The Genome of Rhyzopertha dominica (Fab.) (Coleoptera: Bostrichidae): Adaptation for Success
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
R01 GM058634
NIGMS NIH HHS - United States
PubMed
35328000
PubMed Central
PMC8956072
DOI
10.3390/genes13030446
PII: genes13030446
Knihovny.cz E-zdroje
- Klíčová slova
- Bostrichidae, Rhyzopertha dominica, insect genetics, insect reference genome, insecticide resistance, lesser grain borer,
- MeSH
- aklimatizace MeSH
- brouci * genetika MeSH
- insekticidy * MeSH
- larva genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Dominica MeSH
- Názvy látek
- insekticidy * MeSH
The lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae), is a major global pest of cereal grains. Infestations are difficult to control as larvae feed inside grain kernels, and many populations are resistant to both contact insecticides and fumigants. We sequenced the genome of R. dominica to identify genes responsible for important biological functions and develop more targeted and efficacious management strategies. The genome was assembled from long read sequencing and long-range scaffolding technologies. The genome assembly is 479.1 Mb, close to the predicted genome size of 480.4 Mb by flow cytometry. This assembly is among the most contiguous beetle assemblies published to date, with 139 scaffolds, an N50 of 53.6 Mb, and L50 of 4, indicating chromosome-scale scaffolds. Predicted genes from biologically relevant groups were manually annotated using transcriptome data from adults and different larval tissues to guide annotation. The expansion of carbohydrase and serine peptidase genes suggest that they combine to enable efficient digestion of cereal proteins. A reduction in the copy number of several detoxification gene families relative to other coleopterans may reflect the low selective pressure on these genes in an insect that spends most of its life feeding internally. Chemoreceptor genes contain elevated numbers of pseudogenes for odorant receptors that also may be related to the recent ontogenetic shift of R. dominica to a diet consisting primarily of stored grains. Analysis of repetitive sequences will further define the evolution of bostrichid beetles compared to other species. The data overall contribute significantly to coleopteran genetic research.
Departamento de Entomologia Universidade Federal de Viçosa Viçosa 36570 900 MG Brazil
Department of Biology University of Wisconsin Oshkosh Oshkosh WI 54901 USA
Department of Chemistry Lomonosov Moscow State University 119991 Moscow Russia
Department of Entomology and Plant Pathology North Carolina State University Raleigh NC 27695 USA
Department of Entomology and Plant Pathology Oklahoma State University Stillwater OK 74078 USA
Department of Entomology Texas A and M University College Station TX 77843 USA
Division of Molecular Biology Ruđer Bošković Institute Bijenička 54 10000 Zagreb Croatia
Faculty of Bioengineering and Bioinformatics Lomonosov Moscow State University 119991 Moscow Russia
School of Biological Sciences The University of Queensland Brisbane 4072 QLD Australia
USDA ARS Center for Grain and Animal Health Research 1515 College Ave Manhattan KS 66502 USA
USDA ARS U S Arid Land Agricultural Research Center Maricopa AZ 85138 USA
USDA ARS U S Meat Animal Research Center Clay Center NE 68933 USA
Zobrazit více v PubMed
Lucas H. Crustacés, arachnides, myriopodes et hexapodes: Exploration scientifique de l’Algérie pendant les années 1840, 1841, 1842. Sci. Phys. Zool. Hist. Nat. Animaux Articul. 1849;1:1–403.
Fields P., Van Loon J., Dolinski M., Harris J., Burkholder W. The distribution of Rhyzopertha dominica (F.) in Western Canada. Can. Entomol. 1993;125:317–328. doi: 10.4039/Ent125317-2. DOI
Edde P. A review of the biology and control of Rhyzopertha dominica (F.) the lesser grain borer. J. Stored Prod. Res. 2012;48:1–18. doi: 10.1016/j.jspr.2011.08.007. DOI
Toews M.D., Campbell J.F., Arthur F.H., Ramaswamy S.B. Outdoor flight activity and immigration of Rhyzopertha dominica into seed wheat warehouses. Entomol. Exp. Appl. 2006;121:73–85. doi: 10.1111/j.1570-8703.2006.00462.x. DOI
Schwardt H.H. Life history of the lesser grain borer. J. Kans. Entomol. Soc. 1993;6:61–66.
Edde P.A., Phillips T.W. Potential host affinities for the lesser grain borer, Rhyzopertha dominica: Behavioral responses to host odors and pheromones and reproductive ability on non-grain hosts. Entomol. Exp. Appl. 2006;119:255–263. doi: 10.1111/j.1570-7458.2006.00417.x. DOI
Wright V.F., Fleming E.E., Post D., Wright F. Survival of Rhyzopertha dominica (Coleoptera, Bostrichidae ) on fruits and seeds collected from woodrat nests in Kansas. J. Kans. Entomol. Soc. 1990;63:344–347.
