The relationship between taxonomic classification and applied entomology: stored product pests as a model group
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
40178352
PubMed Central
PMC11966609
DOI
10.1093/jisesa/ieaf019
PII: 8104873
Knihovny.cz E-zdroje
- Klíčová slova
- Acari, insects, stored commodities, synonyms, taxonomy,
- MeSH
- entomologie * dějiny MeSH
- hmyz * klasifikace MeSH
- klasifikace * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Taxonomy provides a general foundation for research on insects. Using stored product pest (SPP) arthropods as a model group, this article overviews the historical impacts of taxonomy on applied entomology. The article surveys the dynamics of historical descriptions of new species in various SPP taxa; the majority of all species (90%) were described prior to 1925, while the key pests were described prior to 1866. The review shows that process of describing new SPP species is not random but is influenced by following factors: (i) larger species tend to be described earlier than smaller and SPP moths and beetles are described earlier than psocids and mites; (ii) key economic pests are on average described earlier than less significant ones. Considering a species name as a "password" to unique information resources, this review also assesses the historical number of synonymous or duplicate names of SPP species. Pests belonging to some higher taxa Lepidoptera and Coleoptera has accumulated more scientific synonyms than those others belonging to Psocoptera and Acari. Number of synonyms positively correlated with the economic importance of SPP species. The review summarized semantic origin of SPP names showing minor proportion of names (17.6%) are toponyms (geography) or eponyms (people), while the majority (82.4%) fall into other categories (descriptive, etc.). It is concluded that awareness of taxonomic advances, including changes to species and higher taxa names, should be effectively communicated to pest control practitioners and applied entomology students, and specifically addressed in relevant textbooks, web media, and databases.
Zobrazit více v PubMed
Ahrens D, Fabrizi S, Šípek P, et al.2013. Integrative analysis of DNA phylogeography and morphology of the European rose chafer (Cetonia aurata) to infer species taxonomy and patterns of postglacial colonisation in Europe. Mol. Phylogenet. Evol. 69:83–94. https://doi.org/10.1016/j.ympev.2013.05.016 PubMed DOI
Angelini DR, Jockusch EL.. 2008. Relationships among pest flour beetles of the genus Tribolium (Tenebrionidae) inferred from multiple molecular markers. Mol. Phylogenet. Evol. 46:127–141. https://doi.org/10.1016/j.ympev.2007.08.017 PubMed DOI PMC
Basset Y, Novotny V, Miller SE, et al.2004. Conservation and biological monitoring of tropical forests: the role of parataxonomists. J. Appl. Ecol. 41:163–174.
Bebber DP, Wood JR, Barker C, et al.2014. Author inflation masks global capacity for species discovery in flowering plants. New Phytol. 201:700–706. https://doi.org/10.1111/nph.12522 PubMed DOI
Beukes B, Witbooi P, Gibbons MJ.. 2020. Does phylogeny have an influence on the date of first description? A comparative study of the world’s fishes. Global Ecol. Conserv. 23:e01078. https://doi.org/10.1016/j.gecco.2020.e01078 DOI
Bilton DT. 2014. What’s in a name? What have taxonomy and systematics ever done for us? J. Biol. Educ. 48:116–118. https://doi.org/10.1080/00219266.2014.926653 DOI
Bousquet Y. 1990. Beetles associated with stored products in Canada: an identification guide. Ottawa, Ontario: Research Branch, Agriculture Canada. p. 220. https://publications.gc.ca/collections/collection_2015/aac-aafc/A43-1837-1989-eng.pdf [Accessed 7th March 2025]
Braby MF, Eastwood R, Murray N.. 2012. The subspecies concept in butterflies: has its application in taxonomy and conservation biology outlived its usefulness? Biol. J. Linn. Soc. 106:699–716. https://doi.org/10.1111/j.1095-8312.2012.01909.x DOI
Buckland PC. 1981. The early dispersal of insect pests of stored products as indicated by archaeological records. J. Stored Prod. Res. 17:1–12. https://doi.org/10.1016/0022-474x(81)90025-4 DOI
Cai C, Tihelka E, Giacomelli M, et al.2022. Integrated phylogenomics and fossil data illuminate the evolution of beetles. R. Soc. Open Sci. 9:211771. https://doi.org/10.1098/rsos.211771 PubMed DOI PMC
