Remdesivir triphosphate can efficiently inhibit the RNA-dependent RNA polymerase from various flaviviruses

. 2020 Oct ; 182 () : 104899. [epub] 20200805

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32763313

Remdesivir was shown to inhibit RNA-dependent RNA-polymerases (RdRp) from distinct viral families such as from Filoviridae (Ebola) and Coronaviridae (SARS-CoV, SARS-CoV-2, MERS). In this study, we tested the ability of remdesivir to inhibit RdRps from the Flaviviridae family. Instead of remdesivir, we used the active species that is produced in cells from remdesivir, the appropriate triphosphate, which could be directly tested in vitro using recombinant flaviviral polymerases. Our results show that remdesivir can efficiently inhibit RdRps from viruses causing severe illnesses such as Yellow fever, West Nile fever, Japanese and Tick-borne encephalitis, Zika and Dengue. Taken together, this study demonstrates that remdesivir or its derivatives have the potential to become a broad-spectrum antiviral agent effective against many RNA viruses.

Zobrazit více v PubMed

Behnam M.A.M., Nitsche C., Boldescu V., Klein C.D. The medicinal chemistry of dengue virus. J. Med. Chem. 2016;59:5622–5649. PubMed

Benjelloun A., El Harrak M., Belkadi B. West Nile disease epidemiology in North-west Africa: bibliographical review. Transboundary and Emerging Diseases. 2016;63:e153–e159. PubMed

Brown A.J., Won J.J., Graham R.L., Dinnon K.H., 3rd, Sims A.C., Feng J.Y., Cihlar T., Denison M.R., Baric R.S., Sheahan T.P. Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antivir. Res. 2019;169:104541. PubMed PMC

Chan K.W.K., Watanabe S., Kavishna R., Alonso S., Vasudevan S.G. Animal models for studying dengue pathogenesis and therapy. Antivir. Res. 2015;123:5–14. PubMed

Cho A., Saunders O.L., Butler T., Zhang L., Xu J., Vela J.E., Feng J.Y., Ray A.S., Kim C.U. Synthesis and antiviral activity of a series of 1'-substituted 4-aza-7,9-dideazaadenosine C-nucleosides. Bioorg. Med. Chem. Lett. 2012;22:2705–2707. PubMed PMC

Chrdle A., Chmelík V., Růžek D. Tick-borne encephalitis: what travelers should know when visiting an endemic country. Hum. Vaccines Immunother. 2016;12:2694–2699. PubMed PMC

de Wit E., Feldmann F., Cronin J., Jordan R., Okumura A., Thomas T., Scott D., Cihlar T., Feldmann H. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc. Natl. Acad. Sci. U. S. A. 2020;117:6771–6776. PubMed PMC

Dong H.P., Fink K., Zust R., Lim S.P., Qin C.F., Shi P.Y. Flavivirus RNA methylation. J. Gen. Virol. 2014;95:763–778. PubMed

Dubankova A., Boura E. Structure of the yellow fever NS5 protein reveals conserved drug targets shared among flaviviruses. Antivir. Res. 2019;169:104536. PubMed

Eyer L., Nencka R., de Clercq E., Seley-Radtke K., Růžek D. Nucleoside analogs as a rich source of antiviral agents active against arthropod-borne flaviviruses. Antiviral Chem. Chemother. 2018;26 2040206618761299. PubMed PMC

Eyer L., Nencka R., Huvarova I., Palus M., Alves M.J., Gould E.A., De Clercq E., Ruzek D. Nucleoside inhibitors of Zika virus. JID (J. Infect. Dis.) 2016;214:707–711. PubMed

Eyer L., Šmídková M., Nencka R., Neča J., Kastl T., Palus M., De Clercq E., Růžek D. Structure-activity relationships of nucleoside analogues for inhibition of tick-borne encephalitis virus. Antivir. Res. 2016;133:119–129. PubMed

Eyer L., Zouharová D., Širmarová J., Fojtíková M., Štefánik M., Haviernik J., Nencka R., de Clercq E., Růžek D. Antiviral activity of the adenosine analogue BCX4430 against West Nile virus and tick-borne flaviviruses. Antivir. Res. 2017;142:63–67. PubMed

