Synthetic and Natural Insecticides: Gas, Liquid, Gel and Solid Formulations for Stored-Product and Food-Industry Pest Control
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
EU - Horizon 2020; grant number: novIGRain No. 101000663
EU - Horizon 2020
VZ-RO0118
Ministry of Agriculture Czech Republic
grant number NANOFUM T2DGE-0917
Ministry of Economy and Development/Special Secretary for ERDF and CF, Greece
PubMed
34209742
PubMed Central
PMC8305526
DOI
10.3390/insects12070590
PII: insects12070590
Knihovny.cz E-zdroje
- Klíčová slova
- IPM, aerosol, baits, diatomaceous earth, essential oils, fumigation, impregnated nets, insecticides, nanoparticles, spray,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The selective application of insecticides is one of the cornerstones of integrated pest management (IPM) and management strategies for pest resistance to insecticides. The present work provides a comprehensive overview of the traditional and new methods for the application of gas, liquid, gel, and solid physical insecticide formulations to control stored-product and food industry urban pests from the taxa Acarina, Blattodea, Coleoptera, Diptera, Hymenoptera, Lepidoptera, Psocoptera, and Zygentoma. Various definitions and concepts historically and currently used for various pesticide application formulations and methods are also described. This review demonstrates that new technological advances have sparked renewed research interest in the optimization of conventional methods such as insecticide aerosols, sprays, fumigants, and inert gases. Insect growth regulators/disruptors (IGRs/IGDs) are increasingly employed in baits, aerosols, residual treatments, and as spray-residual protectants for long-term stored-grain protection. Insecticide-impregnated hypoxic multilayer bags have been proven to be one of the most promising low-cost and safe methods for hermetic grain storage in developing countries. Insecticide-impregnated netting and food baits were originally developed for the control of urban/medical pests and have been recognized as an innovative technology for the protection of stored commodities. New biodegradable acaricide gel coatings and nets have been suggested for the protection of ham meat. Tablets and satchels represent a new approach for the application of botanicals. Many emerging technologies can be found in the form of impregnated protective packaging (insect growth regulators/disruptors (IGRs/IGDs), natural repellents), pheromone-based attracticides, electrostatic dust or sprays, nanoparticles, edible artificial sweeteners, hydrogels, inert baits with synthetic attractants, biodegradable encapsulations of active ingredients, and cyanogenic protective grain coatings. Smart pest control technologies based on RNA-based gene silencing compounds incorporated into food baits stand at the forefront of current strategic research. Inert gases and dust (diatomaceous earth) are positive examples of alternatives to synthetic pesticide products, for which methods of application and their integration with other methods have been proposed and implemented in practice. Although many promising laboratory studies have been conducted on the biological activity of natural botanical insecticides, published studies demonstrating their effective industrial field usage in grain stores and food production facilities are scarce. This review shows that the current problems associated with the application of some natural botanical insecticides (e.g., sorption, stability, field efficacy, and smell) to some extent echo problems that were frequently encountered and addressed almost 100 years ago during the transition from ancient to modern classical chemical pest control methods.
Zobrazit více v PubMed
Athanassiou C.G., Arthur F.H. Recent Advances in Stored Product Protection. Springer; Berlin, Germany: 2018. p. 273.
Stejskal V., Vendl T., Li Z., Aulicky R. Efficacy of visual evaluation of insect-damaged kernels of malting barley by Sitophilus granarius from various observation perspectives. J. Stored Prod. Res. 2020;89:101711. doi: 10.1016/j.jspr.2020.101711. DOI
Stejskal V., Hubert J., Aulicky R., Kucerova Z. Overview of present and past and pest-associated risks in stored food and feed products: European perspective. J. Stored Prod. Res. 2015;64:122–132. doi: 10.1016/j.jspr.2014.12.006. DOI
Hubert J., Erban T., Nesvorna M., Stejskal V. Emerging risk of infestation and contamination of dried fruits by mites in the Czech Republic. Food Addit. Contam. Part A. 2011;28:1129–1135. doi: 10.1080/19440049.2011.584911. PubMed DOI
Hubert J., Stejskal V., Athanassiou C.G., Throne J.E. Health hazards associated with arthropod infestation of stored products. Annu. Rev. Entomol. 2018;63:553–573. doi: 10.1146/annurev-ento-020117-043218. PubMed DOI
Stejskal V., Vendl T., Kolar V., Li Z., Aulicky R. First population quantification of the infestation of legumes by stored-product bruchids imported in freight containers into Europe. Bull. Insectol. 2020;73:233–239.
Nopsa J.F.H., Daglish G.J., Hagstrum D.W., Leslie J.F., Phillips T.W., Scoglio C., Thomas-Sharma S., Walter G.H., Garrett K.A. Ecological networks in stored grain: Key postharvest nodes for emerging pests, pathogens, and mycotoxins. Bioscience. 2015;65:985–1002. doi: 10.1093/biosci/biv122. PubMed DOI PMC
Fardisi M., Gondhalekar A.D., Ashbrook A.R., Scharf M.E. Rapid evolutionary responses to insecticide resistance management interventions by the German cockroach (Blattella germanica L.) Sci. Rep. 2019;9:1–10. doi: 10.1038/s41598-019-44296-y. PubMed DOI PMC
Opit G.P., Phillips T.W., Aikins M.J., Hasan M.M. Phosphine resistance in Tribolium castaneum and Rhyzopertha dominica from stored wheat in Oklahoma. J. Econ. Entomol. 2012;105:1107–1114. doi: 10.1603/EC12064. PubMed DOI
Nayak M.K., Daglish G.J., Phillips T.W., Ebert P.R. Resistance to the fumigant phosphine and its management in insect pests of stored products: A global perspective. Annu. Rev. Entomol. 2020;65:333–350. doi: 10.1146/annurev-ento-011019-025047. PubMed DOI
Sparks T.C., Storer N., Porter A., Slater R., Nauen R. Insecticide resistance management and industry–The origins and evolution of the Insecticide Resistance Action Committee (IRAC) and the mode of action classification scheme. Pest Manag. Sci. 2021;77:2609–2619. doi: 10.1002/ps.6254. PubMed DOI PMC
Zhu F., Lavine L., O’Neal S., Lavine M., Foss C., Walsh D. Insecticide resistance and management strategies in urban ecosystems. Insects. 2016;7:2. doi: 10.3390/insects7010002. PubMed DOI PMC
Capinera J.L. Encyclopedia of Entomology. Springer; New York, NY, USA: 2008.
Ebeling W., Pence R.J. Pesticide formulation. Influence of formulation on effectiveness. J. Agric. Food Chem. 1953;1:386–397. doi: 10.1021/jf60005a006. DOI
Guedes R.N.C., Smagghe G., Stark J.D., Desneux N. Pesticide-induced stress in arthropod pests for optimized integrated pest management programs. Annu. Rev. Entomol. 2016;61:43–62. doi: 10.1146/annurev-ento-010715-023646. PubMed DOI
Busvine J.R. A Critical Review of the Techniques for Testing Insecticides. 2nd ed. Commonwealth Agricultural Bureaux; Slough, UK: 1971. p. 345.
Wardle R.A. The Problems of Applied Entomology. Manchester University Press; Manchester, UK: 1929. p. 587.
Gerolt P. Insecticides—their route of entry, mechanism of transport and mode of action. Biol. Rev. Camb. Philos. Soc. 1983;58:233–274. doi: 10.1111/j.1469-185X.1983.tb00389.x. PubMed DOI
Najar-Rodriguez A.J., Lavidis N.A., Mensah R.K., Choy P.T., Walter G.H. The toxicological effects of petroleum spray oils on insects–Evidence for an alternative mode of action and possible new control options. Food Chem. Toxicol. 2008;46:3003–3014. doi: 10.1016/j.fct.2008.05.042. PubMed DOI
Webb J.E., Green R.A. On the penetration of insecticides through the insect cuticle. J. Exp. Biol. 1945;22:8–20. doi: 10.1242/jeb.22.1-2.8. PubMed DOI
Busvine J.R. Studies in Biology. Edward Arnold; London, UK: 1975. Arthropod Vectors of Disease; p. 67. No. 55.
Hagstrum D.W., Phillips T.W. Evolution of stored-product entomology: Protecting the world food supply. Annu. Rev. Entomol. 2017;62:379–397. doi: 10.1146/annurev-ento-031616-035146. PubMed DOI
Maier D.E. Advances in Postharvest Management of Cereals and Grains. Burleigh Dodds Science Publishing; Cambridge, UK: 2020. p. 300.
Stejskal V., Vendl T., Li Z., Aulicky R. Minimal thermal requirements for development and activity of stored product and food industry pests (Acari, Coleoptera, Lepidoptera, Psocoptera, Diptera and Blattodea): A review. Insects. 2019;10:149. doi: 10.3390/insects10050149. PubMed DOI PMC
Jian F. Influences of stored product insect movements on integrated pest management decisions. Insects. 2019;10:100. doi: 10.3390/insects10040100. PubMed DOI PMC
Munro J.W. Pests of Stored Products. The Rentokil Library, Hutchinson; London, UK: 1966.
Snell E.J. Future trends in pesticide applications; Proceedings of the 3rd International Conference Urban Pest; Prague, Czech Republic. 19–22 July 1999; pp. 35–41.
Robinson W.H. In: The Service Technician’s Application and Equipment Manual: A Practical Guide for Pest Control Professionals. Lupo L.J., editor. PCT—Pest Control Technology; Valley View, OH, USA: 2015. p. 128.
Murdock L.L., Seck D., Ntoukam G., Kitch L., Shade R.E. Preservation of cowpea grain in sub-Saharan Africa—Bean/Cowpea CRSP contributions. Field Crops Res. 2003;82:169–178. doi: 10.1016/S0378-4290(03)00036-4. DOI
Stathers T., Holcroft D.K.L., Mvumi B., English A., Omotilewa O., Kocher M., Ault J., Torero M. A scoping review of interventions for crop postharvest loss reduction in sub-Saharan Africa and South Asia. Nat. Sustain. 2020;3:821–835. doi: 10.1038/s41893-020-00622-1. DOI
Sparks T.C., Wessels F.J., Lorsbach B.A., Nugent B.M., Watson G.B. The new age of insecticide discovery-the crop protection industry and the impact of natural products. Pestic. Biochem. Physiol. 2019;161:12–22. doi: 10.1016/j.pestbp.2019.09.002. PubMed DOI
Freeman J.A. Pest infestation control in breweries and maltings. J. Inst. Brew. 1951;57:326–337. doi: 10.1002/j.2050-0416.1951.tb01631.x. DOI
Hill D.S. Pests of Stored Foodstuffs and Their Control. Kluwer Academic Publishers; Boston, MA, USA: 2002.
Peckman P.S., Arthur F.H. Insecticide space treatments in food plants. In: Heaps J., editor. Insect Management for Food Storage and Processing. AACC; Minneapolis, MN, USA: 2006. pp. 175–182.
Arthur F.H. Structural Pest Management for Stored Product Insects. In: Athanassiou C., Arthur F., editors. Recent Advances in Stored Product Protection. Springer; Berlin/Heidelberg, Germany: 2018. pp. 65–81. Chapter 4.
Matthews G., Bateman R., Miller P. Pesticide Application Methods. 4th ed. John Wiley & Sons; Hoboken, NJ, USA: 2014.
Golob P., Farrell G., Orchard J.E. Crop Post-harvest: Principles and practice. In: Golob P., Farrell G., Orchard J.E., editors. Crop Post-Harvest: Science and Technology. John Wiley & Sons; Hoboken, NJ, USA: 2002.
Rust M.K., Owens J.M., Reierson D.A. Understanding and Controlling the German Cockroach. Oxford University Press; New York, NY, USA: 1995.
Rust M.K. Hayes’ Handbook of Pesticide Toxicology. Academic Press; Cambridge, MA, USA: 2010. The Changing Role of Insecticides in Structural Pest Control; pp. 257–270.
Daglish G.J., Nayak M.K., Arthur F.H., Athanassiou C.G. Insect Pest Management in Stored Grain. In: Athanassiou C., Arthur F., editors. Recent Advances in Stored Product Protection. Springer; Berlin, Germany: 2018.
Robinson W. Urban Insects and Arachnids: A Handbook of Urban Entomology. Cambridge University Press; Cambridge, UK: 2005.
Hagstrum D.W., Subramanyam B. Stored-Product Insect Resource. AACC International; Saint Paul, MN, USA: 2009. p. 509.
Sutar S.A., Thirumdas R., Chaudhari B.B., Deshmukh R.K., Annapure U.A. Effect of cold plasma on insect infestation and keeping quality of stored wheat flour. J. Stored Prod. Res. 2021;92:101774. doi: 10.1016/j.jspr.2021.101774. DOI
Plimmer J. Pesticides for Stored Products. In: Mastumura F., Krishma C., editors. Biodegradation of Pesticides. Plenum Press; New York, NY, USA: 1982. pp. 239–255.
Thoms E.M., Busacca J.D. Fumigants. In: Caballero B., Finglas P.M., Toldrá F., editors. Encyclopedia of Food and Health. Academic Press; Cambridge, MA, USA: 2015. pp. 150–156.
Bond E.J. 1984: Manual of Fumigation for Insect Control. Volume 54. FAO; Rome, Italy: 1984. p. 432.
Baur F.J. Insect Management for Food Storage and Processing. ACCC International; St. Paul, MN, USA: 1984. p. 384.
Stejskal V., Kocourek V., Aulicky R., Hajslova J. Insecticide Aerosols in Storage IPM: Biological Efficacy and Residues in Air and Food. In: Arthur F.H., Kengkanpanich R., Chayaprasert W., Suthisut D., editors. Proceedings of the 11th International Working Conference on Stored Product Prot.; Chiang Mai, Thailand. 24–28 November 2014; Berlin, Germany: Julius-Kühn-Archiv; 2014. p. 903.
Roark R.C., Nelson O.A. Maximum weights of various fumigants which can exist in vapor form in a 1,000 cubic foot fumigating chamber. J. Econ. Entomol. 1929;22:381–387. doi: 10.1093/jee/22.2.381. DOI
Jian F., Jayas D.S. Engineering considerations for creating uniform distribution of applied gas during controlled atmospheres and fumigation; Proceedings of the 10th International Conference on Controlled Atmosphere and Fumigation in Stored Products; New Dehli, India. 6–11 November 2016; pp. 1–11.
Jiang X., Huang L.F., Zheng S.H., Chen S.L. Sulfur fumigation, a better or worse choice in preservation of traditional Chinese medicine? Phytomedicine. 2013;20:97–105. doi: 10.1016/j.phymed.2012.09.030. PubMed DOI
Monro H.A.U. Manual of Fumigation for Insect Control. 2nd ed. St. Paul’s Press, Malta for United Nations FAO; Rome, Italy: 1969. p. 381.
Bell C.H. Fumigation in the 21st century. Crop Prot. 2000;19:563–569. doi: 10.1016/S0261-2194(00)00073-9. DOI
Aulicky R., Stejskal V., Frydova B., Athanassiou C.G. Susceptibility of two strains of the confused flour beetle (Coleoptera: Tenebrionidae) following phosphine structural mill fumigation: Effects of concentration, temperature, and flour deposits. J. Econ. Entomol. 2015;108:2823–2830. doi: 10.1093/jee/tov257. PubMed DOI
Mahroof R.M., Amoah B.A., Wrighton J. Efficacy of ozone against the life stages of Oryzaephilus mercator (Coleoptera: Silvanidae) J. Econ. Entomol. 2018;111:470–481. doi: 10.1093/jee/tox293. PubMed DOI
Navarro S., Navarro H. Advances in insect pest management in postharvest storage of cereals: Use of controlled atmosphere and temperature control. In: Maier D.E., editor. Advances in Postharvest Management of Cereals and Grains. Burleigh Dodds Science Publishing Limited; Cambridge, UK: 2020. p. 478.
Rajendran S. Insect pest management in stored products. Outlooks Pest. Manag. 2020;31:24–35. doi: 10.1564/v31_feb_05. DOI
Liu Y.B. Comparison of efficacy of nitric oxide fumigation under nitrogen and carbon dioxide atmospheres in controlling granary weevil (Sitophilus granaries) and confused flour beetle (Tribolium confusum) J. Stored Prod. Res. 2020;88:101672. doi: 10.1016/j.jspr.2020.101672. DOI
Phillips T., Thoms E., DeMark J., Walse S. Fumigation. In: Hagstrum D.H., Phillips T.W., Cuperus G.W., editors. Stored Product Protection, Circular S156. Kansas State University; Manhattan, KS, USA: 2012. pp. 157–178.
Arthur F.H., Johnson J.A., Neven L.G., Hallman G.J., Follett P.A. Insect pest management in postharvest ecosystems in the United States of America. Outlooks Pest. Manag. 2009;20:279–284. doi: 10.1564/20dec10. DOI
Douda O., Stejskal V., Manasova M., Zouhar M., Hnatek J. Inexpensive screening method to validate the efficacy of ethanedinitrile fumigant on the forest invasive nematode pest Bursaphelenchus xylophilus. Sustainability. 2020;12:4765. doi: 10.3390/su12114765. DOI
Douda O., Manasova M., Zouhar M., Hnatek J., Stejskal V. Field validation of the effect of soil fumigation of ethanedinitrile (EDN) on the mortality of Meloidogyne hapla and carrot yield parameters. Agronomy. 2021;11:208. doi: 10.3390/agronomy11020208. DOI
Armstrong J.W., Brash D.W., Waddell B.C. Comprehensive literature review of fumigants and disinfestation strategies, methods and techniques pertinent to potential use as quarantine treatments for New Zealand export logs. Plant Food Res. SPTS. 2014;10678:1–184.
Stejskal V., Douda O., Zouhar M., Manasova M., Dlouhy M., Simbera J., Aulicky R. Wood penetration ability of hydrogen cyanide and its efficacy for fumigation of Anoplophora glabripennis, Hylotrupes bajulus (Coleoptera), and Bursaphelenchus xylophilus (Nematoda) Int. Biodeter. Biodegr. 2014;86:189–195. doi: 10.1016/j.ibiod.2013.08.024. DOI
Neven L.G. Postharvest management of insects in horticultural products by conventional and organic means, primarily for quarantine purposes. Stewart Postharvest Rev. 2010;6:1–11.
Rajendran S., Sriranjini V. Plant products as fumigants for stored-product insect control. J. Stored Prod. Res. 2008;44:126–135. doi: 10.1016/j.jspr.2007.08.003. DOI
Ajesh G., Jayaprakas C.A., Krishnan J.U., Rajeswari L.S. Fumigant activity of insecticidal principles isolated from cassava (Manihot esculenta Crantz) against Tribolium castaneum and Rhyzopertha dominica. J. Entomol. Zool. Stud. 2018;6:220–225.