Campbell JF, Arthur FH, Mullen MA.. 2004. Insect management in food processing facilities. Adv. Food Nutr. Res. 48:239–295. https://doi.org/10.1016/S1043-4526(04)48005-X PubMed DOI
Campbell JF, Athanassiou CG, Hagstrum DW, et al.2022. Tribolium castaneum: a model insect for fundamental and applied research. Annu. Rev. Entomol. 67:347–365. https://doi.org/10.1146/annurev-ento-080921-075157 PubMed DOI
Cao X, Liu J, Chen J, et al.2016. Rapid dissemination of taxonomic discoveries based on DNA barcoding and morphology. Sci. Rep. 6:37066. https://doi.org/10.1038/srep37066 PubMed DOI PMC
Ceríaco LM, Aescht E, Ahyong ST, et al.2023. Renaming taxa on ethical grounds threatens nomenclatural stability and scientific communication: communication from the International Commission on Zoological Nomenclature. Zool. J. Linn. Soc. 197:283–286. https://doi.org/10.1093/zoolinnean/zlac107 DOI
Chua PY, Bourlat SJ, Ferguson C, et al.2023. Future of DNA-based insect monitoring. Trends Genet. 39:531–544. https://doi.org/10.1016/j.tig.2023.02.012 PubMed DOI
Cosme L Jr, Turchen LM, Guedes RNC.. 2020. Insect world: game-based learning as a strategy for teaching entomology. Am. Biol. Teach. 82:210–215. https://doi.org/10.1525/abt.2020.82.4.210 DOI
Costello MJ, Lane M, Wilson S, et al.2015. Factors influencing when species are first named and estimating global species richness. Global Ecol. Conserv. 4:243–254. https://doi.org/10.1016/j.gecco.2015.07.001 DOI
Cui J, Su Y, Feng S, et al.2020. Morphological and molecular identification of Liposcelis corrodens (Heymons, 1909) (Psocodea: Liposcelididae) as the first record from China. J. Stored Prod. Res. 87:101588. https://doi.org/10.1016/j.jspr.2020.101588 DOI
Dhooria MS. 2016. Fundamentals of applied acarology. Springer. p. 470.
Eggleton P. 2020. The state of the world’s insects. Annu. Rev. Environ. Resour. 45:61–82. https://doi.org/10.1146/annurev-environ-012420-050035 DOI
Fain A, Fauvel G.. 1993. Tyrophagus curvipenis n. sp. from an orchid cultivation in a green-house in Portugal (Acari: Acaridae). Int. J. Acarol. 19:95–100. https://doi.org/10.1080/01647959308683544 DOI
Favret C. 2024. The 5 ‘D’s of taxonomy: a user’s guide. Q. Rev. Biol. 99:131–156. https://doi.org/10.1086/732044 DOI
Feng S, Yang Q, Li H, et al.2018. The highly divergent mitochondrial genomes indicate that the booklouse, Liposcelis bostrychophila (Psocoptera: Liposcelididae) is a cryptic species. G3 (Bethesda, Md.) 8:1039–1047. https://doi.org/10.1534/g3.117.300410 PubMed DOI PMC
Feng S, Pozzi A, Stejskal V, et al.2022a. Fragmentation in mitochondrial genomes in relation to elevated sequence divergence and extreme rearrangements. BMC Biol. 20:1–17. https://doi.org/10.1186/s12915-021-01218-7 PubMed DOI PMC
Feng S, Opit G, Deng W, et al.2022b. A chromosome-level genome of the booklouse, Liposcelis brunnea, provides insight into louse evolution and environmental stress adaptation. GigaScience 11:1–10. https://doi.org/10.1093/gigascience/giac062 PubMed DOI PMC
Garbino GS. 2023. Rethink changing species names that honour real people. Nature 616:433. https://doi.org/10.1038/d41586-023-01276-7 PubMed DOI
Germain JF, Chatot C, Meusnier I, et al.2013. Molecular identification of Epitrix potato flea beetles (Coleoptera: Chrysomelidae) in Europe and North America. Bull. Entomol. Res. 103:354–362. https://doi.org/10.1017/S000748531200079X PubMed DOI
Gomes LC, Pessali TC, Sales NG, et al.2015. Integrative taxonomy detects cryptic and overlooked fish species in a neotropical river basin. Genetica 143:581–588. https://doi.org/10.1007/s10709-015-9856-z PubMed DOI
Griffiths DA. 1962. Flour mite, Acarus siro L., 1758, a species complex. Nature 196:908–908. https://doi.org/10.1038/196908a0 DOI
Guedes P, Alves-Martins F, Arribas JM, et al.2023. Eponyms have no place in 21st-century biological nomenclature. Nat. Ecol. Evol. 7:1157–1160. https://doi.org/10.1038/s41559-023-02022-y PubMed DOI
Hagstrum DW, Phillips TW.. 2017. Evolution of stored-product entomology: protecting the world food supply. Annu. Rev. Entomol. 62:379–397. https://doi.org/10.1146/annurev-ento-031616-035146 PubMed DOI
Hagstrum DW., Subramanyam B. 2009. Stored-product insect resource. AACC International, Inc. p. 509.
