Evaluation of Phosphine Resistance in Populations of Sitophilus oryzae, Oryzaephilus surinamensis and Rhyzopertha dominica in the Czech Republic

. 2022 Dec 16 ; 13 (12) : . [epub] 20221216

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36555073

Grantová podpora
HORIZON 2020 novIGRain - 101000663 European Commission

Phosphine is globally the most widely adopted fumigant for the control of storage pests. Recently, an increase in the frequency of stored-product pest resistance has been observed with significant geographical and interspecific variations. In this context, there are available data for the occurrence of resistant populations from America, Asia, Africa, and Australia, but there are few data in the case of Europe. Therefore, the aim of this work was to evaluate phosphine efficacy in important beetle pests of stored products, i.e., Sitophilus oryzae (L.), Oryzaephilus surinamensis (L.), and Rhyzopertha dominica (F.) sampled from the Czech Republic, using a rapid diagnostic test that is based on the speed to knockdown after exposure. Apart from the standard laboratory populations, which were used as the controls, we tested 56 field populations of these three species, collected in Czech farm grain stores. The survey revealed that 57.1% of the tested field populations were classified as phosphine-susceptible, based on the knockdown method used. However, profound variations among species and populations were recorded. The species with the highest percentage of resistant populations was R. dominica (71.4% of the populations; resistance coefficient 0.5-4.1), followed by S. oryzae (57.1% of the populations; resistance coefficient 0.8-6.9), and O. surinamensis (9.5% of the populations; resistance coefficient 0.5-2.9). Regarding the intra-population variability in response to phosphine (slope of the knockdown time regression), the laboratory and slightly resistant populations of all species were homogenous, whereas the most resistant populations were strongly heterogeneous. Our data show that the occurrence of resistance in the Czech Republic is relatively widespread and covers a wide range of species, necessitating the need for the adoption of an action plan for resistance mitigation.

Zobrazit více v PubMed

Gerken A.R., Morrison W.R. Pest management in the postharvest agricultural supply chain under climate change. Front. Agron. 2022;4:918845. doi: 10.3389/fagro.2022.918845. DOI

Athanassiou C.G., Arthur F.H. Recent Advances in Stored Product Protection. Springer; Berlin/Heidelberg, Germany: 2018. p. 273.

Stejskal V., Bostlova M., Nesvorna M., Volek V., Dolezal V., Hubert J. Comparison of the resistance of mono- and multilayer packaging films to stored-product insects in a laboratory test. Food Control. 2017;73:566–573. doi: 10.1016/j.foodcont.2016.09.001. DOI

Hubert J., Erban T., Nesvorna M., Stejskal V. Emerging risk of infestation and contamination of dried fruits by mites in the Czech Republic. Food Addit. Contam. Part A. 2011;28:1129–1135. doi: 10.1080/19440049.2011.584911. PubMed DOI

Adler C., Athanassiou C., Carvalho M.O., Emekci M., Gvozdenac S., Hamel D., Riudavets J., Stejskal V., Trdan S., Trematerra P. Changes in the distribution and pest risk of stored product insects in Europe due to global warming: Need for pan-European pest monitoring and improved food-safety. J. Stored Prod. Res. 2022;97:101977. doi: 10.1016/j.jspr.2022.101977. DOI

Stejskal V., Vendl T., Kolar V., Li Z., Aulicky R. First population quantification of the infestation of legumes by stored-product bruchids imported in freight containers into Europe. Bull. Insectol. 2020;73:233–239.

Stejskal V., Vendl T., Aulicky R., Athanassiou C. Synthetic and Natural Insecticides: Gas, Liquid, Gel and Solid Formulations for Stored-Product and Food-Industry Pest Control. Insects. 2021;12:590. doi: 10.3390/insects12070590. PubMed DOI PMC

Elsayed S., Casada M.E., Maghirang R.G., Wei M. Evolution of phosphine from aluminum phosphide pellets. Trans. ASABE. 2021;64:615–624. doi: 10.13031/trans.14326. DOI

Bell C.H. Fumigation in the 21st century. Crop Prot. 2000;19:563–569. doi: 10.1016/S0261-2194(00)00073-9. DOI

Agrafioti P., Kaloudis E., Bantas S., Sotiroudas V., Athanassiou C.G. Modeling the distribution of phosphine and insect mortality in cylindrical grain silos with computational fluid dynamics: Validation with field trials. Comput. Electron. Agric. 2020;173:105383. doi: 10.1016/j.compag.2020.105383. DOI