Mora C.A., Halter J.G., Adler C., Hund A., Anders H., Yu K., Stark W.J. Application of the Prunus spp. cyanide seed defense system onto wheat: Reduced insect feeding and field growth tests. J. Agric. Food Chem. 2016;64:3501–3507. doi: 10.1021/acs.jafc.6b00438. PubMed DOI
Campolo O., Giunti G., Russo A., Palmeri V., Zappalà L. Essential oils in stored product insect pest control. J. Food Qual. 2018;2018:1–18. doi: 10.1155/2018/6906105. DOI
Follett P.A., Rivera-Leong K., Myers R.Y. Rice weevil response to basil oil fumigation. J. Asia Pac. Entomol. 2013;17:119–121. doi: 10.1016/j.aspen.2013.11.008. DOI
Yang X., Liu Y.-B., Feng Y., Zhang A. Methyl benzoate fumigation for control of post-harvest pests and its effects on apple quality. J. Appl. Entomol. 2020;144:191–200. doi: 10.1111/jen.12723. DOI
Morrison W.R., Larson N.L., Brabec D., Zhang A. Methyl benzoate as a putative alternative, environmentally friendly fumigant for the control of stored-product insects. J. Econ. Entomol. 2019;112:2458–2468. doi: 10.1093/jee/toz179. PubMed DOI
Chen J., Rashid T., Feng G., Feng Y., Zhang A., Grodowitz M.J. Insecticidal activity of methyl benzoate analogs against red imported fire ants, Solenopsis invicta (Hymenoptera: Formicidae) J. Econ. Entomol. 2019;112:691–698. doi: 10.1093/jee/toy360. PubMed DOI
Mostafiz M.M., Hassan E., Acharya R., Shim J.K., Lee K.Y. Methyl benzoate is superior to other natural fumigants for controlling the Indian meal moth (Plodia interpunctella) Insects. 2021;12:23. doi: 10.3390/insects12010023. PubMed DOI PMC
Larson N.R., Zhang A., Feldlaufer M.F. Fumigation activities of ethyl benzoate and its derivatives against the common bed bug (Hemiptera: Cimicidae) J. Med. Entomol. 2020;57:187–191. doi: 10.1093/jme/tjz138. PubMed DOI
Feng Y., Zhang A. A floral fragrance methyl benzoate is an efficient green pesticide. Sci. Rep. 2017;7:1–9. doi: 10.1038/srep42168. PubMed DOI PMC
Panagiotakopulu E., Buckland P.C., Day P.M., Sarpaki A.A., Doumas C. Natural insecticides and insect repellents in antiquity: A review of the evidence. J. Archaeol. Sci. 1995;22:705–710. doi: 10.1016/S0305-4403(95)80156-1. DOI
Hartzell A. Naphthalene fumigation of greenhouses. J. Econ. Entomol. 1926;19:780–786. doi: 10.1093/jee/19.5.780. DOI
Bourcart E. Insecticides, Fungicides and Weedkillers: A Practical Manual on the Diseases of Plants and Their Remedies for the Use of Manufacturing Chemists, Agriculturists, Arborculturists, and Horticulturists. 1st ed. Scott, Greenwood and Son; London, UK: 1913. p. 431.
Gnadinger C.B. Pyrethrum Flowers. 2nd ed. McLaughlin Gormley King Co.; Minneapolis, MN, USA: 1936. pp. 281–284.
Frear D.E.H. Chemistry of Insecticides, Fungicides and Herbicides. D. Van Nostrand Company, Inc.; New York, NY, USA: 1942. p. 300.
Spear P.J. Master’s Thesis. University of Massachusetts; Amherst, MA, USA: 1950. Laboratory Tests with Insecticides Dispersed from the American Aerovap.
Siakotos A.N. Master’s Thesis. University of Massachusetts; Amherst, MA, USA: 1954. Contamination of Food and Air by Lindane Vapor.
Stammers F.M., Whitfield F.G. The toxicity of DDT to man and animals. Bull. Entomol. Res. 1947;38:1–73. doi: 10.1017/S0007485300030169. PubMed DOI
Spear P.J. Ph.D. Thesis. University of Massachusetts; Amherst, MA, USA: 1952. Continuous Vaporization of Insecticides.
Braid P.E., LeBoeuf J. Determination of trace amounts of lindane in air by infrared spectrophotometry. Anal.Chem. 1957;29:1625–1627. doi: 10.1021/ac60131a016. DOI
Spear P.J., Sweetman H.L. Continuous vaporization of insecticides with special reference to DDT. J. Econ. Entomol. 1952;45:869–873. doi: 10.1093/jee/45.5.869. DOI
Diptyanusa A., Satoto T.B.T., Hadianto T. Trial of neem oil (Azadirachta indica) as basic compound of electric liquid vaporizer against Aedes aegypti mortality. YARSI Med. J. 2017;25:23–32.
Valecha N., Ansari M.A., Prabhu S., Razdan R.K. Preliminary evaluation of safety aspects of neem oil in kerosene lamp. Indian J. Malariol. 1996;33:139–143. PubMed
Ansari M.A., Razdan R.K. Operational feasibility of malaria control by burning neem oil in kerosene lamp in Beel Akbarpur village, District Ghaziabad, India. Indian J. Malariol. 1996;33:81–87. PubMed
Busvine J.R. Insects and Hygiene: The Biology and Control of Insect Pests of Medical and Domestic Importance in Britain. 2nd ed. Methuen & Co.; London, UK: 1966. p. 467.
Wright D. Mercury as a control for stored grain pests. Bull. Entomol. Res. 1944;35:143–160. doi: 10.1017/S0007485300017375. DOI
Gough H.C. Toxicity of mercury vapour to insects. Nature. 1938;141:922–923. doi: 10.1038/141922c0. DOI
Larson A.O. Metallic mercury as an insecticide. J. Econ. Entomol. 1922;15:391–395. doi: 10.1093/jee/15.6.391. DOI
Herrick G.W., Griswold G.H. Naphthalene as a fumigant for the immature stages of clothes moths and carpet beetles. J. Econ. Entomol. 1933;26:446–451. doi: 10.1093/jee/26.2.446. DOI
Batth S.S. Influence of temperature on the effectiveness of paradichlorobenzene fumigation of black carpet beetle larvae. J. Econ. Entomol. 1969;62:747–748. doi: 10.1093/jee/62.3.747. DOI
Ryckman R.E. Vapona for the control of museum pests. J. Med. Entomol. 1969;6:98. doi: 10.1093/jmedent/6.1.98. PubMed DOI
Batth S.S. Influence of temperature on the effectiveness of paradichlorobenzene fumigation of webbing clothes moth larvae. J. Econ. Entomol. 1971;64:989–990. doi: 10.1093/jee/64.4.989. DOI
Jay E.G., Gillenwater H.B., Harein P.K. The toxicity of several dichlorvos (DDVP) and nailed formulations to the adult confused flour beetle. J. Econ. Entomol. 1964;57:415–416. doi: 10.1093/jee/57.3.415. DOI
Harein P.K., Gillenwater H.B., Eason G. Dichlorvos space treatment for protection of packaged flour against insect infestation. J. Stored Prod. Res. 1971;7:57–62. doi: 10.1016/0022-474X(71)90038-5. DOI
Harein P.K., Gillenwater H.B., Jay E.G. Dichlorvos: Methods of dispensing, estimates of concentration in air, toxicity to stored-product insects. J. Econ. Entomol. 1970;63:1263–1268. doi: 10.1093/jee/63.4.1263. DOI
Lehnert M.P., Pereira R.M., Koehler P.G., Walker W., Lehnert M.S. Control of Cimex lectularius using heat combined with dichlorvos resin strips. Med. Vet. Entomol. 2011;25:460–464. doi: 10.1111/j.1365-2915.2011.00944.x. PubMed DOI
Ujihara K., Sugano M., Nakada K., Iwakura K., Nishihara K., Katoh H. Discovery and development of profluthrin (Fairytale), a new active ingredient of moth proofer. Sumitomo Kagaku. 2010;2:13–23.
Abdel-Mohdy F.A., Fouda M.M., Rehan M.F., Aly A.S. Repellency of controlled-release treated cotton fabrics based on cypermethrin and prallethrin. Carbohydr. Polym. 2008;73:92–97. doi: 10.1016/j.carbpol.2007.11.006. DOI
Ansari M.A., Sharma V.P., Razdan R.K. Esbiothrin-impregnated ropes as mosquito repellent. Indian J. Malariol. 1992;29:203–210. PubMed
Bullington S.W., Pienkowski R.L. Dichlorvos and plastic covers affect insects infesting stored cocoa beans in dockside warehouses. J. Econ. Entomol. 1993;86:1151–1156. doi: 10.1093/jee/86.4.1151. DOI
Peters L. EC78-1534 Insect Prevention and Control in Farm Stored Grain. University of Nebraska; Lincoln, USA: 1978. Historical Materials from University of Nebraska-Lincoln Extension.
Gillenwater G.B., Harein P.K., Loy E.W., Thompson J.F., Laudani H., Gerald Eason G. Dichlorvos applied as a vapor in a warehouse containing packaged foods. J. Stored Prod. Res. 1971;7:45–56. doi: 10.1016/0022-474X(71)90037-3. DOI
Wohlgemuth R. Verfahren zur Untersuchung der Wirkungs abhängigkeit bei Dichlorvos (DDVP-) abgebenden Strips auf die Mortalität vorratsschädlicher Insekten am Beispiel von Plodia interpunctella (Dörrobstmotte) Nachr. Dtsch. Pflanzenschutzd. 1992;44:152–156.
Boina D.R., Subramanyam B. Insect management with aerosols in food processing facilities. In: Perveen F.K., editor. Insecticides: Advances in Integrated Pest Management. InTech Europe; Rijeka, Croatia: 2012. pp. 195–212.
Boles H.P., Bry R.E., Mc Donald L.L. Dichlorvos vapours: Toxicity to larvae of the furniture carpet beetle. J. Econ. Entomol. 1974;67:308–309. doi: 10.1093/jee/67.2.308. PubMed DOI
Endrödy-Younga S., Baunok I. Efficiency and health hazards tests on Vapona used in insect collections. Entomol. Gen. 1984;10:47–51. doi: 10.1127/entom.gen/10/1984/47. DOI
Linnie M.J., Keatinge M.J. Pest control in museums: Toxicity of para-dichlorobenzene, ‘Vapona’™, and naphthalene against all stages in the life-cycle of museum pests, Dermestes maculatus Degeer, and Anthrenus verbasci (L.) (Coleoptera: Dermestidae) Int. Biodeterior. Biodegradation. 2000;45:1–13. doi: 10.1016/S0964-8305(00)00034-2. DOI
Kumar R., Tiwari S.N. Fumigant toxicity of essential oils against four major storage insect pests. Indian J. Entomol. 2017;79:156–159. doi: 10.5958/0974-8172.2017.00031.1. DOI
Bengston M. Timed daily emission of dichlorvos for control of Ephestia cautella (Walker) infesting stored wheat. J. Stored Prod. Res. 1976;12:157–164. doi: 10.1016/0022-474X(76)90004-7. DOI
Aulicky R., Stejskal V., Opit G. Short-exposure biological activity of dichlorvos insecticide strips on coleopteran storage pests under two evaporation regimes: Can slow-release dichlorvos formulations replace aerosols? Pak. J. Zool. 2019;51:475–482. doi: 10.17582/journal.pjz/2019.51.2.475.482. DOI
Taylor R.W.D. Fumigation of individual sacks of grain using methallyl chloride for control of maize weevil. Int. Pest Control. 1975;17:4–8.
Green A.A., Wilkin D.R. The control of insects in bagged grain by the injection of dichlorvos. J. Stored Prod. Res. 1969;5:11–19. doi: 10.1016/0022-474X(69)90022-8. DOI
Webley D.J., Hams A.H. A comparison of fumigants for in-bag fumigation. Trop. Stored Prod. Inf. 1977;33:9–17.
Peirrot R., Ducom P. Proceedings of the GASCA Seminar on Appropriate Use of Pesticides for the Control of Stored Product Pests in Developing Countries. Central Science Laboratory (CSL); Slough, UK: 1981. Efficacy of carbon tetrachloride in sealed sacks compared with contact insecticides; pp. 149–152.
Knight K.L. Fumigation of sacked grain with chloropicrin. J. Econ. Entomol. 1940;33:536–539. doi: 10.1093/jee/33.3.536. DOI
Tola B.Y., Muleta D.O., Werner C.H. Selection, characterization and identification of smokes from different biomass materials as a medium for modifying the atmosphere for stored grain. J. Stored Prod. Postharvest Res. 2018;9:104–114.
Hole B.D., Bell C.H., Mills K.A., Goodship G. The toxicity of phosphine to all developmental stages of thirteen species of stored product beetles. J. Stored Prod. Res. 1976;12:235–244. doi: 10.1016/0022-474X(76)90039-4. DOI
Athanassiou C.G., Phillips T.W., Arthur F.H., Aikins M.J., Agrafioti P., Hartzer K.L. Efficacy of phosphine fumigation for different life stages of Trogoderma inclusum and Dermestes maculatus (Coleoptera: Dermestidae) J. Stored Prod. Res. 2020;86:101556. doi: 10.1016/j.jspr.2019.101556. DOI
Banks H.J. Behaviour of gases in grain storages. In: Champ B.R., Highley E., Banks H.J., editors. Fumigation and Controlled Atmosphere Storage of Grain, Proceedings of the International Conference, Singapore, 14–18 February 1989. PageCraft Publishing Pty Ltd.; Canberra, Australia: 1989. pp. 96–107. ACIAR Proceedings No. 25.
Berck B. Analysis of fumigants and fumigant residues. J. Chromatogr. Sci. 1975;13:256–267. doi: 10.1093/chromsci/13.6.256. PubMed DOI
Daglish G.J. Opportunities and barriers to the adoption of potential new grain protectants and fumigants; Proceedings of the 9th International Working Confonference on Stored Product Protection; Campinas, Brazil. 15–18 October 2006; pp. 209–216.
. Fumigation with the Liquid Fumigants Carbon Tetrachloride, Ethylene Dichloride and Ethylene Dibromide—Precautionary Measures. Ministry of Agriculture, Fisheries and Food; London, UK: 1966. p. 9.
Dean G.A., Cotton R.T., Wagner G.B. Flour-Mill Insects and Their Control. U.S. Department of Agriculture; Washington, DC, USA: 1936. p. 360.
Walkden H.H., Schwitzgebel R.B. Evaluations of Fumigations for Control of Insects Attacking Wheat and Corn in Steel Bins. U.S. Department of Agriculture Technical Bulletin No. 1045; Washington, DC, USA: 1951. p. 20.
Ramey C.A., Schafer E.W., Jr. The evolution of APHIS two gas cartridges. Proc. Vertebr. Pest Conf. 1996;17:219–224.
Lemay A., Hall T. The use of carbon monoxide in wildlife damage management. In: Hall T., Algeo T., Green M., Lemay A., Wang-Cahill F., Warren J., Wimberly R., editors. Human Health and Ecological Risk Assessment for the Use of Wildlife Damage Management Methods by USDA-APHIS-Wildlife Services. U.S. Department of Agriculture; Washington, DC, USA: 2017. pp. 1–41.
Chittenden F.H. Control of the Mediterranean Flour Moth by Hydrocyanic-Acid Gas Fumigation. U.S. Department of Agriculture, Bureau of Entomology; Washington, DC, USA: 1910. p. 22.
Lindgren D.L., Vincent L.E., Strong R.G. Studies on hydrogen phosphide as a fumigant. J. Econ. Entomol. 1958;51:900–903. doi: 10.1093/jee/51.6.900. DOI
Reichmuth C. Phosphine fumigation-new aspects in stored products protection. Gesunde Pflanz. 1975;37:417–420.
Ryan R.F., Nicolson J. UltraPhos: High purity phosphine—Revisited. In: Arthur F.H., Kengkanpanich R., Chayaprasert W., Suthisut D., editors. Proceedings of the 11th International Working Conference on Stored Product Protection; Chaing Mai, Thailand. 24–28 November 2014; Berlin, Germany: Julius-Kühn-Archiv; 2014. pp. 510–522.
. Cyanamid, Patent Appeal No. 2315-2315—California Cyanide Co. v. Am. Cyanamid Co., Patent Appeal No-40 F.2d 1003, 17 C.C.P.A. 1198 (C.C.P.A. 1930) [(accessed on 24 June 2021)];1930 Available online: https://case-law.vlex.com/vid/40-f-2d-1003-602840598.
Reichmuth C.h. Silozellenbegasung mit Phosphorwasserstoff aus Beutelrollen (Bag Blankets) [Silo bin fumigation with phosphine from bag blankets] Muhle Mischfuttertech. 1983;120:503–504.
Dieterich W.H., Mayr G., Hild K., Sullivan J.B., Murphy J. Hydrogen phosphide as a fumigant for foods, feeds and processed food products. Residue Rev. 1967;19:135–149. PubMed
Reichmuth C. Uptake of phosphine by stored-product pest insects during fumigation; Proceedings of the 6th International Working Conference on Stored-product Protection; Canderra, Australia. 17–23 April 1994; pp. 157–162.
Chadda I.C. Fumigation with phosphine-a perspective. Indian J. Entomol. 2016;78:39–44. doi: 10.5958/0974-8172.2016.00023.7. DOI
Agrafioti P., Sotiroudas V., Kaloudis E., Bantas S., Athanassiou C.G. Real time monitoring of phosphine and insect mortality in different storage facilities. J. Stored Prod. Res. 2020;89:101726. doi: 10.1016/j.jspr.2020.101726. DOI
Aulicky R., Stejskal V. Efficacy and limitations of phosphine “spot-fumigation” against five Coleoptera species of stored product pests in wheat in a grain store—Short note. Plant Prot. Sci. 2015;51:33–38. doi: 10.17221/71/2014-PPS. DOI
Feja F.H., Reichmuth C.U.S. Patent No. 6, 315,965. Patent and Trademark Office; Washington, DC, USA: 2001.
Ryan R.F., Shore W., Newman C. Phosphine generator trial using external air dilution; Proceedings of the 10th International Working Conference on Stored Product Protection; Estoril, Portugal. 27 June–2 July 2010; Berlin, Germany: Julius-Kühn-Archiv; 2010. pp. 430–432.
Liu Y.B. Low-Temperature fumigation of harvested lettuce using a phosphine generator. J. Econ. Entomol. 2018;111:1171–1176. doi: 10.1093/jee/toy038. PubMed DOI
Kostyukovsky M., Trostanetsky A., Yasinov G., Menasherov M., Hazan T. Improvement of phosphine fumigation by the use of Speedbox. Julius-Kühn-Archiv. 2010;425:377–380.
Waterford C.J., Asher P.P. Trials of two phosphine generators based on a new formulation of aluminium phosphide; Proceedings of the International Conference on Controlled Atmosphere and Fumigation in Stored Products; Fresno, CA, USA. 29 October–3 November 2000; Clovis, CA, USA: Executive Printing Services; 2001. pp. 327–333.