Hagstrum DW, Klejdysz T, Subramanyam B, et al.2013. Atlas of stored-product insects and mites. AACC International, Inc. p. 589.
Halstead DGH. 1969. A new species of Tribolium from North America previously confused with Tribolium madens (Charp.) (Coleoptera: Tenebrionidae). J. Stored Prod. Res. 4:295–304. https://doi.org/10.1016/0022-474x(69)90046-0 DOI
Halstead DGH. 1986. Keys for the identification of beetles associated with stored products. I—Introduction and key to families. J. Stored Prod. Res. 22:163–203. https://doi.org/10.1016/0022-474x(86)90011-1 DOI
Halstead DGH. 1993. Keys for the identification of beetles associated with stored products—II. Laemophloeidae, Passandridae and Silvanidae. J. Stored Prod. Res. 29:99–197. https://doi.org/10.1016/0022-474x(93)90030-8 DOI
Hagstrum DW, Subramanyam B. 2009. Stored-product insect resource. AACC International, Inc, 509.
Hammer TA, Thiele KR.. 2021. Proposals to amend Articles 51 and 56 and Division III, to allow the rejection of culturally offensive and inappropriate names. Taxon 70:1392–1394. https://doi.org/10.1002/tax.12620 DOI
Hamilton AJ, Basset Y, Benke KK, et al. 2010. Quantifying uncertainty in estimation of tropical arthropod species richness. Am. Nat. 176:90–95. PubMed
Hava J. 2021. Online world catalogue of Dermestidae. http://dermestidae.wz.cz/world-dermestidae/. [Accessed 27th February 2024].
Hebert PD, Cywinska A, Ball SL, et al.2003. Biological identifications through DNA barcodes. Proc. Biol. Sci. 270:313–321. https://doi.org/10.1098/rspb.2002.2218 PubMed DOI PMC
Hending D. 2024. Cryptic species conservation: a review. Biol. Rev. 100:258–274. https://doi.org/10.1111/brv.13139 PubMed DOI PMC
Hidayat P, Phillips TW, Ffrench-Constant RH.. 1996. Molecular and morphological characters discriminate Sitophilus oryzae and S. zeamais (Coleoptera: Curculionidae) and confirm reproductive isolation. Ann. Entomol. Soc. Am. 89:645–652. https://doi.org/10.1093/aesa/89.5.645 DOI
Hill DS. 2002. Pests of stored foodstuffs and their control. Kluwer Academic Publishers. p. 476.
Hinton HE. 1945. A monograph of the beetles associated with stored products. British Museum of Natural History. p. 234.
Hinton HE. 1948. A synopsis of the genus Tribolium Macleay, with some remarks on the evolution of its species-groups (Coleoptera, Tenebrionidae). Bull. Entomol. Res. 39:13–55. https://doi.org/10.1017/s0007485300024287 PubMed DOI
Hughes TE. 1959. Mites or the Acari. Oxford University Press. p. 225.
Hughes AM. 1961. The mites of stored food. Ministry of Agriculture, Fisheries and Food, Technical Bulletin no. 9., H. M. Stationery Office. p. 287.