Brabec D., Kaloudis E., Athanassiou C.G., Campbell J., Agrafioti P., Scheff D.S., Bantas S., Sotiroudas V. Fumigation monitoring and modeling of hopper-bottom railcars loaded with corn grits. J. Biosyst. Eng. 2022;47:358–369. doi: 10.1007/s42853-022-00148-8. DOI

Aulicky R., Stejskal V. Efficacy and limitations of phosphine “spot-fumigation” against five Coleoptera species of stored product pests in wheat in a grain store—Short note. Plant Prot. Sci. 2015;51:33–38. doi: 10.17221/71/2014-PPS. DOI

Nayak M.K., Daglish G.J., Phillips T.W., Ebert P.R. resistance to the fumigant phosphine and its management in insect pests of stored products: A global perspective. Annu. Rev. Entomol. 2020;65:333–350. doi: 10.1146/annurev-ento-011019-025047. PubMed DOI

Agrafioti P., Athanassiou C.G., Nayak M.K. Detection of phosphine resistance in major stored-product insects in Greece and evaluation of a field resistance test kit. J. Stored Prod. Res. 2019;82:40–47. doi: 10.1016/j.jspr.2019.02.004. DOI

Rafter M.A., McCulloch G.A., Daglish G.J., Walter G.H. Progression of phosphine resistance in susceptible Tribolium castaneum (Herbst) populations under different immigration regimes and selection pressures. Evol. Appl. 2017;10:907–918. doi: 10.1111/eva.12493. PubMed DOI PMC

Champ R., Dyte C.E. FAO Plant Production and Protection Series N 5 FAO. FAO; Rome, Italy: 1976. Report of the FAO global survey of pesticide susceptibility of stored grain pests.

Rajendran S., Parveen H., Begum K., Chethana R. Influence of phosphine on hatching of Cryptolestes ferrugineus (Coleoptera: Cucujidae), Lasioderma serricorne (Coleoptera: Anobiidae) and Oryzaephilus surinamensis (Coleoptera: Silvanidae) Pest Manag. Sci. 2004;60:1114–1118. doi: 10.1002/ps.931. PubMed DOI

Pimentel M.A.G., Lrďa F., Guedes R.N.C., Sousa A.H., Tótola M.R. Phosphine resistance in Brazilian populations of Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) J. Stored Prod. Res. 2009;45:71–74. doi: 10.1016/j.jspr.2008.09.001. DOI

Opit G.P., Phillips T.W., Aikins M.J., Hasan M.M. Phosphine resistance in Tribolium castaneum and Rhyzopertha dominica from stored wheat in Oklahoma. J. Econ. Entomol. 2012;105:1107–1114. doi: 10.1603/EC12064. PubMed DOI

Kaur R., Nayak M.K. Developing effective fumigation protocols to manage strongly phosphine resistant Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae) Pest Manag. Sci. 2015;71:1297–1302. doi: 10.1002/ps.3926. PubMed DOI

Mangoba M.A.A., de Guzman Alvindia D. Phosphine resistance in psocid, Liposcelis bostrychophila (Psocoptera) in the Philippines. Int. J. Trop. Insect Sci. 2021;41:439–445. doi: 10.1007/s42690-020-00223-7. DOI

Sakka M.K., Vontas M.R.J., Götze M.C., Allegra J., Gehard J., Athanassiou C.G. Proceedings of the 12th International Working Conference on Stored Product Protection, Berlin, Germany, 7–11 October 2018. JKI; Berlin, Germany: Evaluation of tolerance/resistance to phosphine of stored product beetle populations from Europe, by using different diagnostic methods; pp. 1003–1008.

Aulicky R., Stejskal V., Frydova B., Athanassiou C.G. Susceptibility of two strains of the confused flour beetle (Coleoptera: Tenebrionidae) following phosphine structural mill fumigation: Effects of concentration, temperature, and flour deposits. J. Econ. Entomol. 2015;108:2823–2830. doi: 10.1093/jee/tov257. PubMed DOI

Aulicky R., Stejskal V., Frydova B. Field validation of phosphine efficacy on the first recorded resistant strains of Sitophilus granarius and Tribolium castaneum from the Czech Republic. J. Stored Prod. Res. 2019;81:107–113. doi: 10.1016/j.jspr.2019.02.003. DOI

FAO Recommended methods for the detection and measurement of resistance of agricultural pests to pesticides: Tentative method for adults of some major species of stored cereals with methyl bromide and phosphine—FAO Method No 16. Plant Prot. Bull. 1975;23:12–25.