Jia F., Toews M.D., Campbell J.F., Ramaswamy S.B. Survival and reproduction of lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) on flora associated with native habitats in Kansas. J. Stored Prod. Res. 2008;44:366–372. doi: 10.1016/j.jspr.2008.06.001. DOI
Mahroof R.M., Edde P., Robertson B., Puckette J.A., Phillips T.W. Dispersal of Rhyzopertha dominica (Coleoptera: Bostrichidae) in different habitats. Environ. Entomol. 2010;39:930–938. doi: 10.1603/EN09243. PubMed DOI
Quellhorst H., Athanassiou C.G., Zhu K.Y., Morrison W.R. The biology, ecology and management of the larger grain borer, Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) J. Stored Prod. Res. 2021;94:101860. doi: 10.1016/j.jspr.2021.101860. DOI
Opit G.P., Phillips T.W., Aikins M.J., Hasan M.M. Phosphine resistance in Tribolium castaneum and Rhyzopertha dominica from stored wheat in Oklahoma. J. Econ. Entomol. 2012;105:1107–1114. doi: 10.1603/EC12064. PubMed DOI
Lorini I., Collins P.J., Daglish G.J., Nayak M.K., Pavic H. Detection and characterisation of strong resistance to phosphine in Brazilian Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae) Pest Manag. Sci. 2007;63:358–364. doi: 10.1002/ps.1344. PubMed DOI
Benhalima H., Chaudhry M., Mills K., Price N. Phosphine resistance in stored-product insects collected from various grain storage facilities in Morocco. J. Stored Prod. Res. 2004;40:241–249. doi: 10.1016/S0022-474X(03)00012-2. DOI
Collins P.J., Daglish G., Bengston M., Lambkin T.M., Pavic H. Genetics of resistance to phosphine in Rhyzopertha dominica (Coleoptera: Bostrichidae) J. Econ. Entomol. 2002;95:862–869. doi: 10.1603/0022-0493-95.4.862. PubMed DOI
Schlipalius I.D., Chen W., Collins P.J., Nguyen T., Reilly P.E.B., Ebert P.R. Gene interactions constrain the course of evolution of phosphine resistance in the lesser grain borer, Rhyzopertha dominica. Heredity. 2008;100:506–516. doi: 10.1038/hdy.2008.4. PubMed DOI
Schlipalius D.I., Valmas N., Tuck A.G., Jagadeesan R., Ma L., Kaur R., Goldinger A., Anderson C., Kuang J., Zuryn S., et al. A core metabolic enzyme mediates resistance to phosphine gas. Science. 2012;338:807–810. doi: 10.1126/science.1224951. PubMed DOI
Arthur F.H. Grain protectants: Current status and prospects for the future. J. Stored Prod. Res. 1996;32:293–302. doi: 10.1016/S0022-474X(96)00033-1. DOI
Kavallieratos N.G., Athanassiou C.G., Arthur F.H. Efficacy of deltamethrin against stored-product beetles at short exposure intervals or on a partially treated rice mass. J. Econ. Entomol. 2015;108:1416–1421. doi: 10.1093/jee/tov060. PubMed DOI
Sehgal B., Subramanyam B., Arthur F.H., Gill B.S. Variation in susceptibility of laboratory and field strains of three stored-grain insect species to β -cyfluthrin and chlorpyrifos-methyl plus deltamethrin applied to concrete surfaces. Pest Manag. Sci. 2014;70:576–587. doi: 10.1002/ps.3580. PubMed DOI
Arthur F. Efficacy of methoprene for multi-year protection of stored wheat, brown rice, rough rice and corn. J. Stored Prod. Res. 2016;68:85–92. doi: 10.1016/j.jspr.2016.04.005. DOI
Haliscak J.P., Beeman R.W. Status of malathion resistance in five genera of beetles infesting farm-stored corn, wheat, and oats in the United States. J. Econ. Entomol. 1983;76:717–722. doi: 10.1093/jee/76.4.717. DOI
Guedes R.N.C., Kambhampati S., Dover B.A., Zhu K.Y. Biochemical mechanism of organophosphate resistance in Brazilian and U. S. populations of Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) Bull. Entomol. Res. 1997;87:581–586. doi: 10.1017/S0007485300038670. DOI
Guedes R.N., Zhu K., Kambhampati S., Dover B. Characterization of acetylcholinesterase purified from the lesser grain borer, Rhyzopertha dominica (Coleoptera: Bostrichidae) Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 1998;119:205–210. doi: 10.1016/S0742-8413(97)00208-9. PubMed DOI
Wang H.-T., Tsai C.-L., Chen M.-E. Nicotinic acetylcholine receptor subunit α6 associated with spinosad resistance in Rhyzopertha dominica (Coleoptera: Bostrichidae) Pestic. Biochem. Physiol. 2018;148:68–73. doi: 10.1016/j.pestbp.2018.03.016. PubMed DOI
Sakka M.K., Riga M., Ioannidis P., Baliota G.V., Tselika M., Jagadeesan R., Nayak M.K., Vontas J., Athanassiou C.G. Transcriptomic analysis of s-methoprene resistance in the lesser grain borer, Rhyzopertha dominica, and evaluation of piperonyl butoxide as a resistance breaker. BMC Genom. 2021;22:65. doi: 10.1186/s12864-020-07354-8. PubMed DOI PMC
Khorramshahi A., Burkholder W.E. Behavior of the lesser grain borer Rhyzopertha dominica (Coleoptera: Bostrichidae) J. Chem. Ecol. 1981;7:33–38. doi: 10.1007/BF00988633. PubMed DOI