Jiménez-Mejías P, Manzano S, Gowda V, et al.2024. Protecting stable biological nomenclatural systems enables universal communication: a collective international appeal. BioScience 74:467–472. https://doi.org/10.1093/biosci/biae043 PubMed DOI PMC
Kingsolver JM. 1990. New world Bruchidae: past, present, future. In: Fujii K, Gatehouse AMR, Johnson CD, et al., editors. Bruchids and legumes: economics, ecology and coevolution. Kluwer Academic Publishers. p. 121–129.
Klimov PB, OConnor BM.. 2010. Acarus putrescentiae Schrank, 1781 (currently Tyrophagus putrescentiae; Acariformes, acaridae): proposed conservation of usage by designation of a replacement neotype. Bull. Zool. Nomencl. 67:24–27. https://doi.org/10.21805/bzn.v67i1.a2 DOI
Klimov PB, Tolstikov AV.. 2011. Acaroid mites of northern and eastern Asia (Acari: Acaroidea). Acarina 19:252–264.
Klingler M, Bucher G.. 2022. The red flour beetle T. castaneum: elaborate genetic toolkit and unbiased large scale RNAi screening to study insect biology and evolution. EvoDevo 13:14. https://doi.org/10.1186/s13227-022-00201-9 PubMed DOI PMC
Koch MA, German DA.. 2013. Taxonomy and systematics are key to biological information: Arabidopsis, Eutrema (Thellungiella), Noccaea and Schrenkiella (Brassicaceae) as examples. Front. Plant Sci. 4:267. https://doi.org/10.3389/fpls.2013.00267 PubMed DOI PMC
Kucerova Z, Stejskal V.. 2002. Comparative egg morphology of silvanid and laemophloeid beetles (Coleoptera) occurring in stored products. J. Stored Prod. Res. 38:219–227. https://doi.org/10.1016/S0022-474X(01)00016-9 DOI
Künstner A, Busch H, Hartmann E, et al.2022. Data on draft genomes and transcriptomes from females and males of the flour moth, Ephestia kuehniella. Data Brief 42:108140. https://doi.org/10.1016/j.dib.2022.108140 PubMed DOI PMC
Lan Y, Feng S, Xia L, et al.2020. The first complete mitochondrial genome of Cheyletus malaccensis (Acari: Cheyletidae): gene rearrangement. Syst. Appl. Acarol. 25:1433–1443. https://doi.org/10.11158/saa.25.8.6 DOI
Lan Y, Feng S, Stejskal V, et al.2021. The complete mitochondrial genome of Glycyphagus domesticus (Acari: Glycyphagidae) using next-generation sequencing: Insight into phylogeny of Acariformes. J. Stored Prod. Res. 93:101818. https://doi.org/10.1016/j.jspr.2021.101818 DOI
Lawton JH, Bignell DE, Bolton B, et al.1998. Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 391:72–76. https://doi.org/10.1038/34166 DOI
Li F. 2002. Psocoptera of China. Vol. 2. Science Press. p. 1976.
Li ZH, Kucerova Z, Zhao S, et al.2011. Morphological and molecular identification of three geographical populations of the storage pest Liposcelis bostrychophila (Psocoptera). J. Stored Prod. Res. 47:168–172. https://doi.org/10.1016/j.jspr.2010.10.005 DOI
Li C, Zhan X, Sun E, et al.2015. The density and species of mite breeding in the stored products in China. Nutr. Hosp. 31:798–807. PubMed
Lienhard C. 1990. Revision of the western palaearctic species of Liposcelis Motschulsky (Psocoptera: Liposcelididae). Zool. Jahrb. Abt. Syst. Geog. Biol. Tiere. 117:117–174.
Lienhard C. 1998. Psocoptères euro-méditerranéens. Faune France 83:1–517.
Lienhard C. 2003. Book reviews – Psocoptera of China by Li Fasheng. Syst. Entomol. 28:275.
Lienhard C, Smithers CN.. 2002. Psocoptera (Insecta): World catalogue and bibliography. Muséum d’Histoire Naturelle de Genève. p. 745.