Formato A., Naviglio D., Pucillo D.P., Nota G. Improved fumigation process for stored foodstuffs by using phosphine in sealed chambers. J. Agric. Food Chem. 2012;60:331–338. doi: 10.1021/jf204323s. PubMed DOI
Collins D.L., Glasgow R.D. DDT thermal aerosol fogs to control clothes moths in a wool storage warehouse. J. Econ. Entomol. 1946;39:241–245. doi: 10.1093/jee/39.2.241. PubMed DOI
Aulicky R., Stejskal V., Dlouhy M., Liskova J. Validation of hydrogen cyanide fumigation in flourmills to control the confused flour beetle. Czech J. Food Sci. 2015;33:174–179. doi: 10.17221/303/2014-CJFS. DOI
Stejskal V., Adler C. Fumigation and Controlled Atmospheres. Sdružení DDD; Prague, Czech Republic: 1997. p. 128. (Fumigace a řízené atmosféry)
Loucks M.F. Composition of Grain Fumigants. J. AOAC Int. 1965;48:576–579. doi: 10.1093/jaoac/48.3.576. DOI
Quinlan J.K., McGaughey W.H. Fumigation of empty grain drying bins with chloropicrin, phosphine, and liquid fumigant mixtures. J. Econ. Entomol. 1983;76:184–187. doi: 10.1093/jee/76.1.184. DOI
Ren Y., Lee B., Mahon D., Xin N., Head M., Reid R. Fumigation of wheat using liquid ethyl formate plus methyl isothiocyanate in 50-tonne farm bins. J. Econ. Entomol. 2008;101:623–630. doi: 10.1093/jee/101.2.623. PubMed DOI
Li Y., Agarwal M., Cao Y., Li F., Ren Y. Field trials using ethyl formate as grain surface and empty silo treatments. In: Navarro S., Jayas D.S., Alagusundaram K., editors. Proceedings of the 10th International Conference on Controlled Atmosphere and Fumigation in Stored Products; New Delhi, India. 6–11 November 2016; Winnipeg, MB, Canada: CAF Permanent Committee Secretariat; 2016. pp. 244–251.
Bridgeman B., Ryan R., Gock D., Collins P. High dose phosphine fumigation using on-site mixing. In: Donahaye E.J., Navarro S., Leesch J.G., editors. Proceedings of the International Conference Controlled Atmosphere and Fumigation in Stored Products; Fresno, CA, USA. 29 October–3 November 2000; Clovis, CA, USA: Executive Printing Services; 2001. pp. 379–389.
Ryan R.F. Gaseous Phosphine—A revitalised fumigant. In: Donahaye E.J., Navarro S., Varnava A., editors. Proceedings of the International Conference on Controlled Atmosphere and Fumigation in Stored Products; Nicosia, Cyprus. 21–26 April 1996; Nicosia, Cyprus: Printco Ltd.; 1997. pp. 305–310.
Ryan R.F., Latif S. Fumigant System. 4 1989, 889,708. US Patent. 1989 Dec 26;
Ryan R.F., Shore W.P. Pre-mix and on-site mixing of fumigants. Julius-Kühn-Archiv. 2010;425:419.
Ryan R., Krishna H., Bishop S.R., Fontinha M., Grant N., van Epenhuijsen C.W., Page B., Zhang Z., Brash D., Mitcham E.J. Disinfestation and quarantine fumigation; Proceedings of the Australian Postharvest Horticulture Conference; Brisbane, Australia. 1–3 October 2003; Brisbane City, QLD, Australia: Queensland Government, Department of Primary Industries; 2003. pp. 102–104.
Mueller D.K. Patent on Phosphine, Carbon Dioxide and Heat against Stored Product Pest Insects. Insects Limited, Inc.; Indianapolis, IN, USA: 1998. p. 352. Quoted in Mueller, K.D. Stored Product Protection A Period of Transition.
Adler C., Corinth H.G., Reichmuth C. Modified atmospheres. In: Subramanyam B., Hagstrum D.W., editors. Alternatives to Pesticides in Stored-Product IPM. Kluwer; Boston, MA, USA: 2000. pp. 105–146.
Dendy A. Report on the effect of air-tight storage upon grain insects. Part I. Rep. Grain Pests (War) Comm. 1918;1:6–24.
Dendy A., Elkington H. Report on the effect of airtight storage upon grain insects. Part III. Rep. Grain Pests (War) Comm. 1920;6:51.
Froggatt W.W. Fumigation maize with carbon dioxide. Agric. Gaz. 1921;32:472.
Winterbottom D.C. Weevil in Wheat Storage of Grain in Bags: A Record of Australian Experience during the War Period. (1915–1919) Government; Adelaide, Australia: 1920. p. 122.
Navarro S. Modified atmospheres for the control of stored-product insects and mites. In: Heaps J.W., editor. Insect Management for Food Storage and Processing. 2nd ed. ACCC International; St. Paul, MN, USA: 2006. pp. 105–146.
White N.D.G., Jayas D.S., Muir W.E. Toxicity of carbon dioxide at biologically producible levels to stored-product beetles. Environ. Entomol. 1995;24:640–647. doi: 10.1093/ee/24.3.640. DOI
Lessard F.F., LeTorch J.M. Practical approach to purging grain with low oxygen atmosphere for disinfestation of large wheat bins against the granary weevil, Sitophilus granarius; Proceedings of the 4nd International Work. Confonference Stored-Product Prot; Tel Aviv, Israel. 21–26 September 1986; pp. 208–217.
Storey C.L. Exothermic inert atmosphere generator for control of insects in stored wheat. J. Econ. Entomol. 1973;66:511–514. doi: 10.1093/jee/66.2.511. DOI
Mohammed M.E., El-Shafie H.A., Alhajhoj M.R. Design and efficacy evaluation of a modern automated controlled atmosphere system for pest management in stored dates. J. Stored Prod. Res. 2020;89:101719. doi: 10.1016/j.jspr.2020.101719. DOI
Catling D., Zahnle K. Evolution of atmospheric oxygen. In: North G.R., Pyle J.A., Zhang F., editors. Encyclopedia of Atmospheric Sciences. Academic Press; Cambridge, MA, USA: 2003. pp. 754–761.
Cao Y., Gao S., Qu G., Li Y., Li G., Carvalho M.O. Study on the mortality of the stored-grain insects adults in different concentrations of low oxygen; Proceedings of the 10th International Work. Confonfernece on Stored Product Prot; Estoril, Portugal. 27 June–2 July 2010; Berlin, Germany: Julius Kühn-Archiv; 2010. pp. 476–478.
Bond E.J., Buckland C.T. Development of resistance to carbon dioxide in the granary weevil. J. Econ. Entomol. 1979;7:770–771. doi: 10.1093/jee/72.5.770. DOI
Donahaye E. Laboratory selection of resistance by the red flour beetle Tribolium castaneum (Herbst) to an atmosphere of low oxygen concentration. Phytoparasitica. 1990;18:189–202. doi: 10.1007/BF02980989. DOI
Wang J.J., Zhao Z.M., Tsai J.H. Resistance and some enzyme activities in Liposcelis bostrychophila Badonnel (Psocoptera: Liposcelididae) in relation to carbon dioxide enriched atmospheres. J. Stored Prod. Res. 2020;36:297–308. doi: 10.1016/S0022-474X(99)00051-X. PubMed DOI
Cao Y., Xu K., Zhu X., Bai Y., Yang W., Li C. Role of modified atmosphere in pest control and mechanism of its effect on insects. Front. Physiol. 2019;10:206. doi: 10.3389/fphys.2019.00206. PubMed DOI PMC
Buckland P.C. Granaries, stores and insects. The archeology of insect synanthropy. In: Fournier D., Sigaut F., editors. La Préparation Alimentaire des Céréales. PACT; Rixensart, Belgium: 1990. pp. 69–81.
Lavigne R. Stored grain insects in underground storage pits in Somalia and their control. Int. J. Trop. Insect Sci. 1991;12:571–578. doi: 10.1017/S1742758400013047. DOI
Bailey S.W. Air-tight storage of grain; its effects on insect pests-I. Calandra granaria L. (Coleoptera, Curculionidae) Aust. J. Agric. Res. 1955;6:33–51. doi: 10.1071/AR9550033. DOI
Bailey S.W. Air-tight storage of grain; its effects on insect pests-IV. Rhyzopertha dominica (F.) and some other Coleoptera that infest stored grain. J. Stored Prod. Res. 1965;1:25–33.
Adhikarinayake T.B., Palipane K.B., Müller J. Quality change and mass loss of paddy during airtight storage in a ferro-cement bin in Sri Lanka. J. Stored Prod. Res. 2006;42:377–390. doi: 10.1016/j.jspr.2005.08.002. DOI
Prasantha B.D.R., Kumarasinha K.M.H., Emitiyagoda G.A.M.S. Storage of mungbean in hermetic PVC tank; Proceedings of the 12th International Work, Conference on Stored Product Prot; Berlin, Germany. 7–11 October 2018; Berlin, Germany: Julius Kühn-Archiv; 2018. pp. 441–447.
Tivana L.D., Nguenha R.J., Viola P., Monjane I., Lungu I.O., Kafwamfwa N. Effectiveness of high-density polyethylene container and Super Grain Bag for the storage system of cowpea grain for smallholder farmers. Legum. Sci. 2020;3e67:1–12.
Villers P., Navarro S., Bruin T. New applications of hermetic storage for grain storage and transport; Proceedings of the 10th International Work. Conference on Stored Product Protect; Estoril, Portugal. 27 June–2 July 2010; Berlin, Germany: Julius-Kühn-Archiv; 2010. pp. 446–452.
Ochandio D.C., Cardoso L.M., Bartosik R.E., De la Torre D.A., Rodríguez J.C., Massigoge J. Storage of quality malting barley in hermetic plastic bags; Proceedings of the 10th International Working Conference on Stored Product Protection; Estoril, Portugal. 27 June–2 July 2010; Berlin, Germany: Julius-Kühn-Archiv; 2010. pp. 331–337.
Murdock L.L., Baoua I.B. On Purdue improved cowpea storage (PICS) technology: Background, mode of action, future prospects. J. Stored Prod. Res. 2014;58:3–11. doi: 10.1016/j.jspr.2014.02.006. DOI
Wilkin D.R., Green A.A. Polythene sacks for the control of insects in bagged grain. J. Stored Prod. Res. 1970;6:97–101. doi: 10.1016/0022-474X(70)90032-9. DOI
Guenha R., das Virtuedes Salvador B., Rickman J., Goulao L.F., Muocha I.M., Carvalho M.O. Hermetic storage with plastic sealing to reduce insect infestation and secure paddy seed quality: A powerful strategy for rice farmers in Mozambique. J. Stored Prod. Res. 2014;59:275–281. doi: 10.1016/j.jspr.2014.06.007. DOI
Sanon A., Dabiré-Binso L.C., Ba N.M. Triple-bagging of cowpeas within high density polyethylene bags to control the cowpea beetle Callosobruchus maculatus F. (Coleoptera: Bruchidae) J. Stored Prod. Res. 2011;47:210–215. doi: 10.1016/j.jspr.2011.02.003. DOI
Mubayiwa M., Mvumi B.M., Stathers T., Mlambo S., Nyabako T. Field evaluation of hermetic and synthetic pesticide-based technologies in smallholder sorghum grain storage in hot and arid climates. Sci. Rep. 2021;11:3692. doi: 10.1038/s41598-021-83086-3. PubMed DOI PMC
Paudyal S., Opit G.P., Arthur F.H., Bingham G.V., Payton M.E., Gautam S.G., Noden B.H. Effectiveness of the ZeroFly® storage bag fabric against stored-product insects. J. Stored Prod. Res. 2017;73:87–97. doi: 10.1016/j.jspr.2017.07.001. DOI
Ngwenyama P., Mvumi B., Nyanga L., Stathers T., Siziba S. Comparative performance of five hermetic bag brands during on-farm smallholder cowpea (Vigna unguiculata L. Walp) storage. J. Stored Prod. Res. 2020;88:101658. doi: 10.1016/j.jspr.2020.101658. DOI
Mutambuki K., Affognon H., Likhayo P., Baributsa D. Evaluation of Purdue improved crop storage triple layer hermetic storage bag against Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) and Sitophilus zeamais (Motsch.) (Coleoptera: Curculionidae) Insects. 2019;10:204. doi: 10.3390/insects10070204. PubMed DOI PMC
García-Lara S., Ortíz-Islas S., Villers P. Portable hermetic storage bag resistant to Prostephanus truncatus, Rhyzopertha dominica, and Callosobruchus maculatus. J. Stored Prod. Res. 2013;54:23–25. doi: 10.1016/j.jspr.2013.04.001. DOI
Otitodun G.O., Ogundare M.O., Ajao S.K., Nwaubani S.I., Abel G.I., Opit G.P., Bingham G., Omobowale M.O. Efficacy of phosphine and insect penetration ability in ZeroFly® bags. J. Stored Prod. Res. 2019;82:81–90. doi: 10.1016/j.jspr.2019.04.006. DOI
Riudavets J., Castane C., Alomar O., Pons M.J., Gabarra R. Modified atmosphere packaging (MAP) as an alternative measure for controlling ten pests that attack processed food products. J. Stored Prod. Res. 2009;45:91–96. doi: 10.1016/j.jspr.2008.10.001. DOI
Kucerova Z., Kyhos K., Aulicky R., Stejskal V. Low pressure treatment to control food-infesting pests (Tribolium castaneum, Sitophilus granarius) using a vacuum packing machine. Czech J. Food Sci. 2013;31:94–98. doi: 10.17221/154/2012-CJFS. DOI
Kucerova Z., Kyhos K., Aulicky R., Lukas J., Stejskal V. Laboratory experiments of vacuum treatment in combination with an O2 absorber for the suppression of Sitophilus granarius infestations in stored grain samples. Crop Prot. 2014;61:79–83. doi: 10.1016/j.cropro.2014.03.018. DOI
Aulicky R., Kolar V., Plachy J., Stejskal V. Field efficacy of brief exposure of adults of six storage pests to nitrogen-controlled atmospheres. Plant Protect. Sci. 2017;53:169–176.
Williams P., Minett W., Navarro S., Amos T.G. Sealing a farm silo for insect control by nitrogen swamping for fumigation. Aust. J. Exp. Anim. Husb. 1980;20:108–114. doi: 10.1071/EA9800108. DOI
Carvalho M.O., Pires I., Barbosa A., Barros G., Riudavets J., Garcia A.C., Navarro S. The use of modified atmospheres to control Sitophilus zeamais and Sitophilus oryzae on stored rice in Portugal. J. Stored Prod. Res. 2012;50:49–56. doi: 10.1016/j.jspr.2012.05.001. DOI
Morrison W.R., Arthur F.H., Wilson L.T., Yang Y., Wang J., Athanassiou C.G. Aeration to manage insects in wheat stored in the Balkan peninsula: Computer simulations using historical weather data. Agronomy. 2020;10:1927. doi: 10.3390/agronomy10121927. DOI
Hagstrum D.W., Reed C., Kenkel P. Management of stored wheat insect pests in the USA. Integrated Pest Manag. Rev. 1999;4:127–143. doi: 10.1023/A:1009682410810. DOI
Sthong R.G., Sbur D.E. Protective sprays against internal infestations of grain beetles in wheat. J. Econ. Entomol. 1964;57:544–548. doi: 10.1093/jee/57.4.544. DOI
Cotton R.T., Walkden H.H., White G.D., Wilbur D.A. Bulletin 416. Agricultural Experiment Station, Kansas State University of Agriculture and Apllied Science; Manhattan, KS, USA: 1960. Causes of outbreaks of stored-grain insects; p. 35.
Cotton R.T. Pests of Stored Grain and Stored Products. Burgess Publishing Co.; Minneapolis, MN, USA: 1963.
Arthur F.H. Grain protectants: Current status and prospect for the future. J. Stored Prod. Res. 1996;32:293–302. doi: 10.1016/S0022-474X(96)00033-1. DOI
Rahman K., Sohi G. Mercury as a preventive against stored grain pests. Bull. Entomol. Res. 1946;37:131–141. doi: 10.1017/S0007485300022069. PubMed DOI
Shepard H.H. Bulletin 340. University of Minnesota Agricultural Experiment Station; Saint Paul, MN, USA: 1947. Insects Infesting Stored Grain and Seeds; p. 31.
White N.D.G., Leesch J.G. Chemical control. In: Subramanyam B., Hagstrum D.W., editors. Integrated Management of Insects in Stored Products. Marcel Dekker; New York, NY, USA: 1996. pp. 287–330.
Desmarchelier J.M., Banks H.J., Williams P., Minetta W. Toxicity of dichlorvos. J. Stored Prod. Res. 1977;13:1–12. doi: 10.1016/0022-474X(77)90002-9. DOI
Arthur F.H. Efficacy of Combinations of methoprene and deltamethrin as long-term commodity protectants. Insects. 2019;10:50. doi: 10.3390/insects10020050. PubMed DOI PMC
Haddi K., Valbon W.R., Jumbo L.O.V., de Oliveira L.O., Guedes R.N., Oliveira E.E. Diversity and convergence of mechanisms involved in pyrethroid resistance in the stored grain weevils. Sitophilus spp. Sci. Rep. 2018;8:1–15. doi: 10.1038/s41598-018-34513-5. PubMed DOI PMC
Ortega D.S., Bacca T., Silva A.P.N., Canal N.A., Haddi K. Control failure and insecticides resistance in populations of Rhyzopertha dominica (Coleoptera: Bostrichidae) from Colombia. J. Stored Prod. Res. 2021;92:101802. doi: 10.1016/j.jspr.2021.101802. DOI
Yue B., Wilde G.E., Arthur F. Evaluation of thiamethoxam and imidacloprid as seed treatments to control European corn borer and Indianmeal moth (Lepidoptera: Pyralidae) larvae. J. Econ. Entomol. 2003;96:503–509. doi: 10.1093/jee/96.2.503. PubMed DOI
Boukouvala M., Kavallieratos N. Evaluation of two formulations of chlorantraniliprole as maize protectants for the management of Prostephanus truncatus (Horn) (Coleoptera: Bostrychidae) Insects. 2021;12:194. doi: 10.3390/insects12030194. PubMed DOI PMC
Hertlein M.B., Thompson G.D., Subramanyam B., Athanassiou C.G. Spinosad: A new natural product for stored grain protection. J. Stored Prod. Res. 2011;47:131–146. doi: 10.1016/j.jspr.2011.01.004. DOI
Athanassiou C.G., Arthur F.H., Throne J.E. Effects of short exposures to spinosad-treated wheat or maize on four stored-grain insects. J. Econ. Entomol. 2010;103:197–202. doi: 10.1603/EC09115. PubMed DOI
Vassilakos T.N., Athanassiou C.G. Effect of short exposures to spinetoram against three stored-product beetle species. J. Econ. Entomol. 2012;105:1088–1094. doi: 10.1603/EC11331. PubMed DOI
Weaver D.K., Subramanyam B. Botanicals. In: Subramanyam B., Hagstrum D., editors. Alternatives to Pesticides in Stored-Product IPM. Kluwer Academic Publishers; Boston, MA, USA: 2000. pp. 303–320.
Athanassiou C.G., Kontodimas D.C., Kavallieratos N.G., Veroniki M.A. Insecticidal effect of NeemAzal against three stored-product beetle species on rye and oats. J. Econ. Entomol. 2005;98:1733–1738. doi: 10.1093/jee/98.5.1733. PubMed DOI
Kavallieratos N.G., Nika E.P., Skourti A., Ntalli N., Boukouvala M.C., Ntalaka C.T., Maggi F., Rakotosaona R., Cespi M., Perinelli D.R., et al. Developing a Hazomalania voyronii essential oil nanoemulsion for the eco-friendly management of Tribolium confusum, Tribolium castaneum and Tenebrio molitor larvae and adults on stored wheat. Molecules. 2021;26:1812. doi: 10.3390/molecules26061812. PubMed DOI PMC
Dougoud J., Toepfer S., Bateman M., Jenner W.D. Efficacy of homemade botanical insecticides based on traditional knowledge. A review. Agron. Sustain. Dev. 2019;39:1–22. doi: 10.1007/s13593-019-0583-1. PubMed DOI
Sujatha A., Punnaiah K.C. Effect of coating stored seed of greengram with vegetable oils on the development of pulse beetle. Indian J. Agric. Sci. 1985;55:475–477.