Williams H.J., Silverstein R.M., Burkholder W.E., Khorramshahi A. Dominicalure 1 and 2: Components of aggregation pheromone from male lesser grain borer Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) J. Chem. Ecol. 1981;7:759–780. doi: 10.1007/BF00990308. PubMed DOI
Bashir T., Birkinshaw L., Hall D., Hodges R. Host odours enhance the responses of adult Rhyzopertha dominica to male-produced aggregation pheromone. Entomol. Exp. Appl. 2001;101:273–280. doi: 10.1046/j.1570-7458.2001.00912.x. DOI
Nguyen D.T., Hodges R.J., Belmain S.R. Do walking Rhyzopertha dominica (F.) locate cereal hosts by chance? J. Stored Prod. Res. 2008;44:90–99. doi: 10.1016/j.jspr.2007.06.008. DOI
Edde P., Phillips T.W., Robertson J.B., Dillwith J.W. Pheromone output by Rhyzopertha dominica (Coleoptera: Bostrichidae), as affected by host plant and beetle size. Ann. Entomol. Soc. Am. 2007;100:83–90. doi: 10.1603/0013-8746(2007)100[83:POBRDC]2.0.CO;2. DOI
Dowdy A.K., Howard R.W., Seitz L.M., McGaughey W.H. Response of Rhyzopertha dominica (Coleoptera: Bostrichidae) to its aggregation pheromone and wheat volatiles. Environ. Entomol. 1993;22:965–970. doi: 10.1093/ee/22.5.965. DOI
Cordeiro E.M.G., Campbell J.F., Phillips T.W. Movement and orientation decision modeling of Rhyzopertha dominica (Coleoptera: Bostrichidae) in the grain mass. Environ. Entomol. 2016;45:410–419. doi: 10.1093/ee/nvv232. PubMed DOI
Robertson H.M. Molecular evolution of the major arthropod chemoreceptor gene families. Annu. Rev. Entomol. 2019;64:227–242. doi: 10.1146/annurev-ento-020117-043322. PubMed DOI
Mitchell R.F., Andersson M.N. Insect Pheromone Biochemistry and Molecular Biology. Elsevier; Amsterdam, The Netherlands: 2020. Olfactory genomics of the Coleoptera; pp. 547–590.
Andersson M.N., Keeling C.I., Mitchell R.F. Genomic content of chemosensory genes correlates with host range in wood-boring beetles (Dendroctonus ponderosae, Agrilus planipennis, and Anoplophora glabripennis) BMC Genom. 2019;20:690. doi: 10.1186/s12864-019-6054-x. PubMed DOI PMC
Mitchell R.F., Hughes D.T., Luetje C.W., Millar J.G., Soriano-Agatón F., Hanks L.M., Robertson H.M. Sequencing and characterizing odorant receptors of the cerambycid beetle Megacyllene caryae. Insect Biochem. Mol. Biol. 2012;42:499–505. doi: 10.1016/j.ibmb.2012.03.007. PubMed DOI PMC
Antony B., Johny J., Montagné N., Jacquin-Joly E., Capoduro R., Cali K., Persaud K., Al-Saleh M.A., Pain A. Pheromone receptor of the globally invasive quarantine pest of the palm tree, the red palm weevil (Rhynchophorus ferrugineus) Mol. Ecol. 2021;30:2025–2039. doi: 10.1111/mec.15874. PubMed DOI
Yuvaraj J.K., Roberts R.E., Sonntag Y., Hou X.-Q., Grosse-Wilde E., Machara A., Zhang D.-D., Hansson B.S., Johanson U., Löfstedt C., et al. Putative ligand binding sites of two functionally characterized bark beetle odorant receptors. BMC Biol. 2021;19:16. doi: 10.1186/s12915-020-00946-6. PubMed DOI PMC
Wang X., Wang S., Yi J., Li Y., Liu J., Wang J., Xi J. Three host plant volatiles, hexanal, lauric acid, and tetradecane, are detected by an antenna-biased expressed odorant receptor 27 in the dark black chafer Holotrichia parallela. J. Agric. Food Chem. 2020;68:7316–7323. doi: 10.1021/acs.jafc.0c00333. PubMed DOI
Hou X.Q., Yuvaraj J.K., Roberts R.E., Zhang D.D., Unelius C.R., Löfstedt C., Andersson M.N. Functional evolution of a bark beetle odorant receptor clade detecting monoterpenoids of different ecological origins. Mol. Biol. Evol. 2021;38:4934–4947. doi: 10.1093/molbev/msab218. PubMed DOI PMC
Ji T., Xu Z., Jia Q., Wang G., Hou Y. Non-palm plant volatile α-pinene is detected by antenna-biased expressed odorant receptor 6 in the Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) Front. Physiol. 2021;12:701545. doi: 10.3389/fphys.2021.701545. PubMed DOI PMC
Takada T., Sato R., Kikuta S. A mannitol/sorbitol receptor stimulates dietary intake in Tribolium castaneum. PLoS ONE. 2017;12:e0186420. doi: 10.1371/journal.pone.0186420. PubMed DOI PMC
Mandiana Diakite M., Wang J., Ali S., Wang M. Identification of chemosensory gene families in Rhyzopertha dominica (Coleoptera: Bostrichidae) Can. Entomol. 2016;148:8–21. doi: 10.4039/tce.2015.13. DOI
Schlipalius I.D., Cheng Q., Reilly P.E.B., Collins P.J., Ebert P.R. Genetic linkage analysis of the lesser grain borer Rhyzopertha dominica identifies two loci that confer high-level resistance to the fumigant phosphine. Genetics. 2002;161:773–782. doi: 10.1093/genetics/161.2.773. PubMed DOI PMC
Johnston J.S., Bernardini A., Hjelmen C.E. Genome size estimation and quantitative cytogenetics in insects. Program. Necrosis. 2019;1858:15–26. doi: 10.1007/978-1-4939-8775-7_2. PubMed DOI