Liu QN, Chai XY, Bian DD, et al.2016. The complete mitochondrial genome of Plodia interpunctella (Lepidoptera: Pyralidae) and comparison with other Pyraloidea insects. Genome 59:37–49. https://doi.org/10.1139/gen-2015-0079 PubMed DOI
Liu LJ, Pang AH, Feng SQ, et al.2017. Molecular identification of ten species of stored-product psocids through microarray method based on ITS2 rDNA. Sci. Rep. 7:1–9. https://doi.org/10.1038/s41598-017-16888-z PubMed DOI PMC
Liu Q, Jiang X, Hou X, et al.2018. The mitochondrial genome of Ephestia elutella (Insecta: Lepidoptera: Pyralidae). Mitochondrial DNA B: Resour. 3:189–190. https://doi.org/10.1080/23802359.2018.1436993 PubMed DOI PMC
Lompe A. 2002. Die Käfer Mitteleuropas. Ein Bestimmungswerk im Internet. http://coleonet.de/coleo/index.htm. [Accessed 7th July 2022].
Moghaddam MG, Arias-Penna DC, Latibari MH, et al.2023. Name game conundrum: identical specific epithets in Microgastrinae (Hymenoptera, Braconidae). ZooKeys 1183:139. https://doi.org/10.3897/zookeys.1183.111330 PubMed DOI PMC
Morrison WR III, Lohr JL, Duchen P, et al.2009. The impact of taxonomic change on conservation: Does it kill, can it save, or is it just irrelevant? Biol. Conserv. 142:3201–3206. https://doi.org/10.1016/j.biocon.2009.07.019 DOI
Mostafa EM. 2011. Incidence of mites inhabiting stored onion bulbs in Egypt, with description of a new species of the genus Lasioseius Berlese (Acari: Gamasina). J. Plant Prot. Pathol. 2:855–863. https://doi.org/10.21608/jppp.2011.86616 DOI
Mravinac B, Plohl M.. 2010. Parallelism in evolution of highly repetitive DNAs in sibling species. Mol. Biol. Evol. 27:1857–1867. https://doi.org/10.1093/molbev/msq068 PubMed DOI
Munro JW. 1966. Pests of stored products. The Rentokil Library. p. 234.
Murillo P, Klimov P, Hubert J, et al.2018. Investigating species boundaries using DNA and morphology in the mite Tyrophagus curvipenis (Acari: Acaridae), an emerging invasive pest, with a molecular phylogeny of the genus Tyrophagus. Exp. Appl. Acarol. 75:167–189. https://doi.org/10.1007/s10493-018-0256-9 PubMed DOI
Myers N. 2003. Biodiversity hotspots revisited. Bioscience 53:916–917. https://doi.org/10.1641/0006-3568(2003)053[0916:BHR]2.0.CO;2 DOI
Nakao H, Kurosa K.. 1988. Description of four speciesof acarid mites newly recorded from Japan, with reference to the damage caused to crops (Acari:Astigmata). Jpn. J. Appl. Entomol. Zool. 32:135–142. https://doi.org/10.1303/jjaez.32.135 DOI
Navarro S, Navarro H.. 2018. Insect pest management of oilseed crops, tree nuts and dried fruits. In: Athanassiou CG, Arthur CG, editors. Recent advances in stored product protection. Springer. p. 99–141.
Nawrot J, Klejdysz T.. 2009. Atlas owadów szkodników żywności [Atlas of Insect Pests of Food]. Studio Reklamy ERZET, Polskie Stowarzyszenie Pracowników Dezynfekcji, Dezynsekcji i Deratyzacji. p. 147.
Nowaczyk K, Obrepalska-Steplowska A, Gawlak M, et al.2009. Molecular techniques for detection of Tribolium confusum infestations in stored products. J. Econ. Entomol. 102:1691–1695. https://doi.org/10.1603/029.102.0437 PubMed DOI
Obr S. 1948. A la connaissance des Psocoptères de Moravie (Tchècoslovaquie). Spisy vydavane Prirodovedeckou Fakultou Masarykovy University M2306. p. 108.
Obrepalska-Steplowska A, Nowaczyk K, Holysz M, et al.2008. Molecular techniques for the detection of granary weevil (Sitophilus granarius L.) in wheat and flour. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 25:1179–1188. https://doi.org/10.1080/02652030802015689 PubMed DOI
OConnor BM. 1982. Evolutionary ecology of astigmatid mites. Annu. Rev. Entomol. 27:385–409.
Okamoto H. 1907. Die Psociden Japans. Trans. Sapporo Nat. Hist. Soc. 2:113–147.