Reed C., Pedersen J.R., Cuperus G.W. Efficacy and cost effectiveness of grain protectants applied to farm-stored wheat at harvest and later. J. Econ. Entomol. 1993;86:1590–1598. doi: 10.1093/jee/86.5.1590. DOI
Pozidi-Metaxa E., Athanassiou C.G. Comparison of spinosad with three traditional grain protectants against Prostephanus truncatus (Horn) and Ephestia kuehniella (Zeller) at different temperatures. J. Pest Sci. 2013;86:203–210. doi: 10.1007/s10340-012-0445-y. DOI
Subramanyam B., Hagstrum D.W. Resistance measurement and management. In: Subramanyam B., Hagstrum D.W., editors. Integrated Management of Insects in Stored Products. Marcel Dekker; New York, NY, USA: 1996. pp. 331–399.
Daglish G.J., Eeklema M., Harrison M. Control of Sitophilus oryzae (L.) (Coleoptera: Curculionidae) in paddy rice using chlorpyrifos-methyl or fenitrotion in combination with several other protectants. J. Stored Prod. Res. 1996;32:247–253. doi: 10.1016/S0022-474X(96)00013-6. DOI
Dauguet S., Fleurat-Lessard F., Loison J. Cross-contamination of oilseeds by insecticide residues during storage. In: Carvalho M.O., editor. Proceedings of the 10th International Working Conference on Stored Product Protection; Estoril, Portugal. 27 June–2 July 2010; Berlin, Germany: Julius Kühn-Archiv; 2010. pp. 827–832.
Williams C.M. Third-generation pesticides. Sci. Am. 1967;217:13–17. doi: 10.1038/scientificamerican0767-13. PubMed DOI
Pener M.P., Dhadialla T.S. Chapter One—An overview of insect growth disruptors; applied aspects. In: Dhadialla T.S., editor. Advances in Insect Physiology. Volume 43. Academic Press; Cambridge, MA, USA: 2012. pp. 1–162. Insect Growth Disruptors.
Wijayaratne L.K.W., Fields P.G., Arthur F.H. Residual efficacy of methoprene for control of Tribolium castaneum (Coleoptera: Tenebrionidae) larvae at different temperatures on varnished wood, concrete, and wheat. J. Econ. Entomol. 2012;105:718–725. doi: 10.1603/EC11375. PubMed DOI
Daglish G.J., Pulvirenti C. Reduced fecundity of Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) following exposure of adults to methoprene. J. Stored Prod. Res. 1997;34:201–206. doi: 10.1016/S0022-474X(97)00040-4. DOI
Kavallieratos N.G., Athanassiou C.G., Vayias B.J., Tomanovic Z. Efficacy of insect growth regulators as grain protectants against two stored-product pestsin wheat and maize. J. Food Prot. 2012;75:942–950. doi: 10.4315/0362-028X.JFP-11-397. PubMed DOI
Phillips T.W., Throne J.E. Biorational approaches to managing stored-product insects. Annu. Rev. Entomol. 2010;55:375–397. doi: 10.1146/annurev.ento.54.110807.090451. PubMed DOI
Daglish G.J., Nayak M.K. Uneven application can influence the efficacy of S-methoprene against Rhyzopertha dominica on wheat. J. Stored Prod. Res. 2010;46:250–253. doi: 10.1016/j.jspr.2010.06.002. DOI
Edde P.A. Review of the biology and control of Rhyzopertha dominica (F.) the lesser grain borer. J. Stored Prod. Res. 2012;48:1–18. doi: 10.1016/j.jspr.2011.08.007. DOI
Arthur F.H. Efficacy of methoprene for multi-year protection of stored wheat, brown rice, rough rice and corn. J. Stored Prod. Res. 2016;68:85–92. doi: 10.1016/j.jspr.2016.04.005. DOI
Daglish G.J. Efficacy of six grain protectants applied alone or in combination against three species of Coleoptera. J. Stored Prod. Res. 1998;34:263–268. doi: 10.1016/S0022-474X(98)00007-1. DOI
Athanassiou C.G., Kavallieratos N.G., Arthur F.H., Throne J.E. Efficacy of spinosad and methoprene, applied alone or in combination, against six stored product insect species. J. Pest Sci. 2011;84:61–67. doi: 10.1007/s10340-010-0326-1. DOI
Lui S., Arthur F.H., Van Gundy D., Phillips T.W. Combination of methoprene and controlled aeration to manage insects in stored wheat. Insects. 2016;7:25. PubMed PMC
Reed C. Managing Stored Grain to Preserve Quality and Value. American Association of Cereal Chemists, ACCC International; St. Paul, MN, USA: 2006.
Minett W., Williams P. Influence of malathion distribution on the protection of wheat grain against insect infestation. J. Stored Prod. Res. 1971;7:233–242. doi: 10.1016/0022-474X(71)90021-X. DOI
Subramanyam B., Boina D.R., Sehgal B., Lazzari F. Efficacy of partial treatment of wheat with spinosad against Rhyzopertha dominica (F.) adults. J. Stored Prod. Res. 2014;59:197–203. doi: 10.1016/j.jspr.2014.08.002. DOI
Kavallieratos N.G., Athanassiou C.G., Arthur F.H. Efficacy of deltamethrin against stored-product beetles at short exposure intervals or on a partially treated rice mass. J. Econ. Entomol. 2015;108:1416–1421. doi: 10.1093/jee/tov060. PubMed DOI
Scully E.D., Gerken A.R., Fifield A., Nguyen V., Van Pelt N., Arthur F.H. Impacts of Storicide II on internal feeders of Brown rice. J. Stored Prod. Res. 2021;90:101758. doi: 10.1016/j.jspr.2020.101758. DOI
Singh S.K., Fan L.T. A biopolymer-based pesticide delivery system for insect suppression in stored grains. Pestic. Sci. 1989;25:273–288. doi: 10.1002/ps.2780250308. DOI
Rumbos C.I., Dutton A.C., Athanassiou C.G. Insecticidal efficacy of two pirimiphos-methyl formulations for the control of three stored-product beetle species: Effect of commodity. Crop Protect. 2016;80:94–100. doi: 10.1016/j.cropro.2015.10.002. DOI
Kavallieratos N.G., Athanassiou C.G., Nika E.P., Boukouvala M.C. Efficacy of alpha-cypermethrin, chlorfenapyr and pirimiphos-methyl applied on polypropylene bags for the control of Prostephanus truncatus (Horn), Rhyzopertha dominica (F.) and Sitophilus oryzae (L.) J. Stored Prod. Res. 2017;73:54–61. doi: 10.1016/j.jspr.2017.06.005. DOI
Szilagyi J. NovIGRain project aims to cut losses of stored grain. Int. Pest Control. 2021;63:102–103.
Athanassiou C.G., Arthur F.H., Throne J.E. Efficacy of spinosad in layer-treated wheat against five stored-product insect species. J. Stored Prod. Res. 2009;45:236–240. doi: 10.1016/j.jspr.2009.04.002. DOI
Golob P., Hanks C. Protection of farm stored maize against infestation by Prostephanus truncatus (Horn) and Sitophilus species in Tanzania. J. Stored Prod. Res. 1990;26:187–198. doi: 10.1016/0022-474X(90)90021-J. DOI
Hodges R.J., Meik J. Infestation of maize cobs by Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) Aspects of biology and control. J. Stored Prod. Res. 1984;20:205–213. doi: 10.1016/0022-474X(84)90005-5. DOI
Khan M.A.A., Khan Y.S.A. Insects infestation and preventive measures in dry fish storage of Chittagong, Bangladesh. Int. J. Biol. Sci. 2001;1:963–965.
Rajendran S., Parveen K.M.H. Insect infestation in stored animal products. J. Stored Prod. Res. 2005;41:1–30. doi: 10.1016/j.jspr.2003.12.002. DOI
MacQuillan M.J., Shipp E. Evaluation of chlorpyrifos and chlorpyriphos-methyl for control of Dermestes maculatus Deg. (Coleoptera: Dermestidae) on sheepskins. J. Stored Prod. Res. 1976;12:93–96. doi: 10.1016/0022-474X(76)90029-1. DOI
Golob P., Cox J.R., Kilminster K. Evaluation of insecticide dips as protectants of stored dried fish from dermestid beetle infestation. J. Stored Prod. Res. 1987;23:47–56. doi: 10.1016/0022-474X(87)90035-X. DOI
Don-Pedro K.N. Toxicity of some citrus peels to Dermestes maculatus Deg. and Callosobruchus maculatus (F) J. Stored Prod. Res. 1985;21:31–34. doi: 10.1016/0022-474X(85)90057-8. DOI
Onu I., Baba G.O. Evaluation of Neem products for the control of Dermestid beetle on dried fish. Niger. J. Entomol. Soc. 2003;20:105–115.
Nowsad A.K.M., Mondal R., Islam M.R. Effectiveness of neem, garlic and red chili against adult dermestid beetle in sun dried fish. Progress. Agric. 2013;20:133–142. doi: 10.3329/pa.v20i1-2.16865. DOI
Golob P., Gueye-Ndiaye A., Johnson S. Prevention of beetle infestation of dried fish. In: Highley E., Wright E.J., Banks H.J., Champ B.R., editors. Proceedings of the 6th International Working Conference on Stored-Product Protection; Canberra, Australia. 17–23 April 1994; Wallingford, UK: CAB International; 1994. pp. 777–781.
Pretoru E.G. Ph.D. Thesis. Imperial College London; Silwood Park, UK: 1988. Studies on Control of Dermestes maculatus Degeer on Dried Fish Treated by ULV Application.
Khan Y.S.A., Khan M.A.A. Study on the use of DDT as preservative practiced in stored dried fishes of Bangladesh. Poll. Res. 1998;17:363–365.
Islam M.N., Kabir M.A. Application of organic preservatives for sustainable storage of dried fishes. Int. J. Fish. Aquat. 2019;7:40–43.
Adebote D.A., Abolude D.S., Oniye S.J., Olododo S.S., Hassan M.M. Larvicidal and repellent actions of Detarium microcarpum seed oil against the larvae of Dermestes lardarius (Coleoptera: Dermestidae) in dried Clarias gariepinus fish. J. Entomol. 2006;3:248–253.
Don-Pedro K.N. Insecticidal activity of some vegetable oils against Dermestes maculatus Degeer (Coleoptera: Dermestidae) on dried fish. J. Stored Prod. Res. 1989;25:81–86. doi: 10.1016/0022-474X(89)90015-5. DOI
Idris G.L., Omojowo F.S. Comparative study of groundnut oil and sodium chloride as protectants against insect infestation of smoked dried fish in Kainji lake areas. J. Fish. Aquat. Sci. 2013;8:238–242. doi: 10.3923/jfas.2013.238.242. DOI
Rust M.K., Reierson D.A., Klotz J.H. Delayed toxicity as a critical factor in the efficacy of aqueous baits for controlling Argentine ants (Hymenoptera: Formicidae) J. Econ. Entomol. 2004;97:1017–1024. doi: 10.1093/jee/97.3.1017. PubMed DOI
Rust M.K., Choe D.H., Wilson-Rankin E., Campbell K., Kabashima J., Dimson M. Controlling yellow jackets with fipronil-based protein baits in urban recreational areas. Int. J. Pest Manag. 2017;63:234–241. doi: 10.1080/09670874.2016.1227883. DOI
Wongthangsiri D., Pereira R.M., Bangs M.J., Koehler P.G., Chareonviriyaphap T. Potential of attractive toxic sugar baits for controlling Musca domestica L., Drosophila melanogaster Meigen, and Megaselia scalaris Loew adult flies. Agric. Nat. Res. 2018;52:393–398. doi: 10.1016/j.anres.2018.10.013. DOI
Gore J.C., Schal C. Laboratory evaluation of boric acid-sugar solutions as baits for management of German cockroach infestations. J. Econ. Entomol. 2004;97:581–587. doi: 10.1093/jee/97.2.581. PubMed DOI
Choe D.H., Campbell K., Hoddle M.S., Kabashima J., Dimson M., Rust M.K. Evaluation of a hydrogel matrix for baiting western yellowjacket (Vespidae: Hymenoptera) J. Econ. Entomol. 2018;111:1799–1805. doi: 10.1093/jee/toy139. PubMed DOI
Kikuta S. Deployment of an attractive toxic sugar bait system (ATSB) with insecticide, for adult Tribolium castaneum (Coleoptera: Tenebrionidae) J. Stored Prod. Res. 2019;83:97–102. doi: 10.1016/j.jspr.2019.06.009. DOI
Lee S.H., Choe D.H., Lee C.Y. The impact of artificial sweeteners on insects. J. Econ. Entomol. 2021;114:1–13. doi: 10.1093/jee/toaa244. PubMed DOI
Baudier K.M., Kaschock-Marenda S.D., Patel N., Diangelus K.L., O’Donnell S., Marenda D.R. Erythritol, a non-nutritive sugar alcohol sweetener and the main component of Truvia®, is a palatable ingested insecticide. PLoS ONE. 2014;9:e98949. PubMed PMC
Barrett M., Caponera V., McNair C., O’Donnell S., Marenda D.R. Potential for use of erythritol as a socially transferrable ingested insecticide for ants (Hymenoptera: Formicidae) J. Econ. Entomol. 2020;113:1382. doi: 10.1093/jee/toaa019. PubMed DOI
Díaz-Fleischer F., Arredondo J., Lasa R., Bonilla C., Debernardi D., Pérez-Staples D., Williams T. Sickly sweet: Insecticidal polyols induce lethal regurgitation in dipteran pests. Insects. 2019;10:53. doi: 10.3390/insects10020053. PubMed DOI PMC
Perkin L.C., Adrianos S.L., Oppert B. Gene disruption technologies have the potential to transform stored product insect pest control. Insects. 2016;7:46. doi: 10.3390/insects7030046. PubMed DOI PMC
Silver K., Cooper A.M., Zhu K.Y. Strategies for enhancing the efficiency of RNA interference in insects. Pest Manag. Sci. 2021;77:2645–2658. doi: 10.1002/ps.6277. PubMed DOI
Yan S., Ren B.Y., Shen J. Nanoparticle-mediated double-stranded RNA delivery system: A promising approach for sustainable pest management. Insect Sci. 2021;28:21–34. doi: 10.1111/1744-7917.12822. PubMed DOI
Huang J.H., Liu Y., Lin Y.H., Belles X., Lee H.J. Practical use of RNA interference: Oral delivery of double-stranded RNA in liposome carriers for cockroaches. J. Vis. Exp. 2018;135:e57385. doi: 10.3791/57385. PubMed DOI PMC
Wang S., Miao S., Yang B., Wang Z., Liu Q., Wang R., Du X., Ren Y., Lu Y. Initial characterization of the vitellogenin receptor from a Psocoptera insect: Function analysis and RNA interference in Liposcelis entomophila (Enderlein) J. Stored Prod. Res. 2021;92:101803. doi: 10.1016/j.jspr.2021.101803. DOI
Stejskal V., Aulicky R., Kucerova Z. Pest control strategies and damage potential of seed-infesting pests in the Czech stores—a review. Plant Protect. Sci. 2014;50:165–173. doi: 10.17221/10/2014-PPS. DOI
Athanassiou C.G., Riudavets J., Kavallieratos N.G. Preventing stored-product insect infestations in packaged-food products. Stewart Postharvest Rev. 2011;3:1–5.
Yadav T.D. Evaluation of deltamethrin as fabric treatment in storage of wheat seed at farm level. Indian J. Entomol. 1997;59:103–109.
Cotton R.T., Balzer A.I., Young H.D. Possible utility of DDT for insect-proofing paper bags. J. Econ. Entomol. 1944;37:140. doi: 10.1093/jee/37.1.140a. DOI
Hayhurst H. The action on certain insects of fabrics impregnated with DDT. J. Soc. Chem. Ind. 1945;64:296. doi: 10.1002/jctb.5000641009. DOI
Parkin E.A. D.D.T. impregnation of sacks for the protection of stored cereals against insect infestation. Ann. Appl. Biol. 1948;35:233–242. doi: 10.1111/j.1744-7348.1948.tb07364.x. DOI
Atkins W.G. Storage of flour in jute bags treated with insecticides. J. Sci. Food Agric. 1953;4:155–160. doi: 10.1002/jsfa.2740040306. DOI
Prevett P.F. Treatment of rice stored in jute bags against insect pests. Trop. Stored Prod. Info. 1960;1:4–9.
Pali N.S. Studies on jute bag impregnation for the control of graminivorous insects. J. Entomol. 1961;22:211–213.
Webley D.J., Kilminster K.M. The persistence of insecticide spray deposits on woven polypropylene and jute sacking. Pestic. Sci. 1980;11:667–673. doi: 10.1002/ps.2780110615. DOI
Rai R.S., Lal P., Srivastava P.K. Impregnation of jute bags with insecticide for protecting stored food grains. III. Comparative efficacy of impregnation method vis-a-vis existing method of prophylactic chemical treatment against cross infestation of different stored grain insect pests. Pesticides. 1987;21:39–42.
Yadav T.D., Singh S. Persistence toxicity and efficacy of four insecticides as jute fabric treatment to protect cereal and legume seeds. Indian J. Entomol. 1994;56:146–155.
Pathak K.A., Jha A.N., Singh J.P. Effect of fabric treatment of jute and polypropylene bags with some insecticides on maize and paddy stored at Delhi and Meghalaya. Shashpa. 2002;9:61–70.
Morallo-Rejesus B., Varca L.M., Nerona E.H. Insecticide impregnation of sacks and use of plastic lining for the protection of stored corn against insect damage. Philipp. Agric. 1975;59:196–204.
Webley D.J., Kilminster K.M. The persistence and activity of insecticide spray deposits on woven polypropylene fabric. Pestic. Sci. 1981;12:74–78. doi: 10.1002/ps.2780120111. DOI
Barakat A.A., Khan P., Karim A.A. The persistence and activity of permethrin and chlorpyrifos-methyl sprays on jute and woven polypropylene bags. J. Stored Prod. Res. 1987;23:85–90. doi: 10.1016/0022-474X(87)90021-X. DOI
Scheff D.S., Subramanyam B., Arthur F.H. Susceptibility of Tribolium castaneum and Trogoderma variabile larvae and adults exposed to methoprene-treated woven packaging material. J. Stored Prod. Res. 2017;73:142–150. doi: 10.1016/j.jspr.2017.08.002. DOI
Papanikolaou N.E., Kavallieratos N.G., Boukouvala M.C., Malesios C. (Quasi)-binomial vs. gaussian models to evaluate thiamethoxam, pirimiphos-methyl, alpha-cypermethrin and deltamethrin on different types of storage bag materials against Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) and Tribolium confusum Jacquelin du Val (Coleoptera: Tenebrionidae) Insects. 2021;12:182. PubMed PMC
Himel C.M. The optimum size for insecticide spray droplets. J. Econ. Entomol. 1969;62:919–925. doi: 10.1093/jee/62.4.919. DOI
WHO . Equipment for Vector Control. WHO; Geneva, Switzerland: 1964.