Putnam N.H., O’Connell B.L., Stites J.C., Rice B.J., Blanchette M., Calef R., Troll C.J., Fields A., Hartley P.D., Sugnet C.W., et al. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 2016;26:342–350. doi: 10.1101/gr.193474.115. PubMed DOI PMC
Simão F.A., Waterhouse R.M., Ioannidis P., Kriventseva E.V., Zdobnov E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI
Lieberman-Aiden E., Van Berkum N.L., Williams L., Imakaev M., Ragoczy T., Telling A., Amit I., Lajoie B.R., Sabo P.J., Dorschner M.O., et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326:289–293. doi: 10.1126/science.1181369. PubMed DOI PMC
Masumoto H., Masukata H., Muro Y., Nozaki N., Okazaki T. A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J. Cell Biol. 1989;109:1963–1973. doi: 10.1083/jcb.109.5.1963. PubMed DOI PMC
Johnson A.D., Handsaker R.E., Pulit S.L., Nizzari M.M., O’Donnell C.J., de Bakker P.I.W. SNAP: A web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics. 2008;24:2938–2939. doi: 10.1093/bioinformatics/btn564. PubMed DOI PMC
Oppert B., Morgan T. Improved high-throughput bioassay for Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) J. Stored Prod. Res. 2013;52:68–73. doi: 10.1016/j.jspr.2012.11.001. DOI
Perkin L.C., Oppert B. Gene expression in Tribolium castaneum life stages: Identifying a species-specific target for pest control applications. PeerJ. 2019;7:e6946. doi: 10.7717/peerj.6946. PubMed DOI PMC
Mortazavi A., Williams B.A., McCue K., Schaeffer L., Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods. 2008;5:621–628. doi: 10.1038/nmeth.1226. PubMed DOI
Flynn J.M., Hubley R., Goubert C., Rosen J., Clark A.G., Feschotte C., Smit A.F. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl. Acad. Sci. USA. 2020;117:9451–9457. doi: 10.1073/pnas.1921046117. PubMed DOI PMC
Smit A.F.A., Hubley R., Green P. RepeatMasker Open-4.0. [(accessed on 5 January 2021)]. Available online: http://www.repeatmasker.org.
Stanke M., Steinkamp R., Waack S., Morgenstern B. AUGUSTUS: A web server for gene finding in eukaryotes. Nucleic Acids Res. 2004;32:W309–W312. doi: 10.1093/nar/gkh379. PubMed DOI PMC
Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Cantarel B.L., Korf I., Robb S.M., Parra G., Ross E., Moore B., Holt C., Alvarado A.S., Yandell M. MAKER: An easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 2007;18:188–196. doi: 10.1101/gr.6743907. PubMed DOI PMC
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Chan P.P., Lowe T.M. Springer Protocols Handbooks. Volume 1962. Springer Science and Business Media; Cham, Switzerland: 2019. tRNAscan-SE: Searching for tRNA genes in genomic sequences; pp. 1–14. PubMed PMC
Broehan G., Kroeger T., Lorenzen M., Merzendorfer H. Functional analysis of the ATP-binding cassette (ABC) transporter gene family of Tribolium castaneum. BMC Genom. 2013;14:6. doi: 10.1186/1471-2164-14-6. PubMed DOI PMC
Grubbs N., Haas S., Beeman R.W., Lorenzen M.D. The ABCs of eye color in Tribolium castaneum: Orthologs of the Drosophila white, scarlet, and brown genes. Genetics. 2015;199:749–759. doi: 10.1534/genetics.114.173971. PubMed DOI PMC
Lee E., Helt A.G., Reese J.T., Munoz-Torres M.C., Childers C.P., Buels R.M., Stein L., Holmes I.H., Elsik C.G., Lewis E.S. Web Apollo: A web-based genomic annotation editing platform. Genome Biol. 2013;14:R93. doi: 10.1186/gb-2013-14-8-r93. PubMed DOI PMC
Skinner M.E., Uzilov A.V., Stein L.D., Mungall C.J., Holmes I.H. JBrowse: A next-generation genome browser. Genome Res. 2009;19:1630–1638. doi: 10.1101/gr.094607.109. PubMed DOI PMC
Finn R.D., Bateman A., Clements J., Coggill P., Eberhardt R.Y., Eddy S.R., Heger A., Hetherington K., Holm L., Mistry J., et al. Pfam: The protein families database. Nucleic Acids Res. 2014;42:D222–D230. doi: 10.1093/nar/gkt1223. PubMed DOI PMC
Mitchell R.F., Schneider T.M., Schwartz A.M., Andersson M.N., McKenna D.D. The diversity and evolution of odorant receptors in beetles (Coleoptera) Insect Mol. Biol. 2020;29:77–91. doi: 10.1111/imb.12611. PubMed DOI
Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., Söding J., et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011;7:539. doi: 10.1038/msb.2011.75. PubMed DOI PMC
Edgar R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Kumar S., Stecher G., Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC
Capella-Gutiérrez S., Silla-Martínez J.M., Gabaldón T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC
Price M.N., Dehal P.S., Arkin A.P. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490. doi: 10.1371/journal.pone.0009490. PubMed DOI PMC