Oppert B, Muszewska A, Steczkiewicz K, et al.2022. The genome of Rhyzopertha dominica (Fab.)(Coleoptera: Bostrichidae): adaptation for success. Genes 13:446. https://doi.org/10.3390/genes13030446 PubMed DOI PMC
Padial JM, Miralles A, De la Riva I, et al.2010. The integrative future of taxonomy. Front. Zool. 7:16–14. https://doi.org/10.1186/1742-9994-7-16 PubMed DOI PMC
Palyvos NE, Emmanouel NG, Saitanis CJ.. 2008. Mites associated with stored products in Greece. Exp. Appl. Acarol. 44:213–226. https://doi.org/10.1007/s10493-008-9145-y PubMed DOI
Perkin LC, Adrianos SL, Oppert B.. 2016. Gene disruption technologies have the potential to transform stored product insect pest control. Insects 7:46. https://doi.org/10.3390/insects7030046 PubMed DOI PMC
Pethiyagoda R. 2023. Policing the scientific lexicon: the new colonialism? Megataxa 10:20–25. https://doi.org/10.11646/MEGATAXA.10.1.4 DOI
Pimentel D. 2009. Pesticides and pest control. In: Rajinder P, Dhawan A, editors. Integrated pest management: innovation-development process. Springer. p. 83–87.
Qin M, Li ZH, Kucerova Z, et al.2008. Rapid discrimination of the common species of the stored product pest Liposcelis (Psocoptera: Liposcelididae) from China and the Czech Republic, based on PCR-RFLP analysis. Eur. J. Entomol. 105:713–717. https://doi.org/10.14411/EJE.2008.097 DOI
Qin Y, Stejskal V, Vendl T, et al.2023. Global analysis of the geographic distribution and establishment risk of stored Coleoptera species using a self-organizing map. Entomol. Gen. 43:337–347. https://doi.org/10.1127/entomologia/2023/1740 DOI
Rako L, Agarwal A, Semeraro L, et al.2021. A LAMP (loop‐mediated isothermal amplification) test for rapid identification of Khapra beetle (Trogoderma granarium). Pest Manag. Sci. 77:5509–5521. https://doi.org/10.1002/ps.6591 PubMed DOI PMC
Rees D. 2004. Insects of stored products. Manson Publishing. p. 183.
Reichmuth Ch. 2009. Vorratsschädlinge und Vorratsschutz im Wandel der Zeit. In: Herrmann B, editor. Beiträge zum Göttinger Umwelthistorischen Kolloquium 2008-2009. Universitätsverlag Göttingen. p. 17–76.
Richards S, Gibbs RA, Weinstock GM, et al.; Tribolium Genome Sequencing Consortium. 2008. The genome of the model beetle and pest Tribolium castaneum. Nature 452:949–955. https://doi.org/10.1038/nature06784 PubMed DOI
Robertson PL. 1959. A revision of the genus Tyrophagus, with a discussion on its taxonomic position in the Acarina. Aust. J. Zool. 7:146–182. https://doi.org/10.1071/zo9590146 DOI
Roksandic M, Musiba C, Radović P, et al.2023. Change in biological nomenclature is overdue and possible. Nat. Ecol. Evol. 7:1166–1167. https://doi.org/10.1038/s41559-023-02104-x PubMed DOI
Rosický B. 1973. Acarology and its practical importance: introduction. Paper Presented at: 3rd International Congress of Acarology; 1971 August 31–September 6; Prague. Springer Netherlands. p. 21–32.
Rösner J, Wellmeyer B, Merzendorfer H.. 2020. Tribolium castaneum: A model for investigating the mode of action of insecticides and mechanisms of resistance. Curr. Pharm. Des 26:3554–3568. https://doi.org/10.2174/1381612826666200513113140 PubMed DOI
Schlick-Steiner BC, Steiner FM, Seifert B, et al.2010. Integrative taxonomy: a multisource approach to exploring biodiversity. Annu. Rev. Entomol. 55:421–438. https://doi.org/10.1146/annurev-ento-112408-085432 PubMed DOI
Schöller M. 2013. Checkliste der mit Vorräten assoziierten Insekten Deutschlands. J. fur Kult. 65:192–203. https://doi.org/10.5073/JFK.2013.05.04 DOI
Schöller M, Prozell S.. 2014. Stored-product insects and their natural enemies in Germany: a species-inventory. Integr. Prot. Stored Prod. IOBC-WPRS Bull. 98:27–34.