Sugiura M., Horibe Y., Kawada H., Takagi M. Effect of different droplet size on the knockdown efficacy of directly sprayed insecticides. Pest. Manag. Sci. 2011;67:1115–1123. doi: 10.1002/ps.2157. PubMed DOI
Hewlett P.S. A direct spray technique for the biological evaluation of pyrethrum-in-oil insecticides for use against stored product insects in warehouses. Ann. Appl. Biol. 1947;34:357–375. doi: 10.1111/j.1744-7348.1947.tb06370.x. PubMed DOI
Stadler T., Buteler M. Modes of entry of petroleum distilled spray-oils into insects: A review. Bull. Insectol. 2009;62:169–177.
Sugiura M., Horibe Y., Kawada H., Takagi M. Insect spiracle as the main penetration route of pyrethroids. Pestic. Biochem. Physiol. 2008;91:135–140. doi: 10.1016/j.pestbp.2008.03.001. DOI
David W.A.L. The quantity and distribution of spray collected by insects flying through insecticidal mists. Ann. Appl. Biol. 1946;33:133–141. doi: 10.1111/j.1744-7348.1946.tb06289.x. PubMed DOI
Marcombe S., Carron A., Darriet F., Etienne M., Agnew P., Tolosa M., Yp-Tcha M.M., Lagneau C., Yébakima A., Corbel V. Reduced efficacy of pyrethroid space sprays for dengue control in an area of Martinique with pyrethroid resistance. Am. J. Trop. Med. Hyg. 2009;80:745–751. doi: 10.4269/ajtmh.2009.80.745. PubMed DOI
Bonds J.A.S. Ultra-low-volume space sprays in mosquito control: A critical review. Med. Vet. Entomol. 2012;26:121–130. doi: 10.1111/j.1365-2915.2011.00992.x. PubMed DOI
David W.A.L. Factors influencing the interaction of insecticidal mists and flying insects. Part II. The production and behaviour of kerosene base insecticidal spray mists and their relation to flying insects. Bull. Entomol. Res. 1946;37:1–28. doi: 10.1017/S0007485300021957. PubMed DOI
Webley D. FAO Plant Production and Protection Paper No. 63. Food & Agriculture Org; Rome, Italy: 1988. Manual of Pest Control for Food Security Reserve Grain Stocks; p. 160.
Matthews G. Space spray fundamentals. Int. Pest Control. 2013;55:78–80.
Childs D.P., Phillips G.L., Press A.R. Control of the cigarette beetle in tobacco warehouses with automatic dichlorvos aerosol treatments. J. Econ. Entomol. 1966;59:261–264. doi: 10.1093/jee/59.2.261. DOI
Suss L. A new method for the control of insects in warehouses and food industries. In: Jin Z., Liang Q., Liang Y., Tan X., Guan L., editors. Proceedings of the 7th International Work. Conference on Stored-Product Protection; Beijing, China. 14–19 October 1998; Chengdu, China: Sichuan Publishing House of Science and Technology; 1998. pp. 950–954.
Lofgren C.S. Ultralow volume applications of concentrated insecticides in medical and veterinary entomology. Ann. Rev. Entomol. 1970;15:321–342. doi: 10.1146/annurev.en.15.010170.001541. PubMed DOI
LaMer V.K., Hochberg S., Hodges K., Wilson I., Fales J.A., Latta R. The influence of the particle size of homogeneous insecticidal aerosols on the mortality of mosquitoes in confined atmospheres. J. Colloid. Sci. 1947;2:539–549. doi: 10.1016/0095-8522(47)90056-1. PubMed DOI
Rickett F.E., Chadwick P.R. Measurements of temperature and degradation of pyrethroids in two thermal fogging machines, the Swingfog and TIFA. Pestic. Sci. 1972;3:263–269. doi: 10.1002/ps.2780030304. DOI
Hoffmann W.C., Walker T.W., Fritz B.K., Gwinn T., Smith V.L., Szumlas D., Quinn B., Lan Y., Huang Y., Sykes D. Spray characterization of thermal fogging equipment typically used in vector control. J. Am. Mosq. Control Assoc. 2008;24:550–559. doi: 10.2987/08-5779.1. PubMed DOI
Asuncion F.X.B., Brabec D.L., Casada M.E., Maghirang R.G., Arthur F.H., Campbell J.F., Zhu K.Y., Daniel E., Martin D.E. Spray Characterization of aerosol delivery systems for use in stored product facilities. Trans. ASABE. 2020;63:1925–1937. doi: 10.13031/trans.14010. DOI
Potter C. An account of the constitution and use of an atomized white oil-pyrethrum fluid to control Plodia interpunctella and Ephestia elutella in warehouses. Ann. Appl. Biol. 1935;22:769–805. doi: 10.1111/j.1744-7348.1935.tb07183.x. DOI
Potter C., Graham-Bryce I.J. An Appreciation. Ann. Appl. Biol. 1990;117:233–235. doi: 10.1111/j.1744-7348.1990.tb04209.x. DOI
Cornwell P.B. The Cockroach. Vol. Ii. Insecticides and Cockroach Control. St. Martin’s Press; New York, NY, USA: 1976.
Cogburn R.R., Simonaitis R.A. Dichlorvos for control of stored-product insects in port warehouses: Low-volume aerosols and commodity residues. J. Econ. Entomol. 1975;68:361–365. doi: 10.1093/jee/68.3.361. PubMed DOI
Bell C. Pest control: Insects and mites. In: Lelieveld H.L.M., editor. Hygiene in Food Processing. Woodhead Publishing Limited; Cambridge, UK: 2003. pp. 335–379.
Scheff D.S., Brabec D., Campbell J.F., Arthur H.F. Case study: A practical application of an aerosol treatment in a commercial mill. Insects. 2019;10:150. doi: 10.3390/insects10050150. PubMed DOI PMC
Arthur F.H., Scheff D.S., Brabec D., Bindel J. Aerosol concentration, deposition, particle size, and exposure interval as mortality factors Tribolium confusum Jacquelin du Val (Coleoptera: Tenebrionidae) J. Stored Prod. Res. 2019;83:191–199. doi: 10.1016/j.jspr.2019.06.005. DOI
Arthur F.H., Campbell J.F., Ducatte G.R. Susceptibility of Tribolium confusum (Coleoptera: Tenebrionidae) to pyrethrin aerosol: Effects of aerosol particle size, concentration, and exposure conditions. J. Econ. Entomol. 2014;107:2239–2251. doi: 10.1603/EC14296. PubMed DOI
Arthur F.H., Campbell J.F., Brabec D.L., Ducatte G.R., Donaldson J.E. Aerosol insecticide distribution inside a flour mill: Assessment using droplet measurements and bioassays. J. Stored Prod. Res. 2018;77:26–33. doi: 10.1016/j.jspr.2017.12.004. DOI
Arthur F.H., Subramanyam B.H. Chemical control in stored products. In: Hagstrum D.W., Phillips T.W., Cuperus G., editors. Stored Product Protection. Kansas State University Agricultural Experiment Station and Cooperative Extension Service; Manhattan, NY, USA: 2012. pp. 95–100.
Arthur F.H. Aerosols and contact insecticides as alternatives to methyl bromide in flour mills food production facilities and food warehouses. J. Pest Sci. 2012;85:323–329. doi: 10.1007/s10340-012-0439-9. DOI
David W.A.L. Insecticidal sprays and flying insects. Nature. 1945;155:204. doi: 10.1038/155204a0. DOI
David W.A.L., Bracey P. Factors influencing the interaction of insecticidal mists on flying insects: Part III. Biological Factors. Bull. Entomol. Res. 1946;37:177–190. doi: 10.1017/S0007485300022136. PubMed DOI
Opit G.P., Arthur F.H., Throne J.E., Payton M.E. Susceptibility of stored-product psocids to aerosol insecticides. J. Insect Sci. 2012;12:139. doi: 10.1673/031.012.13901. PubMed DOI PMC
Athanassiou C.G., Arthur F.H., Campbell J.F., Donaldson J.E. Particle size matters: Efficacy of aerosols for the control of stored product psocids. J. Stored Prod. Res. 2019;83:148–152. doi: 10.1016/j.jspr.2019.05.006. DOI
Jenson E.A., Arthur F.H., Nechols J.R. Efficacy of methoprene applied at different temperatures and rates to different surface substrates to control eggs and fifth instars of Plodia interpunctella Hübner. J. Econ. Entomol. 2009;102:1992–2002. doi: 10.1603/029.102.0533. PubMed DOI
Jenson E.A., Arthur F.H., Nechols J.R. Efficacy of an esfenvalerate plus methoprene aerosol for the control of eggs and fifth instars of Plodia interpunctela (Lepidoptera: Pyralidae) Insect Sci. 2010;17:21–28. doi: 10.1111/j.1744-7917.2009.01284.x. DOI
Fontenot E.A., Arthur F.H., Nechols J.R., Throne J.E. Using a population growth model to simulate response of Plodia interpunctella Hübner populations to timing and frequency of insecticide treatments. J. Pest Sci. 2012;85:469–476. doi: 10.1007/s10340-012-0436-z. DOI
Reierson D.A. Field tests to control German cockroaches with ULV aerosol generators. Pest Control. 1973;41:26–32.
Moore R.C. Field tests of pyrethrins and resmethrin applied with ULV generators or total release aerosols to control the German cockroach. J. Econ. Entomol. 1977;70:86–88. doi: 10.1093/jee/70.1.86. DOI
Chadwick P.R., Shaw R.D. Cockroach control in sewers in Singapore using bioresmethrin and piperonyl butoxide as a thermal fog. Pestic. Sci. 1974;5:691–701. doi: 10.1002/ps.2780050604. DOI
DeVries Z.C., Santangelo R.G., Crissman J., Mick R., Schal C. Exposure risks and ineffectiveness of total release foggers (TRFs) used for cockroach control in residential settings. BMC Public Health. 2019;19:96. doi: 10.1186/s12889-018-6371-z. PubMed DOI PMC
Kaakeh W., Bennett G.W. Evaluation of trapping and vacuuming compared with low-impact insecticide tactics for managing German cockroaches in residences. J. Econ. Entomol. 1997;90:976–982. doi: 10.1093/jee/90.4.976. DOI
Wang C., Bennett G.W. Comparative study of integrated pest management and baiting for German cockroach management in public housing. J. Econ. Entomol. 2006;99:879–885. doi: 10.1093/jee/99.3.879. PubMed DOI
Small G.J. A comparison between the impact of sulfuryl fluoride and methyl bromide fumigations on stored-product insect populations in UK flour mills. J. Stored Prod. Res. 2007;43:410–416. doi: 10.1016/j.jspr.2006.11.003. DOI
Holland J.M., Jepson P.C. Droplet dynamics and initial field tests for microencapsulated pesticide formulations applied at ultra low volume using rotary atomizers for control of locusts and grasshoppers. Pestic. Sci. 1996;48:125–134. doi: 10.1002/(SICI)1096-9063(199610)48:2<125::AID-PS449>3.0.CO;2-#. DOI
Einam J. Understanding Fogging with Water-Based Formulations. Professional Pest Manager, 1 November 2019. BD Publications Pty Ltd ATF BDP Trust ABN 68 191 770 967. [(accessed on 17 December 2020)]; Available online: https://professionalpestmanager.com/understanding-fogging-with-water-based-formulations/
Robinson W.H. The Service Technician’s Application and Equipment Manual: A Practical Guide for Pest Control Professionals. PCT–Pest Control Technology; Valley View, OH, USA: 2011. p. 128.
Aulicky R., Stejskal V. Vertical and horizontal distribution of pesticide microcapsules applied on the porous surface. Res. Agric. Eng. 2002;48:153–157.
Potter C. The use of protective films of insecticide in the control of indoor insects, with special reference to Plodia interpunctella Hb. and Ephestia elutella Hb. Ann. Appl. Biol. 1938;25:836–854. doi: 10.1111/j.1744-7348.1938.tb02358.x. DOI
Pradhan S. Studies on the toxicity of insecticide films: I. Preliminary investigations on concentration-time-mortality relation. Bull. Entomol. Res. 1949;40:1–25. doi: 10.1017/S0007485300022665. PubMed DOI
Shafer G.D. How Contact Insecticides Kill. III. Technical Bulletin Michigan Agriculture Experimental Station No 21; East Lansing, MI, USA: 1915. p. 67.
Tattersfield F., Potter C. Biological methods for determining the insecticidal values of pyrethrum preparations (particularly extracts in heavy oil) Ann. Appl. Biol. 1943;30:259–279. doi: 10.1111/j.1744-7348.1943.tb06197.x. DOI
Parkin E.A., Green A.A. A film technique for the biological evaluation of pyrethrum-in-oil insecticides for use agaiarnst stored product insects in warehouses. Ann. Appl. Biol. 1943;30:279–292. doi: 10.1111/j.1744-7348.1943.tb06198.x. PubMed DOI
Busvine J.R., Barnes S. Observations on mortality of insects exposed to dry insecticidal films. Bull. Entomol. Res. 1947;38:81–90. doi: 10.1017/S0007485300030182. PubMed DOI
Lindquist A.W., Wilson H.G., Schroeder H.O., Madden A.H. Effect of temperatures on knockdown and kill of houseflies exposed to DDT. J. Econ. Entomol. 1945;38:261–264. doi: 10.1093/jee/38.2.261. DOI
Swenk M.H. Insect Pests of Stored Grains and Their Control. Agricultural Experiment Station, The University of Nebraska; Lincoln, NE, USA: 1922.
Zacher F. Die Vorrats-, Speicher- und Materialschadlinge und ihre Bekampfung. Verlagsbuchhandlung Paul Parey; Berlin, Germany: 1927. p. 366.
Robinson R.H. Sprays. Their preparation and use. Oregon Ext. Bull. 1941;93:8–16.
McDaniel E.I. Pest control in dairies. J. Milk Food Technol. 1945;8:338–341. doi: 10.4315/0022-2747.8.6.338. DOI
Rao N.V.S., Pollard A.G. Photo-decomposition of rotenone in spray deposits. III.—Kinetics of the photo-decomposition. J. Sci. Food Agric. 1951;2:462–472. doi: 10.1002/jsfa.2740021011. DOI
Scott G.H., Lettig K.S. Flies of Public Health Importance and Their Control. U.S. Government Printing Office; Washington, DC, USA: 1962.
Murphy D.F. Combination Insecticide Composition. 194033061. United States Patent Office. 1935 Jul 25;
Brooks G.T. Chlorinated Insecticides. Volume 1. CRC Press; Cleveland, OH, USA: 1974. p. 102.
Bennett G.W., Reid B.L. Insect growth regulators. In: Rust M.K., Owens J., Reierson D.A., editors. Understanding and Controlling the German Cockroach. 1st ed. Oxford University Press; New York, NY, USA: 1995. pp. 267–286.
Kavallieratos N.G., Boukouvala M.C. Efficacy of d-tetramethrin and acetamiprid for control of Trogoderma granarium Everts (Coleoptera: Dermestidae) adults and larvae on concrete. J. Stored Prod. Res. 2019;80:79–84. doi: 10.1016/j.jspr.2018.11.010. DOI
Kavallieratos N., Athanassiou C., Barda M., Boukouvala M. Efficacy of five insecticides for the control of Trogoderma granarium Everts (Coleoptera: Dermestidae) larvae on concrete. J. Stored Prod. Res. 2016;66:18–24. doi: 10.1016/j.jspr.2015.12.001. DOI
Arthur F.H. Efficacy of chlorfenapyr against Tribolium castaneum and Tribolium confusum (Coleoptera: Tenebrionidae) adults exposed on concrete, vinyl tile, and plywood surfaces. J. Stored Prod. Res. 2008;44:145–151. doi: 10.1016/j.jspr.2007.08.005. DOI
Robinson W.H. Technologies-how it works: Less droplets, same effectiveness on cockroaches. Pest Control. 2005;73:114–116.
Hodges R.J., Dales M.J. Report on an investigation of insecticide persistence on grain store surfaces in Ghana. NRI Report. 1991;2630:1–26.
Harein P.K. Chemical control of insect pests in bulk-stored grains. In: Gorham J.R., editor. Ecology and Management of Food Industry Pests. FDA Technical Bulletin 4. Association of Analytical Chemists; Arlington, VG, USA: 1991. pp. 415–418.
Wickham J.C. Conventional insecticides. In: Rust M.K., Owens J.M., Reierson D.A., editors. Understanding and Controlling the German Cockroach. Oxford University Press; New York, NY, USA: 1995. pp. 109–147.
Ross M.H. Comparisons between the response of German cockroach field-collected strains (Dictyoptera: Blattellidae) to vapors and contact with a cyfluthrin formulation. J. Entomol. Sci. 1993;28:168–174. doi: 10.18474/0749-8004-28.2.168. DOI
Mustafa I.F., Hussein M.Z. Synthesis and technology of nanoemulsion-based pesticide formulation. Nanomaterials. 2020;10:1608. doi: 10.3390/nano10081608. PubMed DOI PMC
Tsuji K. Microencapsulation of pesticides and their improved handling safety. J. Microencapsul. 2001;18:137–147. doi: 10.1080/026520401750063856. PubMed DOI
Stejskal V., Aulicky R., Pekar S. Brief exposure of Blattella germanica (Blattodea) to insecticides formulated in various microcapsule sizes and applied on porous and non-porous surfaces. Pest Manag. Sci. 2009;65:93–98. doi: 10.1002/ps.1651. PubMed DOI
Zou A., Yang Y., Cheng J., Vasil M., Garamus V.M., Li N. Construction and characterization of a novel sustained-release delivery system for hydrophobic pesticides using biodegradable polydopamine-based microcapsules. J. Agric. Food Chem. 2018;66:6262–6268. doi: 10.1021/acs.jafc.8b00877. PubMed DOI
Reid J.A. A small trial of insecticidal resins for control of cockroaches. Trans. R. Soc. Trop. Med. Hyg. 1956;50:227–231. doi: 10.1016/0035-9203(56)90026-8. PubMed DOI
Price M.D. Insecticidal resins. A new concept of insect control. Pest Control. 1960;28:47–58.