Rambaut A., Drummond A.J. Molecular Evolution, Phylogenetics and Epidemiology. [(accessed on 5 January 2021)]. FigTree v1.3.1. Available online: http://tree.bio.ed.ac.uk/software/figtree/
Li H., Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Haas B.J., Papanicolaou A., Yassour M., Grabherr M., Blood P.D., Bowden J., Couger M.B., Eccles D., Li B., Lieber M., et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013;8:1494–1512. doi: 10.1038/nprot.2013.084. PubMed DOI PMC
Zhang Y., Park C., Bennett C., Thornton M., Kim D. Rapid and accurate alignment of nucleotide conversion sequencing reads with HISAT-3N. Genome Res. 2021;31:1290–1295. doi: 10.1101/gr.275193.120. PubMed DOI PMC
Kovaka S., Zimin A.V., Pertea G.M., Razaghi R., Salzberg S.L., Pertea M. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 2019;20:278. doi: 10.1186/s13059-019-1910-1. PubMed DOI PMC
Cao X., Jiang H. Integrated modeling of structural genes using MCuNovo. In: Brown S., Pfrender M., editors. Insect Genomics. Methods in Molecular Biology. Volume 1858. Humana Press; New York, NY, USA: 2019. pp. 45–57. PubMed DOI
Warburton P.E., Giordano J., Cheung F., Gelfand Y., Benson G. Inverted repeat structure of the human genome: The X-chromosome contains a preponderance of large, highly homologous inverted repeats that contain testes genes. Genome Res. 2004;14:1861–1869. doi: 10.1101/gr.2542904. PubMed DOI PMC
Fu L., Niu B., Zhu Z., Wu S., Li W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150–3152. doi: 10.1093/bioinformatics/bts565. PubMed DOI PMC
Marchler-Bauer A., Derbyshire M.K., Gonzales N.R., Lu S., Chitsaz F., Geer L.Y., Geer R.C., He J., Gwadz M., Hurwitz D.I., et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015;43:D222–D226. doi: 10.1093/nar/gku1221. PubMed DOI PMC
Jurka J., Kapitonov V.V., Pavlicek A., Klonowski P., Kohany O., Walichiewicz J. Repbase update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 2005;110:462–467. doi: 10.1159/000084979. PubMed DOI
Gelfand Y., Rodriguez A., Benson G. TRDB—The Tandem Repeats Database. Nucleic Acids Res. 2007;35:D80–D87. doi: 10.1093/nar/gkl1013. PubMed DOI PMC
Smith S.G., Brower J.H. Chromosome numbers of stored-product Coleoptera. J. Kans. Entomol. Soc. 1974;47:317–328.
Guedes R.N.C., Dover B.A., Kambhampati S. Resistance to chlorpyrifos-methyl, pirimiphos-methyl, and malathion in Brazilian and U.S. populations of Rhyzopertha dominica (Coleopera: Bostrichidae) J. Econ. Entomol. 1996;89:27–32. doi: 10.1093/jee/89.1.27. DOI
Daglish G.J., Nayak M.K. Prevalence of resistance to deltamethrin in Rhyzopertha dominica (F.) in eastern Australia. J. Stored Prod. Res. 2018;78:45–49. doi: 10.1016/j.jspr.2018.06.003. DOI
Daglish G., Holloway J.C., Nayak M.K. Implications of methoprene resistance for managing Rhyzopertha dominica (F.) in stored grain. J. Stored Prod. Res. 2013;54:8–12. doi: 10.1016/j.jspr.2013.03.006. DOI
Adedipe F., Grubbs N., Coates B., Wiegmman B., Lorenzen M. Structural and functional insights into the Diabrotica virgifera virgifera ATP-binding cassette transporter gene family. BMC Genom. 2019;20:899. doi: 10.1186/s12864-019-6218-8. PubMed DOI PMC
Evans J.D., McKenna D., Scully E., Cook S.C., Dainat B., Egekwu N., Grubbs N., Lopez D., Lorenzen M., Reyna S.M., et al. Genome of the small hive beetle (Aethina tumida, Coleoptera: Nitidulidae), a worldwide parasite of social bee colonies, provides insights into detoxification and herbivory. GigaScience. 2018;7:138. doi: 10.1093/gigascience/giy138. PubMed DOI PMC
Xue H.-J., Niu Y.-W., Segraves K.A., Nie R.-E., Hao Y.-J., Zhang L.-L., Cheng X.-C., Zhang X.-W., Li W.-Z., Chen R.-S., et al. The draft genome of the specialist flea beetle Altica viridicyanea (Coleoptera: Chrysomelidae) BMC Genom. 2021;22:243. doi: 10.1186/s12864-021-07558-6. PubMed DOI PMC
Strauss A.S., Wang D., Stock M., Gretscher R., Groth M., Boland W., Burse A. Tissue-specific transcript profiling for ABC transporters in the sequestering larvae of the phytophagous leaf beetle Chrysomela populi. PLoS ONE. 2014;9:e98637. doi: 10.1371/journal.pone.0098637. PubMed DOI PMC
Dean M., Rzhetsky A., Allikmets R. The human ATP-Binding Cassette (ABC) transporter superfamily. Genome Res. 2001;11:1156–1166. doi: 10.1101/gr.184901. PubMed DOI
David J.-P., Ismail H.M., Chandor-Proust A., Paine M.J.I. Role of cytochrome P450s in insecticide resistance: Impact on the control of mosquito-borne diseases and use of insecticides on Earth. Philos. Trans. R. Soc. B Biol. Sci. 2013;368:20120429. doi: 10.1098/rstb.2012.0429. PubMed DOI PMC