Danso J.K., Opit G.P., Noden B.H., Giles K.L. Estimating discriminating doses of phosphine for adults of eight species of psocids of genera Liposcelis (Psocodea: Liposcelididae) and Lepinotus (Psocodea: Trogiidae) J. Stored Prod. Res. 2022;99:102025. doi: 10.1016/j.jspr.2022.102025. DOI

Athanassiou C.G., Kavallieratos N.G., Brabec D.L., Oppert B., Guedes R.N.C., Campbell J.F. From immobilization to recovery: Towards the development of a rapid diagnostic indicator for phosphine resistance. J. Stored Prod. Res. 2019;80:28–33. doi: 10.1016/j.jspr.2018.10.004. DOI

Agrafioti P., Sotiroudas V., Kaloudis S., Bantas S., Athanassiou C.G. Real time monitoring of phophine and insect mortality in different storage facilities. J. Stored Prod. Res. 2020;89:101726. doi: 10.1016/j.jspr.2020.101726. DOI

Reichmuth C.A. Quick test to determine phosphine resistance in stored products research. GASGA Newsl. 1991;15:14–15.

Bell C.H., Savvidou N., Mills K.A., Bradberry S., Barlow M.L. A same-day test for detecting resistance to phosphine; Proceedings of the 6th International Working Conference on Stored-Prod; Canberra, Australia. 17–23 April 1994; pp. 41–44.

Cao Y., Wang D. Relationship between phosphine resistance and narcotic knockdown in Tribolium castaneum (Herbst), Sitophilus oryzae (L.), and S. zeamais (Motsch); Proceedings of the Conference Controlled Atmosphere and Fumigation in Stored-products; Adelaide, Australia. 1–4 August 2000; pp. 609–616.

Cato A., Afful E., Nayak M.N., Phillips T.W. Evaluation of knockdown bioassay methods to assess phosphine resistance in the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) Insects. 2019;10:140. doi: 10.3390/insects10050140. PubMed DOI PMC

Nayak M.K., Kaur R., Jagadeesan R., Pavic H., Phillips T.W., Daglish G.J. Development of a quick knockdown test for diagnosing resistance to Phosphine in Sitophilus oryzae (Coleoptera: Curculionidae), a major pest of stored products. J. Econ. Entomol. 2019;112:1975–1982. doi: 10.1093/jee/toz085. PubMed DOI

Afful E., Cato A., Nayak M.K., Phillips T.W. A rapid assay for the detection of resistance to phosphine in the lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) J. Stored Prod. Res. 2021;91:101776. doi: 10.1016/j.jspr.2021.101776. DOI

Steuerwald R., Dierks-Lange H., Schmitt S. Rapid bioassay for determining the phosphine tolerance; Proceedings of the 9th International Working Conference on Stored-Product Prot., Campinas, Sao Paolo, BRAPOS; Passo Fundo, Brazil. 15–18 October 2006; pp. 306–311.

Goetze C., Steuerwald R., Agrafioti P., Jakob G.K., Athanassiou C.G. It all started with a kit: The Detia Degesch phosphine tolerance test and new data in the field of phosphine fumigation; Proceedings of the 11th International Conference on Controlled Atmospheres and Fumigation in Stored Products (CAF 2020), CAF Permanent Committee Secretariat; Winnipeg, MB, Canada. 11–13 June 2021; pp. 35–41.

Goetze C., Sakka M.K., Agrafioti P., Athanassiou C.G. Resistance here, resistance there, resistance everywhere! A dispute about phosphine and its use in the light of best management practice. IOBC-WPRS Bull. 2022;159:206–209.

Stejskal V., Hubert J., Aulicky R., Kucerova Z. Overview of present and past and pest associated risks in stored food and feed products: European perspective. J. Stored Prod. Res. 2015;64:122–132. doi: 10.1016/j.jspr.2014.12.006. DOI

Niang E.H.A., Konata L., Diallo M., Faye O., Dia I. Patterns of insecticide resistance and knock down resistance (kdr) in malaria vectors An. arabiensis, An. coluzzii and An. gambiae from sympatric areas in Senegal. Parasit. Vect. 2016;9:71. doi: 10.1186/s13071-016-1354-3. PubMed DOI PMC

Zhu X., Hu C.T., Yang J., Joyce L.A., Qiu M., Ward M.D., Kahr B. Manipulating solid forms of contact insecticides for infectious disease prevention. J. Am. Chem. Soc. 2019;141:16858–16864. doi: 10.1021/jacs.9b08125. PubMed DOI

Koçak E., Yılmaz A., Alpkent Y.N., Ertürk S. Phosphine resistance to some coleopteran pests in stored grains across Turkey; Proceedings of the 11th International Conference on the IOBC-WPRS Bulletin; Ljubljana, Slovenija. 3–5 July 2017; pp. 303–310.

