Conformational changes of DNA repair glycosylase MutM triggered by DNA binding
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- Keywords
- Neisseria meningitidis, DNA repair, Fpg/Nei, MutM, base excision DNA repair,
- MeSH
- Bacterial Proteins chemistry metabolism MeSH
- DNA, Bacterial chemistry metabolism MeSH
- DNA-Formamidopyrimidine Glycosylase chemistry metabolism MeSH
- Crystallography, X-Ray MeSH
- Neisseria meningitidis enzymology MeSH
- Protein Domains MeSH
- Protein Binding MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bacterial Proteins MeSH
- DNA, Bacterial MeSH
- DNA-Formamidopyrimidine Glycosylase MeSH
Bacterial MutM is a DNA repair glycosylase removing DNA damage generated from oxidative stress and, therefore, preventing mutations and genomic instability. MutM belongs to the Fpg/Nei family of prokaryotic enzymes sharing structural and functional similarities with their eukaryotic counterparts, for example, NEIL1-NEIL3. Here, we present two crystal structures of MutM from pathogenic Neisseria meningitidis: a MutM holoenzyme and MutM bound to DNA. The free enzyme exists in an open conformation, while upon binding to DNA, both the enzyme and DNA undergo substantial structural changes and domain rearrangement. Our data show that not only NEI glycosylases but also the MutMs undergo dramatic conformational changes. Moreover, crystallographic data support the previously published observations that MutM enzymes are rather flexible and dynamic molecules.
See more in PubMed
Barnes DE and Lindahl T (2004) Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet 38, 445-476.
Fromme JC and Verdine GL (2004) Base excision repair. Adv Protein Chem 69, 1-41.
Lu A-L, Li X, Gu Y, Wright PM and Chang D-Y (2001) Repair of oxidative DNA damage. Cell Biochem Biophys 35, 141-170.
Wallace SS (2014) Base excision repair: a critical player in many games. DNA Repair (Amst) 19, 14-26.
Imlay J and Linn S. (1988). Damage and oxygen radical. Science (80.) 240, 1302-1309.
Keyer K, Gort AS and Imlay JA (1995) Superoxide and the production of oxidative DNA damage. J Bacteriol 177, 6782-6790.
Téoule R (1987) Radiation-induced DNA damage and its repair. Int J Radiat Biol 51, 573-589.
Jaruga P and Dizdaroglu M (1996) Repair of products of oxidative DNA base damage in human cells. Nucleic Acids Res 24, 1389-1394.
Dizdaroglu M (1985) Formation of an 8-hydroxyguanine moiety in deoxyribonucleic acid on γ-irradiation in aqueous solution†. Biochemistry 24, 4476-4481.
Boiteux S, O'Connor TR and Laval J (1987) Formamidopyrimidine-DNA glycosylase of Escherichia coli: cloning and sequencing of the fpg structural gene and overproduction of the protein. EMBO J 6, 3177-3183.
Prakash A, Doublié S and Wallace SS (2012) The Fpg/Nei family of DNA glycosylases: substrates, structures, and search for damage. Prog Mol Biol Transl Sci 110, 71-91.
Fromme JC and Verdine GL (2002) Structural insights into lesion recognition and repair by the bacterial 8-oxoguanine DNA glycosylase MutM. Nat Struct Biol 9, 544-552.
Sugahara M, Mikawa T, Kumasaka T, Yamamoto M, Kato R, Fukuyama K, Inoue Y and Kuramitsu S (2000) Crystal structure of a repair enzyme of oxidatively damaged DNA, MutM (Fpg), from an extreme thermophile, Thermus thermophilus HB8. EMBO J 19, 3857-3869.
Richardson CC and Kornberg A (1964) A deoxyribonucleic acid phosphatase-exonuclease from Escherichia coli : I. Purification of the enzyme and characterization of the phosphatase activity. J Biol Chem 239, 242-250.
Silhan J, Zhao Q, Boura E, Thomson H, Förster A, Tang CM, Freemont PS and Baldwin GS (2018) Structural basis for recognition and repair of the 3′-phosphate by NExo, a base excision DNA repair nuclease from Neisseria meningitidis. Nucleic Acids Res 46, 11980-11989.