Sinha RN, Watters FL.. 1985. Insect pests of flour mills, grain elevators, and feed mills and their control. Canadian Government Publishing Centre. p. 290.
Smithers CN. 1967. A catalogue of the Psocoptera of the world. Aust. Zool. 14:1–145.
Solà M, Lundgren JG, Agustí N, et al.2017. Detection and quantification of the insect pest Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) in rice by qPCR. J. Stored Prod. Res. 71:106–111. https://doi.org/10.1016/j.jspr.2017.02.002 DOI
Solà M, Riudavets J, Agustí N.. 2018. Detection and identification of five common internal grain insect pests by multiplex PCR. Food Control 84:246–254. https://doi.org/10.1016/j.foodcont.2017.08.002 DOI
Song YF, Xiao CG, Ye S, et al.2021. Complete mitogenome of Phthorimaea operculella (Lepidoptera: Gelechioidea: Gelechiidae). Mitochondrial DNA B: Resour. 6:2088–2089. https://doi.org/10.1080/23802359.2021.1920861 PubMed DOI PMC
Stejskal V, 2004. Names of Pests – Schädlingsnamen – Jména škůdců. DDD servis s.r.o. p. 369.
Stejskal V, Honek A.. 2015. Is species diversity of various crop ‘pest taxa’ proportionate to efforts paid to their research? A scientometric analysis in the Czech Republic-short note. Plant Protect. Sci. 51:191–194. https://doi.org/10.17221/24/2015-PPS DOI
Stejskal V, Hubert J.. 2008. Risk of occupational allergy to stored grain arthropods and false pest-risk perception in Czech grain stores. Ann. Agric. Environ. Med. 15:29–35. PubMed
Stejskal V, Vendl T, Aulicky R, et al.2021. Synthetic and natural insecticides: gas, liquid, gel and solid formulations for stored-product and food-industry pest control. Insects 12:590. https://doi.org/10.3390/insects12070590 PubMed DOI PMC
Stopar K, Trdan S, Bartol T, et al.2022. Research on stored products: a bibliometric analysis of the leading journal of the field for the years 1965–2020. J. Stored Prod. Res. 98:101980. https://doi.org/10.1016/j.jspr.2022.101980 DOI
Stork NE. 2018. How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 63:31–45. https://doi.org/10.1146/annurev-ento-020117-043348 PubMed DOI
Su X, Fang Y, Xu JY, et al.2020. The complete mitochondrial genome of the storage mite pest Tyrophagus fanetzhangorum (Acari: Acaridae). Syst. Appl. Acarol. 25:1693–1701. https://doi.org/10.11158/saa.25.9.14 DOI
Swanepoel LH, Swanepoel CM, Brown PR, et al.2017. A systematic review of rodent pest research in Afro-Malagasy small-holder farming systems: Are we asking the right questions? PLoS One 12:e0174554. https://doi.org/10.1371/journal.pone.0174554 PubMed DOI PMC
Thomas GW, Dohmen E, Hughes, et al.2020. Gene content evolution in the arthropods. Genome Biol. 21:1–14. https://doi.org/10.1186/s13059-019-1925-7 PubMed DOI PMC
Trematerra P. 2022. Notes on the navel orangeworm, Amyelois transitella (Walker) (Lepidoptera Pyralidae) in Europe, a potential Union quarantine pest. Bull. Insectology 75:287–291.
Valdecasas AG. 2024. Can taxonomists think? Reversing the AI equation. Taxonomy 4:713–722. https://doi.org/10.3390/taxonomy4040037 DOI
Vinarski MV. 2020. Roots of the taxonomic impediment: Is the ‘integrativeness’ a remedy? Integr. Zool. 15:2–15. https://doi.org/10.1111/1749-4877.12393 PubMed DOI
Vitkova M, Fukova I, Kubickova S, et al.2007. Molecular divergence of the W chromosomes in pyralid moths (Lepidoptera). Chromosome Res. 15:917–930. https://doi.org/10.1007/s10577-007-1173-7 PubMed DOI
Wang ZY, Wang JJ, Lienhard C.. 2006. Two new species of Liposcelis (Psocoptera, Liposcelididae). Acta Zootaxon. Sin. 31:564–568.