Zhu F., Moural T.W., Shah K., Palli S.R. Integrated analysis of cytochrome P450 gene superfamily in the red flour beetle, Tribolium castaneum. BMC Genom. 2013;14:174. doi: 10.1186/1471-2164-14-174. PubMed DOI PMC
Jackson C.J., Liu J.-W., Carr P.D., Younus F., Coppin C., Meirelles T., Lethier M., Pandey G., Ollis D.L., Russell R.J., et al. Structure and function of an insect -carboxylesterase (Esterase7) associated with insecticide resistance. Proc. Natl. Acad. Sci. USA. 2013;110:10177–10182. doi: 10.1073/pnas.1304097110. PubMed DOI PMC
Rane R., Walsh T., Pearce S.L., Jermiin L., Gordon K., Richards S., Oakeshott J.G. Are feeding preferences and insecticide resistance associated with the size of detoxifying enzyme families in insect herbivores? Curr. Opin. Insect Sci. 2016;13:70–76. doi: 10.1016/j.cois.2015.12.001. PubMed DOI
McKenna D.D., Scully E.D., Pauchet Y., Hoover K., Kirsch R., Geib S.M., Mitchell R.F., Waterhouse R.M., Ahn S.-J., Arsala D., et al. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle–plant interface. Genome Biol. 2016;17:227. doi: 10.1186/s13059-016-1088-8. PubMed DOI PMC
Kaplanoglu E., Chapman P., Scott I., Donly C. Overexpression of a cytochrome P450 and a UDP-glycosyltransferase is associated with imidacloprid resistance in the Colorado potato beetle, Leptinotarsa decemlineata. Sci. Rep. 2017;7:1762. doi: 10.1038/s41598-017-01961-4. PubMed DOI PMC
Scully E.D., Geib S.M., Carlson E.J., Tien M., McKenna D., Hoover K. Functional genomics and microbiome profiling of the Asian longhorned beetle (Anoplophora glabripennis) reveal insights into the digestive physiology and nutritional ecology of wood feeding beetles. BMC Genom. 2014;15:1096. doi: 10.1186/1471-2164-15-1096. PubMed DOI PMC
Zhang J., Yang M., Wang W., Sun H., Xu Y., Ma L., Sun Y., Zhu C. prag01, a novel deltamethrin-resistance-associated gene from Culex pipiens pallens. Parasitol. Res. 2011;108:417–423. doi: 10.1007/s00436-010-2082-9. PubMed DOI
Vosshall L.B., Hansson B.S. A unified nomenclature system for the insect olfactory coreceptor. Chem. Senses. 2011;36:497–498. doi: 10.1093/chemse/bjr022. PubMed DOI
Dippel S., Kollmann M., Oberhofer G., Montino A., Knoll C., Krala M., Rexer K.-H., Frank S., Kumpf R., Schachtner J., et al. Morphological and transcriptomic analysis of a beetle chemosensory system reveals a gnathal olfactory center. BMC Biol. 2016;14:90. doi: 10.1186/s12915-016-0304-z. PubMed DOI PMC
Croset V., Rytz R., Cummins S.F., Budd A., Brawand D., Kaessmann H., Gibson T.J., Benton R. Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genet. 2010;6:e1001064. doi: 10.1371/journal.pgen.1001064. PubMed DOI PMC
Rytz R., Croset V., Benton R. Ionotropic Receptors (IRs): Chemosensory ionotropic glutamate receptors in Drosophila and beyond. Insect Biochem. Mol. Biol. 2013;43:888–897. doi: 10.1016/j.ibmb.2013.02.007. PubMed DOI
Sánchez-Alcañiz J.A., Silbering A.F., Croset V., Zappia G., Sivasubramaniam A.K., Abuin L., Sahai S.Y., Münch D., Steck K., Auer T.O., et al. An expression atlas of variant ionotropic glutamate receptors identifies a molecular basis of carbonation sensing. Nat. Commun. 2018;9:4252. doi: 10.1038/s41467-018-06453-1. PubMed DOI PMC
Hussain A., Zhang M., Üçpunar H., Svensson T., Quillery E., Gompel N., Ignell R., Kadow I.C.G. Ionotropic chemosensory receptors mediate the taste and smell of polyamines. PLoS Biol. 2016;14:e1002454. doi: 10.1371/journal.pbio.1002454. PubMed DOI PMC
Knecht Z.A., Silbering A.F., Cruz J., Yang L., Croset V., Benton R., Garrity P.A. Ionotropic receptor-dependent moist and dry cells control hygrosensation in Drosophila. eLife. 2017;6:e26654. doi: 10.7554/eLife.26654. PubMed DOI PMC
Pauchet Y., Wilkinson P., Chauhan R., Ffrench-Constant R. Diversity of beetle genes encoding novel plant cell wall degrading enzymes. PLoS ONE. 2010;5:e15635. doi: 10.1371/journal.pone.0015635. PubMed DOI PMC
Consortium T.G.S., Richards S., Gibbs R.A., Weinstock G.M., Brown S.J., Denell R. The genome of the model beetle and pest Tribolium castaneum. Nature. 2008;452:949–955. doi: 10.1038/nature06784. PubMed DOI
Da Lage J.-L. The amylases of insects. Int. J. Insect Sci. 2018;10:1179543318804783. doi: 10.1177/1179543318804783. PubMed DOI PMC
Da Costa-Latgé S.G., Bates P., Dillon R., Genta F.A. Characterization of glycoside hydrolase families 13 and 31 reveals expansion and diversification of α-amylase genes in the phlebotomine Lutzomyia longipalpis and modulation of sandfly glycosidase activities by leishmania infection. Front. Physiol. 2021;12:635633. doi: 10.3389/fphys.2021.635633. PubMed DOI PMC
