. Biol. 1999; 288:87–103. PubMed
Beernink P.T., Segelke B.W., Hadi M.Z., Erzberger J.P., Wilson D.M., Rupp B.. Two divalent metal ions in the active site of a new crystal form of human apurinic/apyrimidinic endonuclease, ape1: implications for the catalytic mechanism. J. Mol. Biol. 2001; 307:1023–1034. PubMed
Vipond I.B., Baldwin G.S., Halford S.E.. Divalent metal ions at the active sites of the EcoRV and EcoRI restriction endonucleases. Biochemistry. 1995; 34:697–704. PubMed
Ryu K.-S., Kim C., Kim I., Yoo S., Choi B.-S., Park C.. NMR Application probes a novel and ubiquitous family of enzymes that alter monosaccharide configuration. J. Biol. Chem. 2004; 279:25544–25548. PubMed
Zalatan J.G., Herschlag D.. Alkaline phosphatase Mono- and diesterase reactions: Comparative transition state analysis. J. Am. Chem. Soc. 2006; 128:1293–1303. PubMed PMC
Merrikh H., Ferrazzoli A.E., Bougdour A., Olivier-Mason A., Lovett S.T.. A DNA damage response in Escherichia coli involving the alternative sigma factor, RpoS. Proc. Natl. Acad. Sci. U. S. A. 2009; 106:611–616. PubMed PMC
Sak B.D., Eisenstark A., Touati D.. Exonuclease III and the catalase hydroperoxidase II in Escherichia coli are both regulated by the katF gene product. Proc. Natl. Acad. Sci. U.S.A. 1989; 86:3271–3275. PubMed PMC
Battesti A., Majdalani N., Gottesman S.. The RpoS-mediated general stress response in Escherichia coli. Annu. Rev. Microbiol. 2011; 65:189–213. PubMed PMC
Centore R.C., Lestini R., Sandler S.J.. XthA (Exonuclease III) regulates loading of RecA onto DNA substrates in log phase Escherichia coli cells. Mol. Microbiol. 2008; 67:88–101. PubMed
Davidsen T., Tonjum T.. Meningococcal genome dynamics. Nat. Rev. Microbiol. 2006; 4:11–22. PubMed