Khoobdel M., Ahsaei S.M., Farzaneh M. Insecticidal activity of polycaprolactone nanocapsules loaded with Rosmarinus officinalis essential oil in Tribolium castaneum (Herbst) Entomol. Res. 2017;47:175–184. doi: 10.1111/1748-5967.12212. DOI
Sabbour M.M., Abd El-Aziz S.E.S. Impact of certain nano oils against Ephestia kuehniella and Ephestia cutella (Lepidoptera-Pyralidae) under laboratory and store conditions. Bull. Natl. Res. Cent. 2019;43:1–7. doi: 10.1186/s42269-019-0129-3. DOI
Shirley I.M., Scher H.B., Perrin R.M., Wege P.J., Rodson M., Chen J.L., Rehmke A.W. Delivery of biological performance via micro-encapsulation formulation chemistry. Pest Manag. Sci. 2001;57:129–132. doi: 10.1002/1526-4998(200102)57:2<129::AID-PS265>3.0.CO;2-1. PubMed DOI
Peterson C., Coats J. Insect repellents—Past, present and future. Pestic. Outlook. 2001;12:154–158. doi: 10.1039/b106296b. DOI
Gaire S., O’Connell M., Holguin F.O., Amatya A., Bundy S., Romero A. Insecticidal properties of essential oils and some of their constituents on the Turkestan cockroach (Blattodea: Blattidae) J. Econ. Entomol. 2017;110:584–592. doi: 10.1093/jee/tox035. PubMed DOI
Cook S.M., Khan Z.R., Pickett J.A. The use of push-pull strategies in integrated pest management. Annu. Rev. Entomol. 2007;52:375–400. doi: 10.1146/annurev.ento.52.110405.091407. PubMed DOI
Nalyanya G., Moore C.B., Schal C. Integration of repellents, attractants, and insecticides in a “push-pull” strategy for managing German cockroach (Dictyoptera: Blattellidae) populations. J. Med. Entomol. 2000;37:427–434. PubMed
Zhu J. Push and pull strategy in control of filth flies in urban settings. In: Suiter D., editor. Proceedings of the 2012 National Conference on Urban Entomology; Atlanta, GA, USA. 20–23 July 2012; Washington, DC, USA: USDA ARS; 2012. p. 168.
Brenner R.J., Milne D.E., Kinscherf K.M., Connors T.F. Measuring spatial displacement of Blattella germanica (Blattaria: Blattellidae) populations pressured by repellent treated harborages. Environ. Entomol. 1998;27:10–21. doi: 10.1093/ee/27.1.10. DOI
Peterson C.J., Fristad A., Tsao R., Coats J.R. Examination of osage orange fruits and two isoflavones, osajin and pomiferin, for repellency to the maize weevil, Sitophilus zeamais (Coleoptera: Curculionidae) Environ. Entomol. 2000;29:1133–1137. doi: 10.1603/0046-225X-29.6.1133. DOI
Sharififard M., Safdari F., Siahpoush A., Kassiri H. Evaluation of some plant essential oils against the brown-banded cockroach, Supella longipalpa (Blattaria: Ectobiidae): A mechanical vector of human pathogens. J. Arthropod Borne. Dis. 2016;10:528–537. PubMed PMC
Oladipupo S.O., Hu X.P., Appel A.G. Topical toxicity profiles of some aliphatic and aromatic essential oil components against insecticide-susceptible and resistant strains of German cockroach (Blattodea: Ectobiidae) J. Econ. Entomol. 2020;113:896–904. doi: 10.1093/jee/toz323. PubMed DOI
Karr L.L., Coats J.R. Repellency of dried bay leaves (Laurus nobilis), Wrigley’s© spearmint gum, raw Osage orange fruit (Maclura pomifera), and extracts of Osage orange fruit to the German cockroach. Insectic. Acaric. Tests. 1991;17:393.
Appel A.G., Mack T.P. Repellency of milled aromatic eastern red cedar to domiciliary cockroaches (Dictypotera: Blattellidae and Blattidae) J. Econ. Entomol. 1989;82:152–155. doi: 10.1093/jee/82.1.152. DOI
Rust M.K. Cockroaches. In: Bonnefoy X., Kampen H., Sweeney K., editors. Public Health Significance of Urban Pests. World Health Organization; Geneva, Switzerland: 2008. [(accessed on 24 June 2021)]. pp. 53–84. Available online: http://www.euro.who.int/_data/assets/pdf_Þle/0011/98426/E91435.pdf.
Oi D.H., Vail K.M., Williams D.F. Bait distribution among multiple colonies of Pharaoh ants (Hymenoptera: Formicidae) J. Econ. Entomol. 2000;93:1247–1255. doi: 10.1603/0022-0493-93.4.1247. PubMed DOI
Arthur F.H. Methodology for evaluating the insect growth regulator (IGR) methoprene on packaging film. Insects. 2016;7:33. doi: 10.3390/insects7030033. PubMed DOI PMC
Arthur F.H., Starkus L.A., McKay T. Degradation and residual efficacy of cyfluthrin as a surface treatment for control of Tribolium castaneum Herbst: Effects of temperature and environment. J. Stored Prod. Res. 2019;84:101514. doi: 10.1016/j.jspr.2019.101514. DOI
Arthur F.H., Athanassiou C.G., Morrison III W.R. Mobility of stored product beetles after exposure to a combination insecticide containing deltamethrin, methoprene, and a piperonyl butoxide synergist depends on species, concentration, and exposure time. Insects. 2020;11:151. doi: 10.3390/insects11030151. PubMed DOI PMC
Karanika C., Rumbos C., Agrafioti P., Athanassiou C. Insecticidal efficacy of a binary combination of cyphenothrin and prallethrin, applied as surface treatment against four major stored-product insects. J. Stored Prod. Res. 2019;80:41–49. doi: 10.1016/j.jspr.2018.10.008. DOI
Arthur F.H., Peckman P. Insect management with residual insecticides. In: Heaps J.W., editor. Insect Management for Food Storage and Processing. ACCC International; St. Paul, MN, USA: 2006. pp. 167–173.
Guedes R.N.C., Campbell J.F., Arthur F.H., Opit G.P., Zhu K.Y., Throne J.E. Acute lethal and behavioral sublethal responses of two stored-product psocids to surface insecticides. Pest Manag. Sci. 2008;64:1314–1322. doi: 10.1002/ps.1634. PubMed DOI
Athanassiou C.G., Kavallieratos N.G., Arthur F.H., Throne J.E. Residual efficacy of chlorfenapyr for control of stored-product psocids (Psocoptera) J. Econ. Entomol. 2014;107:854–859. doi: 10.1603/EC13376. PubMed DOI
Hubert J., Doleckova-Maresova L., Hyblova J., Kudlikova I., Stejskal V., Mares M. In vitro and in vivo inhibition of alpha-amylases of stored-product mite Acarus siro. Exp. Appl. Acarol. 2005;35:281–291. doi: 10.1007/s10493-004-7834-8. PubMed DOI
Stara J., Stejskal V., Nesvorna M., Plachy J., Hubert J. Efficacy of selected pesticides against synanthropic mites under laboratory assay. Pest Manag. Sci. 2011;67:446–457. doi: 10.1002/ps.2083. PubMed DOI
Stara J., Nesvorna M., Hubert J. Comparison of the effect of insecticides on three strains of Tyrophagus putrescentiae (Acari: Astigmata) using an impregnated filter paper test and a growth test. Pest Manag. Sci. 2014;70:1138–1144. doi: 10.1002/ps.3659. PubMed DOI
Goddard J. A crack-and-crevice application assay for selected insecticides to control the ham mite, Tyrophagus putrescentiae (Schrank) J. Entomol. Sci. 2017;52:304–307. doi: 10.18474/JES17-02.1. DOI
Hogsette J.R., Amendt J. Public Health Significance of Urban Pests. Bonnefoy, X., Kampen, H., Sweeney, K., Eds. World Health Organization; Geneva, Switzerland: 2008. Flies.
Stejskal V., Stara J., Pekar S., Nesvorna M., Hubert J. Sensitivity of polyphagous (Plodia interpunctella) and stenophagous (Ephestia kuehniella) storage moths to residual insecticides: Effect of formulation and larval age. Insect Sci. 2020;0:1–11. PubMed
Luckey T.D. Insecticide hormoligosis. J. Econ. Entomol. 1968;61:7–12. doi: 10.1093/jee/61.1.7. PubMed DOI
Abd-Elghafar S.F., Appel A.G., Mack T.P. Toxicity of several insecticide formulations against adult German cockroaches (Dictyoptera: Blattellidae) J. Econ. Entomol. 1990;83:2290–2294. doi: 10.1093/jee/83.6.2290. PubMed DOI
Jankov D., Indic D., Kljajic P., Almasi R., Andric G., Vukovic S., Grahovac M. Initial and residual efficacy of insecticides on different surfaces against rice weevil Sitophilus oryzae (L.) J. Pest Sci. 2013;86:211–216. doi: 10.1007/s10340-012-0469-3. DOI
Stejskal V., Aulicky R. Human behaviour and application of residual insecticides to control storage and food industry pests; Proceedings of the 10th International Working Conference on Stored Product Protection; Estoril, Portugal. 27 June–2 July 2010; Berlin, Germany: Julius Kühn-Archiv; 2010. pp. 916–918.
Stejskal V. Metapopulation concept and the persistence of urban pests in buildings. In: Jones S.C., Zhai J., Robinson W.H., editors. Proceedings of the 4th International Conference on Urban Pests; Charleston, SC, USA. 7–10 July 2002; Blacksburg, VA, USA: Pocahontas Press; 2002. pp. 75–85.
Yao J., Chen C., Wu H., Chang J., Silver K., Campbell J.F., Arthur F.K., Zhu K.Y. Differential susceptibilities of two closely-related stored product pests, the red flour beetle (Tribolium castaneum) and the confused flour beetle (Tribolium confusum), to five selected insecticides. J. Stored Prod. Res. 2019;84:101524. doi: 10.1016/j.jspr.2019.101524. DOI
Snoddy E.T., Appel A.G. Field and laboratory efficacy of three insecticides for population management of the Asian cockroach (Dictyoptera: Blattellidae) J. Econ. Entomol. 2017;107:326–332. doi: 10.1603/EC13342. PubMed DOI
Rust M.K., Reierson D.A., Hansgen K.H. Control of American cockroaches (Dictyoptera: Blattidae) in sewers. J. Med. Entomol. 1991;28:210–213. doi: 10.1093/jmedent/28.2.210. PubMed DOI
Campbell J.F., Towes M.D., Arthur F.H., Arbogast R.T. Long-term monitoring of Tribolium castaneum in two flour mills: Seasonal patterns and influence of fumigation. J. Econ. Entomol. 2010;103:991–1001. doi: 10.1603/EC09347. PubMed DOI
Campbell J.F., Buckman K.A., Fields P.G., Subramanyam B. Evaluation of structural treatment efficacy against Tribolium castaneum and Tribolium confusum (Coleoptera: Tenebrionidae) using meta-analysis of multiple studies conducted in food facilities. J. Econ. Entomol. 2015;108:2125–2140. doi: 10.1093/jee/tov215. PubMed DOI
Doud C.W., Cuperus G.W., Kenkel P., Payton M.E., Phillips T.W. Trapping Tribolium castaneum (Coleoptera: Tenebrionidae) and other beetles in flourmills: Evaluating fumigation efficacy and estimating population density. Insects. 2021;12:144. doi: 10.3390/insects12020144. PubMed DOI PMC
Toews M.D., Campbell J.F., Arthur F.H., West M. Monitoring Tribolium castaneum (Coleoptera: Tenebrionidae) in pilot-scale warehouses treated with residual applications of (S)-hydroprene and cyfluthrin. J. Econ. Entomol. 2005;98:1391–1398. doi: 10.1603/0022-0493-98.4.1391. PubMed DOI
Toews M.D., Arthur F.H., Campbell J.F. Monitoring Tribolium castaneum (Herbst) in pilot-scale warehouses treated with b-cyfluthrin: Are residual insecticides and trapping compatible? Bull. Entomol. Res. 2009;99:121–129. doi: 10.1017/S0007485308006172. PubMed DOI
Ebeling W., Reierson D.A., Wagner R.E. Influence of repellency on the efficacy of blatticides. II. Laboratory experiments with German cockroaches. J. Econ. Entomol. 1967;60:1375–1390. doi: 10.1093/jee/60.5.1375. PubMed DOI
Schneider B.M., Bennett G.W. Comparative studies of several methods for determining the repellency of blatticides. J. Econ. Entomol. 1985;78:874–878. doi: 10.1093/jee/78.4.874. PubMed DOI
Zhai J., Robinson W.H. Pyrethroid resistance in a field population of German cockroach, Blatella germanica (L.) Jpn. A Sanit. Zool. 1991;42:241–244. doi: 10.7601/mez.42.241. DOI
Gudrups I., Harris A.H., Dales M.J. Are residual insecticide applications to store surfaces worth using?. In: Highley E., Wright E.J., Banks H.J., Champ B.R., editors. Proceedings of the 6th International Working Conference on Stored-Product Protection; Canberra, Australia. 17–23 April 1994; Wallingford, UK: CAB International; 1994. pp. 785–789.
Matthews G.A. A History of Pesticides. CABI; Wallingford, UK: 2018.
Mallis A. Handbook of Pest Control. 10th ed. Mallis Handbook LLC; Cleveland, OH, USA: 2011.
Karner M., Price R.G., Roth L.A. Laboratory evaluation of crack and crevice treatment for control of Blatella germanica by using various nozzle types, nozzle heights, and crack widths. J. Econ. Entomol. 1978;71:105–106. doi: 10.1093/jee/71.1.105. DOI
Zungoli P.A., Robinson W.H. Crack and crevice outshines fan spray. Pest Control. 1982;50:20–22.
Robinson W.H., Zungoli P.A. Integrated control program for German cockroaches (Dictyoptera: Blattellidae) in multiple-unit dwellings. J. Econ. Entomol. 1985;78:595–598. doi: 10.1093/jee/78.3.595. PubMed DOI
Robinson W.H., Zungoli P.A. Integrated pest management: An operational view. In: Rust M.K., Owens J.M., Reierson D.A., editors. Understanding and Controlling the German Cockroach. Oxford University Press; New York, NY, USA: 1995. pp. 345–359.
Bonnefoy X., Kampen H., Sweeney K. Public Health Significance of Urban Pests. WHO; Geneva, Switzerland: 2008.
Zhai J., Robinson W.H. Insecticide application technology: Chemical control of the German cockroach. Pest Control Tech. 1992;40:41–44.
Zhai J., Robinson W.H. Insecticide application technology: Methods and equipment for cockroach control. Pest Control Tech. 1992;41:78–84.
Hewlett P.S. The toxicities of three petroleum oils to the grain weevils. Ann. Appl. Biol. 1947;34:575–585. doi: 10.1111/j.1744-7348.1947.tb06390.x. PubMed DOI
Dove W.E. Control of pests on animals and about milk products. J. Milk Food Technol. 1947;10:214–218. doi: 10.4315/0022-2747.10.4.214. DOI
Laing M.D., Gatarayiha M.C., Adandonon A. Silicon use for pest control in agriculture: A review. Proc. S. Afr. Sugar Technol. Assoc. 2006;80:278–286.
Li B.X., Liu Y., Zhang P., Li X.X., Pang X.Y., Zhao Y.H., Li H., Liu F., Lin J., Mu W. Selection of organosilicone surfactants for tank-mixed pesticides considering the balance between synergistic effects on pests and environmental risks. Chemosphere. 2019;217:591–598. doi: 10.1016/j.chemosphere.2018.11.061. PubMed DOI
Liszka D., Swietoslawski P. Innovative formulations useful for area-wide application suitable for climate change. In: Dhang P., editor. Climate Change Impacts on Urban Pests. CABI; Wallingford, UK: 2017. pp. 174–184. Chapter 13.
Baldwin R.W., Koehler P.G., Pereira R.M. Toxicity of fatty acid salts to German and American cockroaches. J. Econ. Entomol. 2008;101:1384–1388. doi: 10.1093/jee/101.4.1384. PubMed DOI
Sims S.R., Balusu R.R., Ngumbi E.N., Appel A.G. Topical and vapor toxicity of saturated fatty acids to the German cockroach (Dictyoptera: Blattellidae) J. Econ. Entomol. 2014;107:758–763. doi: 10.1603/EC12515. PubMed DOI
. Insecticides in Food Handling Establishments. Volume 38. Environmenal Protection Agency (EPA); Los Angeles, CA, USA: 1973. pp. 21685–21686.
Zettler J.L., Arthur F.H. Chemical control of stored product insects with fumigants and residual treatments. Crop. Prot. 2000;19:577–582. doi: 10.1016/S0261-2194(00)00075-2. DOI
Pinniger D.P. A laboratory simulation of residual populations of stored product pests and an assessment of their susceptibility to a contact insecticide. J. Stored Prod. Res. 1974;10:217–223. doi: 10.1016/0022-474X(74)90009-5. DOI
Barson G. Laboratory assessment of the residual toxicity of commercial formulations of insecticides to adult Oryzaephilus surinamensis (Coleoptera: Silvidae) exposed for short time intervals. J. Stored Prod. Res. 1991;27:205–211. doi: 10.1016/0022-474X(91)90002-T. DOI
Gould F. Arthropod behaviour and the efficacy of plant protectant. Annu. Rev. Entomol. 1991;36:305–330. doi: 10.1146/annurev.en.36.010191.001513. DOI
Hodges R.J., Sidik M., Halid H., Conway J.A. Cost efficiency of respraying store surfaces with insecticide to protect bagged milled rice from insect. Trop. Pest Manag. 1992;38:391–397. doi: 10.1080/09670879209371734. DOI
Morrison W.R., Bruce A., Wilkins R.V., Albin C.E., Arthur F.H. Sanitation improves stored product insect pest management. Insects. 2019;10:77. doi: 10.3390/insects10030077. PubMed DOI PMC
Kucerova Z., Aulicky R., Stejskal V. Accumulation of pest-arthropods in grain residues found in an empty store. J. Plant Dis. Prot. 2003;110:499–504. doi: 10.1007/BF03356127. DOI
Kilpatrick J.W., Schoof H.F. The use of insecticide treated cords for housefly control. Public Health Rep. 1956;71:144–150. doi: 10.2307/4589378. PubMed DOI PMC
Gostick K.G., Hewlett P.S. Killing house-flies, Musca domestica L., by means of hanging drops of insecticide. Bull. Entomol. Res. 1960;51:523–532. doi: 10.1017/S0007485300055140. DOI
Tee H., Lee C. Sustainable cockroach management using insecticidal baits: Formulations, behavioral responses and issues. In: Dhang P., editor. Urban Insect Pests-Sustainable Management Strategies. CAB International; Oxfordshire, UK: Boston, MA, USA: 2014. pp. 65–85.
Markin G.P., OHill S. Microencapsulated oil bait for control of the imported fire ant. J. Econ. Entomol. 1971;64:193–196. doi: 10.1093/jee/64.1.193. DOI
Buczkowski G., Roper E., Chin D. Polyacrylamide hydrogels: An effective tool for delivering liquid baits to pest ants (Hymenoptera: Formicidae) J. Econ. Entomol. 2014;107:748–757. doi: 10.1603/EC13508. PubMed DOI
Tay J.W., Choe D.H., Mulchandani A., Rust M.K. Hydrogels: From controlled release to a new bait delivery for insect pest management. J. Econ. Entomol. 2020;113:2061–2068. doi: 10.1093/jee/toaa183. PubMed DOI PMC
Klotz J.H., Shorey H. Low-Toxic Control of Argentine Ants Using Pheromone-Enhanced Liquid Baits. California Department of Consumer Affairs; Sacramento, CA, USA: 2000. p. 35.