Keeling C.I., Henderson H., Li M., Yuen M., Clark E.L., Fraser J.D., Huber D.P., Liao N.Y., Docking T.R., Birol I., et al. Transcriptome and full-length cDNA resources for the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major insect pest of pine forests. Insect Biochem. Mol. Biol. 2012;42:525–536. doi: 10.1016/j.ibmb.2012.03.010. PubMed DOI
Sicker D., Frey M., Schulz M., Gierl A. Role of natural benzoxazinones in the survival strategy of plants. Int. Rev. Cytol. 2000;198:319–346. doi: 10.1016/s0074-7696(00)98008-2. PubMed DOI
Hanhineva K., Rogachev I., Aura A.-M., Aharoni A., Poutanen K., Mykkänen H. Qualitative characterization of benzoxazinoid derivatives in whole grain rye and wheat by LC-MS metabolite profiling. J. Agric. Food Chem. 2011;59:921–927. doi: 10.1021/jf103612u. PubMed DOI
Robert C.A., Zhang X., Machado R.A., Schirmer S., Lori M., Mateo P., Erb M., Gershenzon J. Sequestration and activation of plant toxins protect the western corn rootworm from enemies at multiple trophic levels. eLife. 2017;6:e29307. doi: 10.7554/eLife.29307. PubMed DOI PMC
Davison A., Blaxter M. Ancient origin of glycosyl hydrolase family 9 cellulase genes. Mol. Biol. Evol. 2005;22:1273–1284. doi: 10.1093/molbev/msi107. PubMed DOI
Lo N., Tokuda G., Watanabe H., Rose H., Slaytor M., Maekawa K., Bandi C., Noda H. Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr. Biol. 2000;10:801–804. doi: 10.1016/S0960-9822(00)00561-3. PubMed DOI
Zhou X., Kovaleva E.S., Wu-Scharf D., Campbell J.H., Buchman G.W., Boucias D.G., Scharf M.E. Production and characterization of a recombinant beta-1,4-endoglucanase (glycohydrolase family 9) from the termite Reticulitermes flavipes. Arch. Insect Biochem. Physiol. 2010;74:147–162. doi: 10.1002/arch.20368. PubMed DOI
Shelomi M., Watanabe H., Arakawa G. Endogenous cellulase enzymes in the stick insect (Phasmatodea) gut. J. Insect Physiol. 2014;60:25–30. doi: 10.1016/j.jinsphys.2013.10.007. PubMed DOI
Rawlings N.D., Barrett A.J., Thomas P.D., Huang X., Bateman A., Finn R.D. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018;46:D624–D632. doi: 10.1093/nar/gkx1134. PubMed DOI PMC
Cunningham D.F., O’Connor B. Proline specific peptidases. Biochim. Biophys. Acta BBA—Protein Struct. Mol. Enzym. 1997;1343:160–186. doi: 10.1016/S0167-4838(97)00134-9. PubMed DOI
Dunaevsky Y.E., Tereshchenkova V.F., Oppert B., Belozersky M.A., Filippova I.Y., Elpidina E.N. Human proline specific peptidases: A comprehensive analysis. Biochim. Biophys. Acta BBA—Gen. Subj. 2020;1864:129636. doi: 10.1016/j.bbagen.2020.129636. PubMed DOI
Shewry P.R., Halford N.G. Cereal seed storage proteins: Structures, properties and role in grain utilization. J. Exp. Bot. 2002;53:947–958. doi: 10.1093/jexbot/53.370.947. PubMed DOI
Shewry P.R., Tatham A.S. The prolamin storage proteins of cereal seeds: Structure and evolution. Biochem. J. 1990;267:1–12. doi: 10.1042/bj2670001. PubMed DOI PMC
Goptar I.A., Filippova I.Y., Lysogorskaya E.N., Oksenoit E.S., Vinokurov K.S., Zhuzhikov D.P., Bulushova N.V., Zalunin I.A., Dunaevsky Y.E., Belozersky M.A., et al. Localization of post-proline cleaving peptidases in Tenebrio molitor larval midgut. Biochimie. 2008;90:508–514. doi: 10.1016/j.biochi.2007.11.002. PubMed DOI
Kakimoto T., Oshima G., Yeh H., Erdös E. Purification of lysosomal prolylcarboxypeptidase angiotensinase C. Biochim. Biophys. Acta BBA—Enzym. 1973;302:178–182. doi: 10.1016/0005-2744(73)90021-1. PubMed DOI
Odya C., Marinkovic D., Hammon K., Stewart T., Erdös E. Purification and properties of prolylcarboxypeptidase (angiotensinase C) from human kidney. J. Biol. Chem. 1978;253:5927–5931. doi: 10.1016/S0021-9258(17)34557-X. PubMed DOI
Tan F., Morris P., Skidgel R., Erdös E. Sequencing and cloning of human prolylcarboxypeptidase (angiotensinase C). Similarity to both serine carboxypeptidase and prolylendopeptidase families. J. Biol. Chem. 1993;268:16631–16638. doi: 10.1016/S0021-9258(19)85465-0. PubMed DOI
Tereshchenkova V.F., Goptar I.A., Kulemzina I.A., Zhuzhikov D.P., Serebryakova M., Belozersky M.A., Dunaevsky Y.E., Oppert B., Filippova I.Y., Elpidina E.N. Dipeptidyl peptidase 4—An important digestive peptidase in Tenebrio molitor larvae. Insect Biochem. Mol. Biol. 2016;76:38–48. doi: 10.1016/j.ibmb.2016.07.003. PubMed DOI
Di Cera E. Serine proteases. IUBMB Life. 2009;61:510–515. doi: 10.1002/iub.186. PubMed DOI PMC
Srinivasan A., Giri A.P., Gupta V.S. Structural and functional diversities in lepidopteran serine proteases. Cell. Mol. Biol. Lett. 2006;11:132–154. doi: 10.2478/s11658-006-0012-8. PubMed DOI PMC
Konarev A.V., Fomicheva Y.V. Cross analysis of the interaction of alpha-amylase and proteinase components of insects with protein inhibitors from wheat endosperm. Biokhimiya. 1991;56:628–638.