Stejskal V., Vendl T., Li Z., Aulicky R. Efficacy of visual evaluation of insect-damaged kernels of malting barley by Sitophilus granarius from various observation perspectives. J. Stored Prod. Res. 2020;89:101711. doi: 10.1016/j.jspr.2020.101711. DOI

Vendl T., Frankova M., Aulicky R., Stejskal V. First record of the development of Sitophilus oryzae on two rodent bait formulations and literature overview of stored product arthropods infestations in rodent baits. J. Stored Prod. Res. 2020;86:101557. doi: 10.1016/j.jspr.2019.101557. DOI

Agrafioti P., Sotiroudas V., Bantas S., Athanassiou C.G. Concentration-Time Relationships in Phosphine Fumigation on Different Species and Strains: The UTH Protocol. In: Agustí N., Castañé C., Riudavets J., editors. Proceedings of the 13th IOBC-WPRS Meeting, Barcelona, Spain, 3–6 October 2022. Volume 159. The Publication Commission of the IOBC-WPRS; Bragança, Portugal: 2022. pp. 214–216.

Lorini I., Collins P.J., Daglish G.J., Nayak M.K., Pavic H. Detection and characterisation of strong resistance to phosphine in Brazilian Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae) Pest Manag. Sci. 2007;63:358–364. doi: 10.1002/ps.1344. PubMed DOI

Monro H.A.U., Upitis E., Bond E.J. Resistance of a laboratory strain of S. granarius (L.) (Coleoptera: Curculionidae) to phosphine. J. Stored Prod. Res. 1972;8:199–207. doi: 10.1016/0022-474X(72)90040-9. DOI

Athanassiou C.G., Buchelos C.T. Detection of stored-wheat beetle species and estimation of population density using unbaited probe traps and grain trier samples. Entomol. Exp. Appl. 2001;98:67–78. doi: 10.1046/j.1570-7458.2001.00758.x. DOI

Collins P.J., Daglish G.J., Bengston M., Lambkin T.M., Pavic H. Genetics of resistance to phosphine in Rhyzopertha dominica (Coleoptera: Bostrichidae) J. Econ. Entomol. 2002;95:862–869. doi: 10.1603/0022-0493-95.4.862. PubMed DOI

Daglish G.J. Effect of exposure period on degree of dominance of phosphine resistance in adults of Rhyzopertha dominica (Coleoptera: Bostrychidae) and Sitophilus oryzae (Coleoptera: Curculionidae) Pest Manag. Sci. 2004;60:822–826. doi: 10.1002/ps.866. PubMed DOI

Nguyen T.T., Collins P.J., Ebert P.R. Inheritance and characterization of strong resistance to phosphine in Sitophilus oryzae (L.) PLoS ONE. 2015;10:e0124335. doi: 10.1371/journal.pone.0124335. PubMed DOI PMC

Gautam S.G., Opit G.P., Konemann C., Shakya K., Hosoda E. Phosphine resistance in saw-toothed grain beetle, Oryzaephilus surinamensis in the United States. J. Stored Prod. Res. 2020;89:101690. doi: 10.1016/j.jspr.2020.101690. DOI

Emery R.N. A Western Australian farm survey for phosphine-resistant grain beetles. In: Highley E., Wright E.J., Banks H.J., Champ B.R., editors. Proceedings of the 6th International. Working Conference on Stored Product Protection, Canberra, Australia, 17–23 April. CAB International; Wallingford, UK: 1994. pp. 98–103.

Herron G.A. Resistance to grain protectants and phosphine in coleopterous pests of grain stored on farms in New South Wales. J. Aust. Entomol. Soc. 1990;29:183–189. doi: 10.1111/j.1440-6055.1990.tb00345.x. DOI

Pimentel M.A.G., Faroni L.R.D.A., Tótola M.R., Guedes R.N.C. Phosphine resistance, respiration rate and fitness consequences in stored-product insects. Pest Manag. Sci. 2007;63:876–881. doi: 10.1002/ps.1416. PubMed DOI

Pimentel M.A.G., Faroni L.R.D.A., Batista M.D., Silva F.H.D. Resistance of stored-product insects to phosphine. Pesqui. Agropecuária Bras. 2008;43:1671–1676. doi: 10.1590/S0100-204X2008001200005. DOI