Welzel K.F., Choe D.H. Development of a pheromone-assisted baiting technique for Argentine ants (Hymenoptera: Formicidae) J. Econ. Entomol. 2016;109:1303–1309. doi: 10.1093/jee/tow015. PubMed DOI
Miller D.M., Smith E.P. Quantifying the efficacy of an assessment-based pest management (APM) program for German Cockroach (L.) (Blattodea: Blattellidae) control in low-income public housing units. J. Econ. Entomol. 2020;113:375–384. doi: 10.1093/jee/toz302. PubMed DOI
Buczkowski G. The Trojan horse approach for managing invasive ants: A study with Asian needle ants, Pachycondyla chinensis. Biol. Invasions. 2016;18:507–515. doi: 10.1007/s10530-015-1023-z. DOI
Buczkowski G., Mothapo N.P., Wossler T.C. Let them eat termites—prey-baiting provides effective control of Argentine ants, Linepithema humile, in a biodiversity hotspot. J. Appl. Entomol. 2018;142:504–512. doi: 10.1111/jen.12501. DOI
Miller D.M., Meek F. Cost and efficacy comparison of integrated pest management strategies with monthly spray insecticide applications for German cockroach (Dictyoptera: Blattellidae) control in public housing. J. Econ. Entomol. 2004;97:559–569. doi: 10.1093/jee/97.2.559. PubMed DOI
Wang C., Eiden A., Cooper R., Zha C., Wang D., Reilly E. Changes in indoor insecticide residue levels after adopting an integrated pest management program to control German cockroach infestations in an apartment building. Insects. 2019;10:304. doi: 10.3390/insects10090304. PubMed DOI PMC
Mallis A. Concentrations of sodium fluoride-flour mixtures for silverfish control. J. Econ. Entomol. 1944;37:842. doi: 10.1093/jee/37.6.842. DOI
Sims S.R., Appel A.G. Efficacy of commercial baits and new active ingredients against firebrats and silverfish (Zygentoma: Lepismatidae) J. Econ. Entomol. 2012;105:1385–1391. doi: 10.1603/EC12084. PubMed DOI
Aak A., Hage M., Rukke B.A. Long-tailed silverfish (Ctenolepisma longicaudata) control; bait choice based on primary and secondary poisoning. Insects. 2020;11:170. doi: 10.3390/insects11030170. PubMed DOI PMC
Aak A., Hage M., Lindstedt H.H., Rukke B.A. Development of a poisoned bait strategy against the silverfish Ctenolepisma longicaudata (Escherich, 1905) Insects. 2020;11:852. doi: 10.3390/insects11120852. PubMed DOI PMC
Kucerova Z., Stejskal V. Are commercial baits targeted on ants, silverfish and cockroaches applicable also for dometic psocids? First efficience report. In: Robinson W.H., editor. Proceedings of the 3rd International Conference on Urban Pests. Univ. of Agric.; Prague, Czech Republic: 1999. p. 638.
Diaz-Montano J., Campbell J.F., Phillips T.W., Throne J.E. Evaluation of potential attractants for six species of stored-product Psocids (Psocoptera: Liposcelididae, Trogiidae) J. Econ. Entomol. 2015;108:1398–1407. doi: 10.1093/jee/tov028. PubMed DOI
Hall A.V. Pest Control in Herbaria. Taxon. 1988;37:885–907. doi: 10.2307/1222094. DOI
Cheng T.H., Campbell F.L. Toxicity of phosphorous to cockroaches. J. Econ. Entomol. 1940;33:193–199. doi: 10.1093/jee/33.1.193. DOI
Parker C., Baldwin R., Pereira R., Koehler P. Evaluation of cyantraniliprole and other commercial fly baits under laboratory and field conditions. Insects. 2015;6:977–987. doi: 10.3390/insects6040977. PubMed DOI PMC
Appel A.G. Laboratory and field performance of an indoxacarb bait against German cockroaches (Dictyoptera: Blattellidae) J. Econ. Entomol. 2003;96:863–870. doi: 10.1093/jee/96.3.863. PubMed DOI
Lovell J.B. Amidinohydrazones-a new class of insecticides; Proceedings of the 10th British Crop Protection Conference-Pests and Diseases; Brighton, UK. 19–22 November 1979; Cambridge, UK: British Crop Protection Council; 1979. pp. 575–582.
Vander Meer R.K., Lofgren C.S., Williams D.F. Fluoroaliphatic sulfones: A new class of delayed-action insecticides for control of Solenopsis invicta (Hymenoptera: Formicidae) J. Econ. Entomol. 1985;78:1190–1197. doi: 10.1093/jee/78.6.1190. PubMed DOI
Appel A.G., Benson E.P. Performance of abamectin bait formulations against German cockroaches (Dictyoptera: Blattellidae) J. Econ. Entomol. 1995;88:924–931. doi: 10.1093/jee/88.4.924. PubMed DOI
Wang C., Lee C.Y., Rust M.K. Biology and Management of the German Cockroach. 1st ed. CABI; Wallingford, UK: 2021. pp. 1–304.
Selby T.P., Lahm G.P., Stevenson T.M., Hughes K.A., Cordova D., Annan J.D., Benner E.A., Currie M.J., Pahutski T.F. Discovery of cyantraniliprole a potent and selective anthranilic diamide ryanodine receptor activator with cross-spectrum insecticidal activity. Bioorg. Med. Chem. Lett. 2013;23:6341–6345. doi: 10.1016/j.bmcl.2013.09.076. PubMed DOI
Lim S.P., Lee C.Y. Effects of juvenile hormone analogs on new reproductives and colony growth of pharaoh ant (Hymenoptera: Formicidae) J. Econ. Entomol. 2005;98:2169–2175. doi: 10.1093/jee/98.6.2169. PubMed DOI
Szilágyi J., Schmidt J., Bajomi D. Occurrence of tropical and imported ant species in Europe (Hymenoptera: Formicidae). In: Robinson W.H., Bajomi D., editors. Proceedings of the 6th International Conference on Urban Pests; Budapest, Hungary. 13–16 July 2008; Pápai, Hungary: OOK-Press Kft.; 2008.
Kelany Y., Ibrahim A., Hegazy M. Improving the efficiency of two local baits used for the control of the German cockroach, Blattella germanica (L.), (Dictyoptera: Blattellidae) Int. J. Pharm. Biol. Sci. 2017;12:59–66.
Buczkowski G., Scherer C.W., Bennett G.W. Horizontal transfer of bait in the German cockroach: Indoxacarb causes secondary and tertiary mortality. J. Econ. Entomol. 2008;101:894–901. doi: 10.1093/jee/101.3.894. PubMed DOI
Stejskal V. Distribution of faeces of the German cockroach, Blattella germanica, in a new refuge. Entomol. Exp. Appl. 1997;84:201–205. doi: 10.1046/j.1570-7458.1997.00217.x. DOI
Silverman J., Vitale G.L., Shapas T.J. Hydramethylnon uptake by Blattella germanica (Orthoptera: Blattellidae) by coprophagy. J. Econ. Entomol. 1991;84:176–180. doi: 10.1093/jee/84.1.176. PubMed DOI
Kopanic R.J., Jr., Schal C. Coprophagy facilitates horizontal transmission of bait among cockroaches (Dictyoptera: Blattellidae) Environ. Entomol. 1999;28:431–438. doi: 10.1093/ee/28.3.431. DOI
Buczkowski G., Schal C. Method of insecticide delivery affects horizontal transfer of fipronil in the German cockroach (Dictyoptera: Blattellidae) J. Econ. Entomol. 2001;94:680–685. doi: 10.1603/0022-0493-94.3.680. PubMed DOI
Buczkowski G., Kopanic R.J., Jr., Schal C. Vertical transfer and horizontal tranfers. J. Econ. Entomol. 2001;94:1229–1236. doi: 10.1603/0022-0493-94.5.1229. PubMed DOI
Stejskal V., Lukas J., Aulicky R. Speed of action of 10 commercial insecticidal gel-baits against the German cockroach, Blattella germanica. Int. Pest Control. 2004;46:185–189.
Tay J.W., Lee C.Y. Induced disturbances cause Monomorium pharaonis (Hymenoptera: Formicidae) nest relocation. J. Econ. Entomol. 2015;108:1237–1242. doi: 10.1093/jee/tov079. PubMed DOI
Silverman J., Bieman D.N. Glucose aversion in the German cockroach, Blattella germanica. J. Insect Physiol. 1993;39:925–933. doi: 10.1016/0022-1910(93)90002-9. DOI
Hubbard C.B., Gerry A.C. Genetic evaluation and characterization of behavioral resistance to imidacloprid in the house fly. Pestic. Biochem. Physiol. 2021;171:104741. doi: 10.1016/j.pestbp.2020.104741. PubMed DOI
Freeman J.C., Ross D.H., Scott J.G. Insecticide resistance monitoring of house fly populations from the United States. Pestic. Biochem. Physiol. 2019;158:61–68. doi: 10.1016/j.pestbp.2019.04.006. PubMed DOI
Mullens B.A., Gerry A.C., Diniz A.N. Field and laboratory trials of a novel metaflumizone house fly (Diptera: Muscidae) bait in California. J. Econ. Entomol. 2010;103:550–556. doi: 10.1603/EC09293. PubMed DOI
Ko A.E., Schal C., Silverman J. Diet quality affects bait performance in German cockroaches (Dictyoptera: Blattellidae) Pest Manag. Sci. 2016;72:1826–1836. doi: 10.1002/ps.4295. PubMed DOI
Wada-Katsumata A., Schal C. Salivary digestion extends the range of sugar-aversions in the German cockroach. Insects. 2021;12:263. doi: 10.3390/insects12030263. PubMed DOI PMC
Sánchez-Molinero F., Arnau J. Processing of dry-cured ham in a reduced-oxygen atmosphere: Effects on sensory traits. Meat Sci. 2010;85:420–427. doi: 10.1016/j.meatsci.2010.02.010. PubMed DOI
García N. Efforts to control mites on Iberian ham by physical methods. Exp. Appl. Acarol. 2004;32:41–50. doi: 10.1023/B:APPA.0000018165.80420.c9. PubMed DOI
Zhao Y., Abbar S., Phillips T.W., Williams J.B., Smith B.S., Schilling M.W. Developing food-grade coatings for dry-cured hams to protect against ham mite infestation. Meat Sci. 2016;113:73–79. doi: 10.1016/j.meatsci.2015.11.014. PubMed DOI
Campbell Y., Shao W., Dinh T., To K., Rogers W., Zhang X., Phillips T., Schilling W. Use of nets treated with food grade coatings on controlling mold growth and mite infestation in dry-cured ham aging facilities. J. Stored Prod. Res. 2020;89:101716. doi: 10.1016/j.jspr.2020.101716. DOI
Campbell Y.L., Zhang X., Shao W., Williams J.B., Kim T., Goddard J., Abbar S., Phillips T., Schilling M.W. Use of nets treated with food-grade coatings on dry-cured ham to control Tyrophagus putrescentiae infestations without impacting sensory properties. J. Stored Prod. Res. 2018;76:30–36. doi: 10.1016/j.jspr.2017.12.003. DOI
Hewlett P., Parkin E. Effect of pretreatment on the toxicity of insecticidal films on building surfaces. Nature. 1945;155:755–756. doi: 10.1038/155755c0. DOI
Hewlett P.S. The formation of insecticidal films on building materials. Ann. Appl. Biol. 1948;35:228–232. doi: 10.1111/j.1744-7348.1948.tb07363.x. PubMed DOI
Parkin E., Hewlett S. The formation of insecticidal films on building materials. I. Preliminary experiments with films of pyrethrum and D.D.T. in a heavy oil. Ann. Appl. Biol. 1946;33:381. doi: 10.1111/j.1744-7348.1946.tb06327.x. PubMed DOI
Tyler P.S., Rowlands D.G. Sodium carboxymethyl cellulose as a stabilizer for malathion formulations. J. Stored Prod. Res. 1967;3:109–115. doi: 10.1016/0022-474X(67)90020-3. DOI
Cintora C., Barni D. Pyrotechnic smoke generators as pesticide application tools. Int. Pest Control. 2013;55:132–133.
Deong E.R., Peer K.C., Fancher L.W. A new generator for producing dry aerosols with organic insecticides. J. Econ. Entomol. 1950;43:542–546. doi: 10.1093/jee/43.4.542. DOI
Marke D.J.B., Lilly C.H. Smoke generators for the dispersion of pesticides. J. Sci. Food Agric. 1951;2:56–65. doi: 10.1002/jsfa.2740020204. DOI
Roff M.W., Griffiths L.K., Gobeau N., Johnson P.D., Pickering D., Rimmer D.A., Saunders C.J., Wheeler J.P. Characteristics of pesticide pyrotechnic smoke devices. Ann. Occup. Hyg. 2006;50:717–729. doi: 10.1093/annhyg/mel064. PubMed DOI
Wang F., Jayas D.S., White N.D.G., Fields P. Combined effect of carbon monoxide mixed with carbon dioxide in air on the mortality of stored-grain insects. J. Stored Prod. Res. 2009;45:247–253. doi: 10.1016/j.jspr.2009.04.004. DOI
Sinha S.N., Singh S.P., Srivastava C. Effect of smoke on Rhyzopertha dominica and Callosobruchus maculatus mortality and its susceptibility to phosphine. In: Donahaye E.J., editor. Proceedings of the International Conference of Controlled Atmosphere and Fumigation in Stored Products; Fresno, CA, USA. 29 October–3 November 2000; Clovis, NM, USA: Executive Printing Services; 2001. pp. 431–437.
Zerba E. Fumigant canisters and other novel insecticide delivery systems for public health. Public Health Mag. 1995;72:62–68.
Herford G.V.B. The infestation of stored foodstuffs by insects. J. Sci. Food Agric. 1952;3:1–11. doi: 10.1002/jsfa.2740030101. DOI
Stejskal V., Aulicky R., Dohnal P., Kocourek V., Hajslova J. Validation of insecticide aerosol generated by smoke-generator for German cockroach control. Int. Pest Control. 2010;52:84–86.
Krushelnycky P. Evaluation of Water-Storing Granules as a Promising New Baiting Tool for the Control of Invasive Ants in Hawaii. Report of Year 1 Activities to the Hawaii Invasive Species Council. [(accessed on 24 June 2021)];2019 Available online: https://dlnr.hawaii.gov/hisc/files/2019/07/UH-CTAHR-KrushelnyckyP-Ant-Bait_FY18_Final-Report.pdf.
Wagner R.E., Reierson D.A. Yellow jacket control by baiting. 1. Influence of toxicants and attractants on bait acceptance. J. Econ. Entomol. 1969;62:1192–1197. doi: 10.1093/jee/62.5.1192. PubMed DOI
Chang V. Toxic baiting of the Western yellowjacket (Hymenoptera: Vespidae) in Hawaii. J. Econ. Entomol. 1988;81:228–235. doi: 10.1093/jee/81.1.228. PubMed DOI
Spurr E.B. Protein bait preferences of wasps (Vespula vulgaris and V. germanica) at Mt Thomas, Canterbury, New Zealand. N. Z. J Zool. 1995;22:281–289. doi: 10.1080/03014223.1995.9518043. DOI
Lee C.Y., Lee L.C., Na J., Loke P.Y., Lim K.T., Teo E. Evaluation of methoprene granular baits against foraging Pharaoh ants, Monomorium pharaonis (Hymenoptera: Formicidae) Sociobiology. 2003;41:717–723.
Bajomi D., Lee C.Y., Lim S.P., Szilagyi J., Schmidt J. Elimination of pharaoh’s ant, Monomorium pharaonis colonies with s-methoprene baits (Hymenoptera: Formicidae). In: Lee C.Y., Robinson W.H., editors. Proceedings of the Fifth International Conference on Urban Pests, Suntec; Singapore. 10–13 June 2005; Penang, Malaysia: Perniagaan Ph’ng @ P&Y Design Network; 2005.
Klunker R., Rupes V., Chmela J. Control of Monomorium pharaonis using a methoprene bait in the Berlin Zoo and its combined application with a residue insecticide in the Olomouc Children’s Clinic. Angew. Parasitol. 1984;25:83–93. PubMed
Eduku A., Maalekuu B., Kaledzi P., Tandoh P.K. Development of bait for the management of coffee bean weevil, Araecerus fasciculatus in stored cocoa. Asian J. Agric. Res. 2018;8:1–11. doi: 10.9734/ARJA/2018/40496. DOI
Vendl T., Frankova M., Aulicky R., Stejskal V. First record of the development of Sitophilus oryzae on two rodent bait formulations and literature overview of stored product arthropods infestations in rodent baits. J. Stored Prod. Res. 2020;86:101557. doi: 10.1016/j.jspr.2019.101557. DOI
Brooke M.D.L., Cuthbert R.J., Harrison G., Gordon C., Taggart M.A. Persistence of brodifacoum in cockroach and woodlice: Implications for secondary poisoning during rodent eradications. Ecotoxicol. Environ. Saf. 2013;97:183–188. doi: 10.1016/j.ecoenv.2013.08.007. PubMed DOI
Lizzio E.F. A boric acid-rodenticide mixture used in the control of coexisting rodent-cockroach infestations. Lab. Anim. Sci. 1986;36:74–76. PubMed
Fields P., Korunic Z. The effect of grain moisture content and temperature on the efficacy of diatomaceous earths from different geographical locations against stored product beetles. J. Stored Prod. Res. 2000;36:e113–e118. doi: 10.1016/S0022-474X(99)00021-1. DOI
Athanassiou C.G., Kavallieratos N.G., Vayias B.J., Tomanovic Z., Petrovic A., Rozman V., Adler C., Korunic Z., Milovanovic D. Laboratory evaluation of diatomaceous earth deposits mined from several locations in central and south Eastern Europe as potential protectants against coleopteran grain pests. Crop Prot. 2011;30:329–339. doi: 10.1016/j.cropro.2010.10.004. DOI
Headlee T.J. Certain dusts as agents for the protection of stored seeds from insect infestation. J. Econ. Entomol. 1924;17:298–307. doi: 10.1093/jee/17.2.298. DOI
Golob P., Webley D.J. The Use of Plants and Minerals as Traditional Protectants of Stored Products. Tropical Product Institute; London, UK: 1980.
Subramanyam B., Roesli R. Alternatives to Pesticides in Stored-Product IPM. Springer; Boston, MA, USA: 2000. Inert dusts; pp. 321–380.
Zacher F., Kunike G. Untersuchungen uber die Insektizide Wirkung von Oxyden und Karbonaten. Arb. Aus. Biol. Reichsans. 1931;18:201–231.
Zacher F. Neue Untersuchungen uber die Einwirkung Oberflachenaktiver Pulver auf Insekten. Zool. Anzeiger. 1937;10:264–271.