Farrar F. West Nile virus: an infectious viral agent to the central nervous system. Crit. Care Nurs. Clin. 2013;25:191–203. PubMed

Garcia-Blanco M.A., Vasudevan S.G., Bradrick S.S., Nicchitta C. Flavivirus RNA transactions from viral entry to genome replication. Antivir. Res. 2016;134:244–249. PubMed

Gordon C.J., Tchesnokov E.P., Feng J.Y., Porter D.P., Gotte M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J. Biol. Chem. 2020;295:4773–4779. PubMed PMC

Gordon C.J., Tchesnokov E.P., Woolner E., Perry J.K., Feng J.Y., Porter D.P., Gotte M. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J. Biol. Chem. 2020;295:6785–6797. PubMed PMC

Hercik K., Kozak J., Sala M., Dejmek M., Hrebabecky H., Zbornikova E., Smola M., Ruzek D., Nencka R., Boura E. Adenosine triphosphate analogs can efficiently inhibit the Zika virus RNA-dependent RNA polymerase. Antivir. Res. 2017;137:131–133. PubMed

Hercík K., Kozak J., Šála M., Dejmek M., Hřebabecký H., Zborníková E., Smola M., Ruzek D., Nencka R., Boura E. Adenosine triphosphate analogs can efficiently inhibit the Zika virus RNA-dependent RNA polymerase. Antivir. Res. 2017;137:131–133. PubMed

Kok W.M. New developments in flavivirus drug discovery. Expet Opin. Drug Discov. 2016;11:433–445. PubMed

Kramer L.D., Li J., Shi P.Y. West Nile virus. Lancet Neurol. 2007;6:171–181. PubMed

Lescar J., Lim S.P., Shi P.-Y. Structure and function of the flavivirus NS5 protein. Molecular Virology and Control of Flaviviruses. 2012:101–117.

Lescar J., Soh S., Lee L.T., Vasudevan S.G., Kang C.B., Lim S.P. The dengue virus replication complex: from RNA replication to protein-protein interactions to evasion of innate immunity. Dengue and Zika: Control and Antiviral Treatment Strategies. 2018;1062:115–129. PubMed

Lim S.P., Noble C.G., Shi P.Y. The dengue virus NS5 protein as a target for drug discovery. Antivir. Res. 2015;119:57–67. PubMed

Lo M.K., Jordan R., Arvey A., Sudhamsu J., Shrivastava-Ranjan P., Hotard A.L., Flint M., McMullan L.K., Siegel D., Clarke M.O., Mackman R.L., Hui H.C., Perron M., Ray A.S., Cihlar T., Nichol S.T., Spiropoulou C.F. GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses. Sci. Rep. 2017;7:43395. PubMed PMC

Malet H., Masse N., Selisko B., Romette J.L., Alvarez K., Guillemot J.C., Tolou H., Yap T.L., Vasudevan S., Lescar J., Canard B. The flavivirus polymerase as a target for drug discovery. Antivir. Res. 2008;80:23–35. PubMed

Niyomrattanakit P., Abas S.N., Lim C.C., Beer D., Shi P.Y., Chen Y.L. A fluorescence-based alkaline phosphatase-coupled polymerase assay for identification of inhibitors of dengue virus RNA-dependent RNA polymerase. J. Biomol. Screen. 2011;16:201–210. PubMed

Paixao E.S., Barreto F., Teixeira M.D., Costa M.D.N., Rodrigues L.C. History, epidemiology, and clinical manifestations of Zika: a systematic review. Am. J. Publ. Health. 2016;106:606–612. PubMed PMC

Ray D., Shah A., Tilgner M., Guo Y., Zhao Y.W., Dong H.P., Deas T.S., Zhou Y.S., Li H.M., Shi P.Y. West nile virus 5 '-cap structure is formed by sequential guanine N-7 and ribose 2 '-O methylations by nonstructural protein 5. J. Virol. 2006;80:8362–8370. PubMed PMC

Sampath A., Padmanabhan R. Molecular targets for flavivirus drug discovery. Antivir. Res. 2009;81:6–15. PubMed PMC

Sebera J., Dubankova A., Sychrovsky V., Ruzek D., Boura E., Nencka R. The structural model of Zika virus RNA-dependent RNA polymerase in complex with RNA for rational design of novel nucleotide inhibitors. Sci. Rep. 2018;8 PubMed PMC