Pimentel M.A., Faroni L.R.D.A., da Silva F.H., Batista M.D., Guedes R.N. Spread of phosphine resistance among Brazilian populations of three species of stored product insects. Neotrop. Entomol. 2010;39:101–107. doi: 10.1590/S1519-566X2010000100014. PubMed DOI

Sousa A.H., Lrd’a F., Pimentel M.A.G., Guedes R.N.C. Developmental and population growth rates of phosphine-resistant and-susceptible populations of stored-product insect pests. J. Stored Prod. Res. 2009;45:241–246. doi: 10.1016/j.jspr.2009.04.003. DOI

Suthisut D., Kengkanpanich R., Pedchote A. Phosphine resistance on Oryzaephilus surinamensis L. in Thailand. Entomol. Zool. Gaz. 2014;18:40–48.

Hubhachen Z., Opit G., Gautam S.G., Konemann C., Hosoda E. Phosphine resistance in saw-toothed grain beetle, Oryzaephilus surinamensis (Coleoptera: Silvanidae) in the United States. Jul. Kühn. Arch. 2018;463:635–642.

Ferizli A.G., Emekci M., Tütüncü S., Navarro S. The efficacy of phosphine fumigation against dried fruit pests in Turkey. IOBC WPRS (OILB SROP) Integr. Prot. Stored Prod. 2004;27:265–269.

Carvalho M.O., Pires I., Barbosa A., Barros G., Riudavets J., Garcia A.C., Navarro S. The use of modified atmospheres to control Sitophilus zeamais and Sitophilus oryzae on stored rice in Portugal. J. Stored Prod. Res. 2012;50:49–56. doi: 10.1016/j.jspr.2012.05.001. DOI

Stejskal V., Vendl T., Li Z., Aulicky R. Minimal thermal requirements for development and activity of stored product and food industry pests (Acari, Coleoptera, Lepidoptera, Psocoptera, Diptera and Blattodea): A review. Insects. 2019;10:149. doi: 10.3390/insects10050149. PubMed DOI PMC

Aulicky R., Shah J.A., Kolar V., Li Z., Stejskal V. Control of stored agro-commodity pests Sitophilus granarius and Callosobruchus chinensis by nitrogen hypoxic atmospheres: Laboratory and Field Validations. Agronomy. 2022;12:2748. doi: 10.3390/agronomy12112748. DOI

EPPO (European and Mediterranean Plant Protection Organization) Phosphine Fumigation of Stored Products. Volume 14. John Wiley & Sons; Hoboken, NJ, USA: 1984. Recommendations on Fumigation Standards; pp. 598–599. Fumigation Standard No 18. EPPO Bulletin.

Agrafioti P., Kaloudis E., Athanassiou C.G. Utilizing low oxygen to mitigate resistance of stored product insects to phosphine. J. Sci. Food Agric. 2022;102:6080–6087. doi: 10.1002/jsfa.11960. PubMed DOI

Aulicky R., Kolar V., Prokop J., Stejskal V. Field efficacy of brief exposure of adults of six storage pests to nitrogen-controlled atmospheres. Plant Prot. Sci. 2017;53:169–176.

Plumier B.M., Schramm M., Ren Y., Maier D.E. Modeling post-fumigation desorption of phosphine in bulk stored grain. J. Stored Prod. Res. 2020;85:101548. doi: 10.1016/j.jspr.2019.101548. DOI

Rajendran S., Gunasekaran N. The response of phosphine-resistant lesser grain borer Rhyzopertha dominica and rice weevil Sitophilus oryzae in mixed-age cultures to varying concentrations of phosphine. Pest Manag. Sci. 2002;58:277–281. doi: 10.1002/ps.446. PubMed DOI

Lukas J., Stejskal V., Jarosik V., Hubert J., Zdarkova E. Differential natural performance of four Cheyletus predatory mite species in Czech grain stores. J. Stored Prod. Res. 2007;43:97–102. doi: 10.1016/j.jspr.2005.12.002. DOI

Kosa-Tass A., Bajomi D.A., Szilagyi J., Verwilghen F. Sustainable storage of grains by implementing a novel protectant and versatile application technology. In: Agustí N., Castañé C., Riudavets J., editors. Proceedings of the 13th IOBC-WPRS Meeting, Barcelona, Spain, 3–6 October 2022. Volume 159. The Publication Commission of the IOBC-WPRS; Bragança, Portugal: 2022. p. 229.

Hervet V.A., Morrison III W.R. Prospects for use of biological control of insect and mites for the food industry in North America. Agronomy. 2021;11:1969. doi: 10.3390/agronomy11101969. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...