Gilboa R, Zharkov DO, Golan G, Fernandes AS, Gerchman SE, Matz E, Kycia JH, Grollman AP and Shoham G (2002) Structure of formamidopyrimidine-DNA glycosylase covalently complexed to DNA. J Biol Chem 277, 19811-19816.
Coste F, Ober M, Carell T, Boiteux S, Zelwer C and Castaing B (2004) Structural basis for the recognition of the FapydG lesion (2,6-diamino-4-hydroxy-5-formamidopyrimidine) by formamidopyrimidine-DNA glycosylase. J Biol Chem 279, 44074-44083.
Fromme JC and Verdine GL (2003a) DNA lesion recognition by the bacterial repair enzyme MutM. J Biol Chem 278, 51543-51548.
Pereira de Jésus K, Serre L, Zelwer C and Castaing B (2005) Structural insights into abasic site for Fpg specific binding and catalysis: comparative high-resolution crystallographic studies of Fpg bound to various models of abasic site analogues-containing DNA. Nucleic Acids Res 33, 5936-5944.
Qi Y, Spong MC, Nam K, Banerjee A, Jiralerspong S, Karplus M and Verdine GL (2009) Encounter and extrusion of an intrahelical lesion by a DNA repair enzyme. Nature 462, 762-766.
Qi Y, Nam K, Spong MC, Banerjee A, Sung RJ, Zhang M, Karplus M and Verdine GL (2012) Strandwise translocation of a DNA glycosylase on undamaged DNA. Proc Natl Acad Sci USA 109, 1086-1091.
Hosfield DJ, Mol CD, Shen B and Tainer JA (1998) Structure of the DNA repair and replication endonuclease and exonuclease FEN-1: coupling DNA and PCNA binding to FEN-1 activity. Cell 95, 135-146.
Shao X (2000) Common fold in helix-hairpin-helix proteins. Nucleic Acids Res 28, 2643-2650.
Thayer MM, Ahern H, Xing D, Cunningham RP and Tainer JA (1995) Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure. EMBO J 14, 4108-4120.
Doublié S, Bandaru V, Bond JP and Wallace SS (2004) The crystal structure of human endonuclease VIII-like 1 (NEIL1) reveals a zincless finger motif required for glycosylase activity. Proc Natl Acad Sci USA 101, 10284-10289.
Zharkov DO, Shoham G and Grollman AP (2003) Structural characterization of the Fpg family of DNA glycosylases. DNA Repair (Amst) 2, 839-862.
Fromme JC and Verdine GL (2003b) Structure of a trapped endonuclease III-DNA covalent intermediate. EMBO J 22, 3461-3471.
Golan G, Zharkov DO, Feinberg H, Fernandes AS, Zaika EI, Kycia JH, Grollman AP and Shoham G (2005) Structure of the uncomplexed DNA repair enzyme endonuclease VIII indicates significant interdomain flexibility. Nucleic Acids Res. 33, 5006-5016.
Zharkov DO (2002) Structural analysis of an Escherichia coli endonuclease VIII covalent reaction intermediate. EMBO J 21, 789-800.
Duclos S, Aller P, Jaruga P, Dizdaroglu M, Wallace SS and Doublié S (2012) Structural and biochemical studies of a plant formamidopyrimidine-DNA glycosylase reveal why eukaryotic Fpg glycosylases do not excise 8-oxoguanine. DNA Repair (Amst) 11, 714-725.
Buchko GW, McAteer K, Wallace SS and Kennedy MA (2005) Solution-state NMR investigation of DNA binding interactions in Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg): a dynamic description of the DNA/protein interface. DNA Repair (Amst) 4, 327-339.
Fedorova OS, Nevinsky GA, Koval VV, Ishchenko AA, Vasilenko NL and Douglas KT (2002) Stopped-flow kinetic studies of the interaction between Escherichia coli Fpg protein and DNA substrates. Biochemistry 41, 1520-1528.
Koval VV, Kuznetsov NA, Zharkov DO, Ishchenko AA, Douglas KT, Nevinsky GA and Fedorova OS (2004) Pre-steady-state kinetics shows differences in processing of various DNA lesions by Escherichia coli formamidopyrimidine-DNA glycosylase. Nucleic Acids Res 32, 926-935.
Davidsen T and Tønjum T (2006) Meningococcal genome dynamics. Nat Rev Microbiol 4, 11-22.
Feldman C and Anderson R (2019) Meningococcal pneumonia: a review. Pneumonia 11, 1-13.