Parkin E. Control of the granary weevil with finely ground mineral dusts. Ann. Appl. Biol. 1944;31:84–88. doi: 10.1111/j.1744-7348.1944.tb06215.x. DOI
David W.A.L., Gardiner B.O.C. Factors influencing the action of dust insecticides. Bull. Entomol. Res. 1950;41:1–61. doi: 10.1017/S0007485300027474. DOI
Chiu S.F. Toxicity studies of so-called inert materials with the bean weevil, Acanthoselides obtectus (Say.) J. Econ. Entomol. 1939;32:240–248. doi: 10.1093/jee/32.2.240. DOI
Watkins T.C., Norton L.B. A classification of insecticide dust diluents and carriers. J. Econ. Entomol. 1947;40:211–214. doi: 10.1093/jee/40.2.211. PubMed DOI
Ebeling W. Sorptive dust for pest control. Ann. Rev. Entomol. 1971;16:123–158. doi: 10.1146/annurev.en.16.010171.001011. PubMed DOI
Zurek L., Gore J.C., Stringham S.M., Watson D.W., Waldvogel M.G., Schal C. Boric acid dust as a component of an integrated cockroach management program in confined swine production. J. Econ. Entomol. 2003;96:1362–1366. doi: 10.1093/jee/96.4.1362. PubMed DOI
El-Saadony M.T., Abd El-Hack M.E., Taha A.E., Fouda M.M.G., Ajarem J.S., Maodaa S.N., Allam A.A., Elshaer N. Ecofriendly synthesis and insecticidal application of copper nanoparticles against the storage pest Tribolium castaneum. Nanomaterials. 2020;10:587. doi: 10.3390/nano10030587. PubMed DOI PMC
Alif Alisha A.S., Thangapandiyan S. Comparative bioassay of silver nanoparticles and malathion on infestation of red flour beetle Tribolium castaneum. JoBAZ. 2019;80:1–10.
Rahel J., Jonasova E., Nesvorna M., Klubal R., Erban T., Hubert J. The toxic effect of chitosan/metal-impregnated textile to synanthropic mites. Pest Manag. Sci. 2013;69:722–7266. doi: 10.1002/ps.3428. PubMed DOI
Korunic Z. Diatomaceous earths, a group of natural insecticides. J. Stored Prod. Res. 1998;34:87–97. doi: 10.1016/S0022-474X(97)00039-8. DOI
Hamel D., Rozman V., Liska A. Storage of cereals in warehouses with or without pesticides. Insects. 2020;11:846. doi: 10.3390/insects11120846. PubMed DOI PMC
Bohinc T., Horvat A., Andrić G., Golić M.P., Kljajić P., Trdan S. Natural versus synthetic zeolites for controlling the maize weevil (Sitophilus zeamais)–like Messi versus Ronaldo? J. Stored Prod. Res. 2020;88:101639. doi: 10.1016/j.jspr.2020.101639. DOI
Li Y., Agarwal M., Cao Y., Ren Y. Effect of synthetic amorphous silica powder on the cuticle of Tribolium castaneum and Sitophilus oryzae using hyperspectral imaging technique. Pest Manag. Sci. 2020;76:314–323. doi: 10.1002/ps.5517. PubMed DOI
Parkin E., Bills G. Insecticidal dusts for the protection of stored peas and beans against bruchid infestation. Bull. Entomol. Res. 1955;46:625–641. doi: 10.1017/S0007485300039584. DOI
Wigglesworth V. Action of inert dusts on insects. Nature. 1944;153:493–494. doi: 10.1038/153493a0. DOI
Korunic Z., Cenkowski S., Fields P.G. Grain bulk density as affected by diatomaceous earth band application method. Postharvest Biol. Technol. 1998;13:81–89. doi: 10.1016/S0925-5214(97)00076-8. DOI
Perišić V., Vuković S., Perišić V., Pešić S., Vukajlović F., Andrić G., Kljajić P. Insecticidal activity of three diatomaceous earths on lesser grain borer, Rhyzopertha dominica F., and their effects on wheat, barley, rye, oats and triticale grain properties. J. Stored Prod. Res. 2018;75:38–46. doi: 10.1016/j.jspr.2017.11.006. DOI
Arthur F.H. Evaluation of methoprence alone or in combination with diatomaceous earth to control Rhyzopertha dominica (Coleoptera: Bostrichidae) on stored wheat. J. Stored Prod. Res. 2004;40:485–498. doi: 10.1016/S0022-474X(03)00060-2. DOI
Kavallieratos N.G., Athanassiou C.G., Vayias B.J., Kotzamanidis S., Synodis S.D. Efficacy and adherence ratio of diatomaceous earth and spinosad in three wheat varieties against three stored-product insect pests. J. Stored Prod. Res. 2010;46:73–80. doi: 10.1016/j.jspr.2009.10.003. DOI
Ceruti F.C., Lazzari S.M.N. Combination of diatomaceous earth and powder deltamethrin for insect control in stored corn. Rev. Bras. Entomol. 2005;49:580–583. doi: 10.1590/S0085-56262005000400020. DOI
Ziaee M., Ebadollahi A., Wakil W. Integrating inert dusts with other technologies in stored productsprotection. Toxin Rev. 2019:1–16. doi: 10.1080/15569543.2019.1633673. DOI
Bridgeman B.W. Structual Treatment Manual, an Instruction for the Application of Dryacide Slurry. GRAINCO Training Manual; Toowoomba, Australia: 1991.
Desmarchelier J.M., Wright E.J., Allen S.E. Dryacide®: A structural treatment for stored product insects; Proceedings of the 5th Australian Applied Entomological Research Conference; Canberra, Australia. 28 April–1 May 1992; Melbourne, Australia: CSIRO Australia; 1992. pp. 483–485.
Stejskal V., Kosina P., Kanyomeka L. Arthropod pests and their natural enemies in stored crops in northern Namibia. J. Pest Sci. 2006;79:51–55. doi: 10.1007/s10340-005-0109-2. DOI
Cao Y., Li Y., Wang P., Wei L., Su J. Efficacy of a Chinese diatomaceous earth and purpose-built sprayer for control of stored grain insect pests in an empty warehouse; Proceedings of the 9th Int. Working Conference on Stored Product Prot.; São Paulo, Brazil. 15–18 October 2006; pp. 849–854.
Wilson H.F., Janes R.J., Campau E.J. Electrostatic charge effects produced by insecticidal dusts. J. Econ. Entomol. 1944;37:651–655. doi: 10.1093/jee/37.5.651. DOI
Athanassiou C.G., Vassilakos T.N., Dutton A.C., Jessop N., Sherwood D., Pease G., Brglez A., Storm C., Trdan S. Combining electrostatic powder with an insecticide: Effect on stored-product beetles and on the commodity. Pest Manag. Sci. 2016;72:2208–2217. doi: 10.1002/ps.4255. PubMed DOI
Gunther F.A., Lindgren D.L., Blinn R.C. Biological effectiveness and persistence of malathion and lindane used for protection of stored wheat. J. Econ. Entomol. 1958;51:843–844. doi: 10.1093/jee/51.6.843. DOI
Floyd E.H. Effectiveness of malathion dust as a protectant for farm-stored corn in Louisiana. J. Econ. Entomol. 1961;54:900–904. doi: 10.1093/jee/54.5.900. DOI
Wilbur D.A. Effects of insecticidal dusts containing piperonyl butoxide and pyrethrins applied to wheat on the flavor of eggs. J. Econ. Entomol. 1952;45:899. doi: 10.1093/jee/45.5.899. DOI
Zhang T., Cao Y., Li Y., Yushu Gao Y., Feng J. Food-grade inert dust as structural treatment against insect pests. In: Arthur F.H., Kengkanpanich R., Chayaprasert W., Suthisut D., editors. Proceedings of the 11th International Working Conference on Stored Product Prot.; Chiang Mai, Thailand. 24–28 November 2014; pp. 883–884. DOI
Campolo O., Romeo F.V., Malacrinò A., Laudani F., Carpinteri G., Fabroni S., Rapisarda P., Palmeri V. Effects of inert dusts applied alone and in combination with sweet orange essential oil against Rhyzopertha dominica (Coleoptera: Bostrichidae) and wheat microbial population. Ind. Crops Prod. 2014;61:361–369. doi: 10.1016/j.indcrop.2014.07.028. DOI
Korunic Z., Liska A., Lucic P., Hamel D., Rozman V. Evaluation of diatomaceous earth formulations enhanced with natural products against stored product insects. J. Stored Prod. Res. 2020;86:101565. doi: 10.1016/j.jspr.2019.101565. DOI
Korunic Z., Fields P.G., Kovacs M.I.P., Noll J.S., Lukow O.M., Demianyk C.J., Shibley K.J. The effect of diatomaceous earth on grain quality. Postharvest Biol. Technol. 1996;9:373–387. doi: 10.1016/S0925-5214(96)00038-5. DOI
Arthur F.H. Residual efficacy of a deltamethrin emulsifiable concentrate formulation against Rhyzopertha dominica (F.) and Sitotroga cerealella (Oliver) after partial treatment of brown rice. Insects. 2019;10:95. doi: 10.3390/insects10040095. PubMed DOI PMC
Vardeman E.A., Arthur F.H., Nechols J.R., Campbell J.F. Effect of temperature, exposure internal and depth of diatomaceous earth on distribution, mortality, and reproduction of the lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) in stored wheat. J. Econ. Entomol. 2006;99:1017–1024. doi: 10.1093/jee/99.3.1017. PubMed DOI
Dales M.J. A Review of Plant Materials Used for Controlling Insect Pests of Stored Products (NRI Bulletin 65) Natural Resources Institute; Chatham, UK: 1996.
Bohinc T., Horvat A., Andrić G., Golić M.P., Kljajić P., Trdan S. Comparison of three different wood ashes and diatomaceous earth in controlling the maize weevil under laboratory conditions. J. Stored Prod. Res. 2018;79:1–8. doi: 10.1016/j.jspr.2018.06.007. DOI
Mehta V., Kumar S. Influence of different plant powders as grain protectants on Sitophilus oryzae (L.) (Coleoptera: Curculionidae) in stored wheat. J. Food Prot. 2020;83:2167–2172. doi: 10.4315/JFP-20-153. PubMed DOI
Haq T., Usmani N.F., Abbas T. Screening of plant leaves as grain protectants against Tribolium castaneum during storage. Pak. J. Bot. 2005;37:149–153.
Goudoungou J.W., Nukenine E.N., Suh C., Gangué T., Ndjonka D. Effectiveness of binary combinations of Plectranthus glandulosus leaf powder and Hymenocardia acida wood ash against Sitophilus zeamais (Coleoptera: Curculionidae) Agric. Food Secur. 2018;7:1–12. doi: 10.1186/s40066-018-0179-z. DOI
Derbalah A., Ahmed S. Oil and powder of spearmint as an alternative to Sitophilus oryzae chemical control of wheat grains. J. Plant Prot. Res. 2011;51:1–6. doi: 10.2478/v10045-011-0025-9. DOI
Nandi R., Naganagoud A., Patil B.V. Effect of sweet flag rhizome, Acorus calamus L. formulations with cow dung ash as a carrier against Callasobruchus chinensis Linn. in pigeonpea. Karnataka J. Agric. Sci. 2008;21:45–48.
Kathirvelu C., Muthukumaran N., Kanagarajan R., Mangayarkarasi S. Fumigant effect of tablet formulation of certain botanicals against key pests of stored produce in laboratory conditions. J. Appl. Sci. Comput. 2019;6:914–923.
Kathirvelu C. Evaluation of phyto tablet formulation against key insect pests of stored produce under laboratory conditions. J. Pharmacogn. Phytochem. 2019;SP2:387–390.
Chang Y., Lee S.H., Na J.H., Chang P.S., Han J. Protection of grain products from Sitophilus oryzae (L.) contamination by anti-insect pest repellent sachet containing allyl mercaptan microcapsule. J. Food. Sci. 2017;82:2634–2642. doi: 10.1111/1750-3841.13931. PubMed DOI
Zdarkova E., Horak E., Pulpan J. Chemical and Non-Chemical Methods of Control of Mites Infesting Stored Seeds (Research Report- in Czech) Research Institute of Food Industry; Prague, Czech Republic: 1974. p. 117.
Stejskal V., Vendl T., Frankova M., Aulicky R. Overview of stored product rodents, insects and mites associated with beet and beet products. (Přehled skladištních hlodavců, hmyzu a roztočů škodících na semenech cukrové řepy a řepných produktech.) Listy Cukrov. Řepař. 2019;135:248–254.
Hosseini H., Hamgini E.Y., Jafari S.M., Bolourian S. Improving the oxidative stability of sunflower seed kernels by edible biopolymeric coatings loaded with rosemary extract. J. Stored Prod. Res. 2020;89:101729. doi: 10.1016/j.jspr.2020.101729. DOI
Watters F.L. Protection of packaged food from insect infestation by use of silica gel. J. Econ. Entomol. 1966;59:146–149. doi: 10.1093/jee/59.1.146. PubMed DOI
Scheff D.S., Arthur F.H., Myers S.W. Evaluation of methoprene-treated packaging against Trogoderma granarium Everts and Trogoderma inclusum LeConte larval development and packaging penetration or invasion. J. Stored Prod. Res. 2019;84:101530. doi: 10.1016/j.jspr.2019.101530. DOI
Kavallieratos N.G., Athanassiou C.G., Arthur F.H. Effectiveness of insecticide-incorporated bags to control stored-product beetles. J. Stored Prod. Res. 2017;70:18–24. doi: 10.1016/j.jspr.2016.11.001. DOI
Marsin A.M., Muhamad I.I., Anis S.N.S., Lazim N.A.M., Ching L.W., Dolhaji N.H. Essential oils as insect repellent agents in food packaging: A review. Eur. Food Res. Technol. 2020;246:1519–1532. doi: 10.1007/s00217-020-03511-1. DOI
Navarro S., Zehavi D., Angel S., Finkelman S. Natural nontoxic insect repellent packaging materials. In: Wilson C.L., editor. Intelligent and Active Packaging for Fruits and Vegetables. CRC Press; New York, NY, USA: 2007. pp. 201–236.
Licciardello F., Muratore G., Suma P., Russo A., Nerín C. Effectiveness of a novel insect-repellent food packaging incorporating essential oils against the red flour beetle (Tribolium castaneum) Innov. Food Sci. Emerg. Technol. 2013;19:173–180. doi: 10.1016/j.ifset.2013.05.002. DOI
Wilkins R.V., Zhu K.Y., Campbell J.F., Morrison W.R., III Mobility and dispersal of two cosmopolitan stored-product insects are adversely affected by long-lasting insecticide netting in a life stage-dependent manner. J. Econ. Entomol. 2020;113:1768–1779. doi: 10.1093/jee/toaa094. PubMed DOI
Rumbos C.I., Sakka M., Schaffert S., Sterz T., Austin J.W., Bozoglou C., Klitsinaris P., Athanassiou C.G. Evaluation of Carifend®, an alpha-cypermethrin-coated polyester net, for the control of Lasioderma serricorne and Ephestia elutella in stored tobacco. J. Pest Sci. 2018;91:751–759. doi: 10.1007/s10340-017-0947-8. DOI
Agrafioti P., Faliagka S., Lampiri E., Orth M., Pätzel M., Katsoulas N., Athanassiou C.G. Evaluation of silica-coated insect proof nets for the control of Aphis fabae, Sitophilus oryzae, and Tribolium confusum. Nanomaterials. 2020;10:1658. doi: 10.3390/nano10091658. PubMed DOI PMC
Paloukas Y.Z., Agrafioti P., Rumbos C.I., Schaffert S., Sterz T., Bozoglou C., Klitsinaris P., Austin J.W., Athanassiou C.G. Evaluation of Carifend® for the control of stored-product beetles. J. Stored Prod. Res. 2020;85:101534. doi: 10.1016/j.jspr.2019.101534. DOI
Morrison III W.R., Wilkins R.V., Gerken A.R., Scheff D.S., Zhu K.Y., Arthur F.H., Campbell J.F. Mobility of adult Tribolium castaneum (Coleoptera: Tenebrionidae) and Rhyzopertha dominica (Coleoptera: Bostrichidae) after exposure to long-lasting insecticide-incorporated netting. J. Econ. Entomol. 2018;111:2443–2453. doi: 10.1093/jee/toy173. PubMed DOI
Andriessen R., Snetselaar J., Suer R.A., Osinga A.J., Deschietere J., Lyimo I.N., Mnyone L.L., Brooke B.D., Ranson H., Knols B.G.J., et al. Electrostatic coating breaks mosquito resistance. Proc. Nat. Acad. Sci. USA. 2015;112:12081–12086. doi: 10.1073/pnas.1510801112. PubMed DOI PMC
Tadesse T.M., Subramanyam B., Zhu K.Y., Campbell J.F. Contact toxicity of filter cake and triplex powders from Ethiopia against adults of Sitophilus zeamais (Coleoptera: Curculionidae) J. Econ. Entomol. 2019;112:1469–1475. doi: 10.1093/jee/toz036. PubMed DOI
Aulicky R., Stejskal V., Frydova B. Field validation of phosphine efficacy on the first recorded resistant strains of Sitophilus granaries and Tribolium castaneum from the Czech Republic. J. Stored Prod. Res. 2019;81:107–113. doi: 10.1016/j.jspr.2019.02.003. DOI
Stenberg J.A., Sundh I., Becher P.G., Björkman C., Dubey M., Egan P.A., Friberg H., Gil J.F., Jensen D.F., Jonsson M., et al. When is it biological control? A framework of definitions, mechanisms, and classifications. J. Pest Sci. 2021:1–12. doi: 10.1007/s10340-021-01354-7. DOI
Isman M.B. Botanical insecticides in the twenty-first century—fulfilling their promise? Annu. Rev. Entomol. 2020;65:233–249. doi: 10.1146/annurev-ento-011019-025010. PubMed DOI
Savoldelli S., Trematerra P. Mass-trapping, mating-disruption and attracticide methods for managing stored-product insects: Success stories and research needs. Stewart Postharvest Rev. 2011;7:1–8.
Morrison W.R., III, Scully E.D., Campbell J.F. Towards developing areawide semiochemical-mediated, behaviorally-based integrated pest management programs for stored product insects. Pest Manag. Sci. 2021;77:2667–2682. doi: 10.1002/ps.6289. PubMed DOI
Hasan M.M., Athanassiou C.G., Schilling M.W., Phillips T.W. Biology and management of the red-legged ham beetle, Necrobia rufipes DeGeer (Coleoptera: Cleridae) J. Stored Prod. Res. 2020;88:106135. doi: 10.1016/j.jspr.2020.101635. DOI
Eroglu N., Emekci M., Athanassiou C.G. Applications of natural zeolites on agriculture and food production. J. Sci. Food Agric. 2017;97:3487–3499. doi: 10.1002/jsfa.8312. PubMed DOI
Rumbos C.I., Athanassiou C.G. Use of entomopathogenic fungi for the control of stored-product insects: Can fungi protect durable commodities? J. Pest Sci. 2017;90:839–854. doi: 10.1007/s10340-017-0849-9. DOI
Chikhanis G.G., Sakka M.K., Athanassiou C.G. Efficacy of Beauveria bassiana in combination with an electrostatically charged dust for the control of major stored-product beetle species on concrete. J. Stored Prod. Res. 2018;79:139–143.
Wakil W., Schmitt T., Kavallieratos N.G. Mortality and progeny production of four stored-product insect species on three grain commodities treated with Beauveria bassiana and diatomaceous earths. J. Stored Prod. Res. 2020:101738. doi: 10.1016/j.jspr.2020.101738. DOI
McFarlane D.J., Aitken E.A.B., Ridley A.W., Walter G.H. The dietary relationships of Tribolium castaneum (Herbst) with microfungi. J. Appl. Entomol. 2021;145:158–169. doi: 10.1111/jen.12830. DOI