Webster LM, Thomas RH, McCormack GP.. 2004. Molecular systematics of Acarus siro s. lat., a complex of stored food pests. Mol. Phylogenet. Evol. 32:817–822. https://doi.org/10.1016/j.ympev.2004.04.005 PubMed DOI
Weidner H, Sellenschlo U.. 2010. Vorratsschädlinge und Hausungeziefer. Spektrum Akademischer Verlag. p. 337.
Wu YP, Su TJ, He B.. 2020. Complete mitochondrial genome of Plodia interpunctella (Lepidoptera: Pyralidae). Mitochondrial DNA B: Resour. 5:583–585. https://doi.org/10.1080/23802359.2019.1710590 PubMed DOI PMC
Yang Q, Kucerova Z, Li Z, et al.2012. Diagnosis of Liposcelis entomophila (Insecta: Psocodea: Liposcelididae) based on morphological characteristics and DNA barcodes. J. Stored Prod. Res. 48:120–125. https://doi.org/10.1016/j.jspr.2011.10.007 DOI
Yang Q, Zhao S, Kucerova Z, et al.2013. Rapid molecular diagnosis of the stored-product psocid Liposcelis corrodens (Psocodea: Liposcelididae): species-specific PCR primers of 16S rDNA and COI. J. Stored Prod. Res. 54:1–7. https://doi.org/10.1016/j.jspr.2013.03.005 DOI
Yeates DK, Seago A, Nelson L, et al.2011. Integrative taxonomy, or iterative taxonomy? Syst. Entomol. 36:209–217. https://doi.org/10.1111/j.1365-3113.2010.00558.x DOI
Yoshizawa K, Lienhard C.. 2010. In search of the sister group of the true lice: a systematic review of booklice and their relatives, with an updated checklist of Liposcelididae (Insecta: Psocodea). Arthropod Syst. Phylo. 68:181–195. https://doi.org/10.3897/asp.68.e31725 DOI
Yuan M, Yang H, Dai R.. 2019. Complete mitochondrial genome of Sitotroga cerealella (Insecta: Lepidoptera: Gelechiidae). Mitochondrial DNA B: Resour. 4:235–236. https://doi.org/10.1080/23802359.2018.1522974 DOI
Zdarkova E. 1967. Stored food mites in Czechoslovakia. J. Stored Prod. Res. 3:155–175. https://doi.org/10.1016/0022-474X(67)90024-0 DOI
Zdarkova, E. 1969. Mites of stored food in Czechoslovakia. Proceedings of the Second International Congress on Acarology, Sutton Bonington (England); 1967 July 19-25. Hungarian Academy of Sciences. p. 261–264.
Zdarkova E. 1979. Cheyletid fauna associated with stored products in Czechoslovakia. J. Stored Prod. Res. 15:11–16. https://doi.org/10.1016/0022-474x(79)90019-5 DOI
Zélé F, Weill M, Magalhães S.. 2018. Identification of spider-mite species and their endosymbionts using multiplex PCR. Exp. Appl. Acarol 74:123–138. https://doi.org/10.1007/s10493-018-0224-4 PubMed DOI
Zeng L, Su Y, Stejskal V, et al.2021. Primers and visualization of LAMP: A rapid molecular identification method for Liposcelis entomophila (Enderlein) (Psocodea: Liposcelididae). J. Stored Prod. Res. 93:101855. https://doi.org/10.1016/j.jspr.2021.101855 DOI
Zhang T, Wang YJ, Guo W, et al.2016. DNA barcoding, species-specific PCR and real-time PCR techniques for the identification of six Tribolium pests of stored products. Sci. Rep. 6:28494. https://doi.org/10.1038/srep28494 PubMed DOI PMC
Zhang M, Du MY, Wang GX, et al.2020. Identification, mRNA expression, and functional analysis of chitin synthase 2 gene in the rusty grain beetle, Cryptolestes ferrugineus. J. Stored Prod. Res. 87:101622. https://doi.org/10.1016/j.jspr.2020.101622 DOI