Sheahan T.P., Sims A.C., Graham R.L., Menachery V.D., Gralinski L.E., Case J.B., Leist S.R., Pyrc K., Feng J.Y., Trantcheva I., Bannister R., Park Y., Babusis D., Clarke M.O., Mackman R.L., Spahn J.E., Palmiotti C.A., Siegel D., Ray A.S., Cihlar T., Jordan R., Denison M.R., Baric R.S. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci. Transl. Med. 2017;9 PubMed PMC

Siegel D., Hui H.C., Doerffler E., Clarke M.O., Chun K., Zhang L., Neville S., Carra E., Lew W., Ross B., Wang Q., Wolfe L., Jordan R., Soloveva V., Knox J., Perry J., Perron M., Stray K.M., Barauskas O., Feng J.Y., Xu Y., Lee G., Rheingold A.L., Ray A.S., Bannister R., Strickley R., Swaminathan S., Lee W.A., Bavari S., Cihlar T., Lo M.K., Warren T.K., Mackman R.L. Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo[2,1-f][triazin-4-amino] adenine C-nucleoside (GS-5734) for the treatment of Ebola and emerging viruses. J. Med. Chem. 2017;60:1648–1661. PubMed

Tchesnokov E.P., Feng J.Y., Porter D.P., Gotte M. Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir. Viruses. 2019;11 PubMed PMC

Warren T.K., Jordan R., Lo M.K., Ray A.S., Mackman R.L., Soloveva V., Siegel D., Perron M., Bannister R., Hui H.C., Larson N., Strickley R., Wells J., Stuthman K.S., Van Tongeren S.A., Garza N.L., Donnelly G., Shurtleff A.C., Retterer C.J., Gharaibeh D., Zamani R., Kenny T., Eaton B.P., Grimes E., Welch L.S., Gomba L., Wilhelmsen C.L., Nichols D.K., Nuss J.E., Nagle E.R., Kugelman J.R., Palacios G., Doerffler E., Neville S., Carra E., Clarke M.O., Zhang L., Lew W., Ross B., Wang Q., Chun K., Wolfe L., Babusis D., Park Y., Stray K.M., Trancheva I., Feng J.Y., Barauskas O., Xu Y., Wong P., Braun M.R., Flint M., McMullan L.K., Chen S.S., Fearns R., Swaminathan S., Mayers D.L., Spiropoulou C.F., Lee W.A., Nichol S.T., Cihlar T., Bavari S. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature. 2016;531:381–385. PubMed PMC

Weaver S.C., Costa F., Garcia-Blanco M.A., Ko A.I., Ribeiro G.S., Saade G., Shi P.Y., Vasilakis N. Zika virus: history, emergence, biology, and prospects for control. Antivir. Res. 2016;130:69–80. PubMed PMC

Weaver S.C., Reisen W.K. Present and future arboviral threats. Antivir. Res. 2010;85:328–345. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Structural basis for broad-spectrum binding of AT-9010 to flaviviral methyltransferases

. 2025 Feb 20 ; 170 (3) : 61. [epub] 20250220

Enzymatic synthesis of reactive RNA probes containing squaramate-linked cytidine or adenosine for bioconjugations and cross-linking with lysine-containing peptides and proteins

. 2025 Jan 02 ; 8 (1) : 1. [epub] 20250102

Guanine quadruplexes in the RNA genome of the tick-borne encephalitis virus: their role as a new antiviral target and in virus biology

. 2022 May 06 ; 50 (8) : 4574-4600.

A Helquat-like Compound as a Potent Inhibitor of Flaviviral and Coronaviral Polymerases

. 2022 Mar 15 ; 27 (6) : . [epub] 20220315

Coronaviral RNA-methyltransferases: function, structure and inhibition

. 2022 Jan 25 ; 50 (2) : 635-650.

Non-Nucleotide RNA-Dependent RNA Polymerase Inhibitor That Blocks SARS-CoV-2 Replication

. 2021 Aug 11 ; 13 (8) : . [epub] 20210811

High-Throughput Fluorescent Assay for Inhibitor Screening of Proteases from RNA Viruses

. 2021 Jun 22 ; 26 (13) : . [epub] 20210622

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...