Davidsen T, Tuven HK, Bjørås M, Rødland E andTønjum T (2007a) Genetic interactions of DNA repair pathways in the pathogen Neisseria meningitidis. J Bacteriol 189, 5728-5737.
Davidsen T, Amundsen EK, Rødland EA and Tønjum T (2007b) DNA repair profiles of disease-associated isolates of Neisseria meningitidis. FEMS Immunol Med Microbiol 49, 243-251.
Nagorska K, Silhan J, Li Y, Pelicic V, Freemont PS, Baldwin GS and Tang CM (2012a) A network of enzymes involved in repair of oxidative DNA damage in Neisseria meningitidis. Mol Microbiol 83, 1064-1079.
Silhan J, Nagorska K, Zhao Q, Jensen K, Freemont PS, Tang CM and Baldwin GS (2012) Specialization of an Exonuclease III family enzyme in the repair of 3′ DNA lesions during base excision repair in the human pathogen Neisseria meningitidis. Nucleic Acids Res 40, 2065-2075.
Harper CC, Berg JM and Gould SJ (2003) PEX5 binds the PTS1 independently of Hsp70 and the peroxin PEX12. J Biol Chem 278, 7897-7901.
Obsilova V, Herman P, Vecer J, Sulc M, Teisinger J and Obsil T (2004) 14-3-3ζ C-terminal stretch changes its conformation upon ligand binding and phosphorylation at Thr232. J Biol Chem 279, 4531-4540.
Boura E, Silhan J, Herman P, Vecer J, Sulc M, Teisinger J, Obsilova V and Obsil T (2007) Both the N-terminal loop and wing W2 of the forkhead domain of transcription factor Foxo4 are important for DNA binding. J Biol Chem 282, 8265-8275.
Silhan J, Obsilova V, Vecer J, Herman P, Sulc M, Teisinger J and Obsil T (2004) 14-3-3 protein C-terminal stretch occupies ligand binding groove and is displaced by phosphopeptide binding. J Biol Chem 279, 49113-49119.
Kabsch W (2010). XDS. Acta Crystallogr Sect D Biol Crystallogr 66, 125-132.
Emsley P, Lohkamp B, Scott WG and Cowtan K (2010) Features and development of Coot. Acta Crystallogr Sect D Biol Crystallogr 66, 486-501.
Liebschner D, Afonine PV, Baker ML, Bunkoczi G, Chen VB, Croll TI, Hintze B, Hung LW, Jain S, McCoy AJ et al. (2019) Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr Sect D Struct Biol 75, 861-877.
Banerjee A, Santos WL and Verdine GL (2006) Structure of a DNA glycosylase searching for lesions. Science (80-.) 311, 1153-1157.
Kelley LA, Mezulis S, Yates CM, Wass MN and Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10, 845-858.
Serre L, Pereira de Jésus K, Boiteux S, Zelwer C and Castaing B (2002) Crystal structure of the Lactococcus lactis formamidopyrimidine-DNA glycosylase bound to an abasic site analogue-containing DNA. EMBO J 21, 2854-2865.
Koval VV, Kuznetsov NA, Ishchenko AA, Saparbaev MK and Fedorova OS (2010) Real-time studies of conformational dynamics of the repair enzyme E. coli formamidopyrimidine-DNA glycosylase and its DNA complexes during catalytic cycle. Mutat Res Fundam Mol Mech Mutagen 685, 3-10.
Lipscomb LA, Peek ME, Morningstar ML, Verghis SM, Miller EM, Rich A, Essigmann JM and Williams LD (1995) X-ray structure of a DNA decamer containing 7,8-dihydro-8-oxoguanine. Proc Natl Acad Sci USA 92, 719-723.
De Los Santos C, El-khateeb M, Rege P, Tian K and Johnson F (2004) Impact of the C1′ configuration of abasic sites on DNA duplex structure. Biochemistry 43, 15349-15357.
Singh SK, Szulik MW, Ganguly M, Khutsishvili I, Stone MP, Marky LA and Gold B (2011) Characterization of DNA with an 8-oxoguanine modification. Nucleic Acids Res 39, 6789-6801.
La Rosa G and Zacharias M (2016) Global deformation facilitates flipping of damaged 8-oxo-guanine and guanine in DNA. Nucleic Acids Res 44, 9591-9599.