Zhu Y.-C., Baker J.E. Characterization of midgut trypsin-like enzymes and three trypsinogen cDNAs from the lesser grain borer, Rhyzopertha dominica (Coleoptera: Bostrichidae) Insect Biochem. Mol. Biol. 1999;29:1053–1063. doi: 10.1016/S0965-1748(99)00081-8. PubMed DOI
Zhu Y.-C., Baker J.E. Molecular cloning and characterization of a midgut chymotrypsin-like enzyme from the lesser grain borer, Rhyzopertha dominica. Arch. Insect Biochem. Physiol. 2000;43:173–184. doi: 10.1002/(SICI)1520-6327(200004)43:4<173::AID-ARCH3>3.0.CO;2-8. PubMed DOI
Miao Z., Cao X., Jiang H. Digestion-related proteins in the tobacco hornworm, Manduca sexta. Insect Biochem. Mol. Biol. 2020;126:103457. doi: 10.1016/j.ibmb.2020.103457. PubMed DOI PMC
Cao X., Jiang H. Building a platform for predicting functions of serine protease-related proteins in Drosophila melanogaster and other insects. Insect Biochem. Mol. Biol. 2018;103:53–69. doi: 10.1016/j.ibmb.2018.10.006. PubMed DOI PMC
Agre P. Aquaporin water channels. Biosci. Rep. 2004;24:127–163. doi: 10.1007/s10540-005-2577-2. PubMed DOI
Verkman A. Aquaporins. Curr. Biol. 2013;23:R52–R55. doi: 10.1016/j.cub.2012.11.025. PubMed DOI PMC
Finn R.N., Cerdà J. Evolution and functional diversity of aquaporins. Biol. Bull. 2015;229:6–23. doi: 10.1086/BBLv229n1p6. PubMed DOI
Fu D., Libson A., Miercke L.J.W., Weitzman C., Nollert P., Krucinski J., Stroud R.M. Structure of a glycerol-conducting channel and the basis for its selectivity. Science. 2000;290:481–486. doi: 10.1126/science.290.5491.481. PubMed DOI
Sui H., Han B.-G., Lee J.K., Walian P.J., Jap B.K. Structural basis of water-specific transport through the AQP1 water channel. Nature. 2001;414:872–878. doi: 10.1038/414872a. PubMed DOI
Beitz E., Wu B., Holm L.M., Schultz J.E., Zeuthen T. Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons. Proc. Natl. Acad. Sci. USA. 2006;103:269–274. doi: 10.1073/pnas.0507225103. PubMed DOI PMC
Fu D., Lu M. The structural basis of water permeation and proton exclusion in aquaporins (review) Mol. Membr. Biol. 2007;24:366–374. doi: 10.1080/09687680701446965. PubMed DOI
Almasalmeh A., Krenc D., Wu B., Beitz E. Structural determinants of the hydrogen peroxide permeability of aquaporins. FEBS J. 2014;281:647–656. doi: 10.1111/febs.12653. PubMed DOI
Finn R.N., Chauvigné F., Stavang J.A., Belles X., Cerdà J. Insect glycerol transporters evolved by functional co-option and gene replacement. Nat. Commun. 2015;6:7814. doi: 10.1038/ncomms8814. PubMed DOI PMC
Stavang J.A., Chauvigné F., Kongshaug H., Cerdà J., Nilsen F., Finn R.N. Phylogenomic and functional analyses of salmon lice aquaporins uncover the molecular diversity of the superfamily in Arthropoda. BMC Genom. 2015;16:618. doi: 10.1186/s12864-015-1814-8. PubMed DOI PMC
Morishita Y., Matsuzaki T., Hara-Chikuma M., Andoo A., Shimono M., Matsuki A., Kobayashi K., Ikeda M., Yamamoto T., Verkman A., et al. Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule. Mol. Cell. Biol. 2005;25:7770–7779. doi: 10.1128/MCB.25.17.7770-7779.2005. PubMed DOI PMC
Gorelick A.D., Praetorius J., Tsunenari T., Nielsen S., Agre P. Aquaporin-11: A channel protein lacking apparent transport function expressed in brain. BMC Biochem. 2006;7:14. doi: 10.1186/1471-2091-7-14. PubMed DOI PMC
Drake L.L., Boudko D.Y., Marinotti O., Carpenter V.K., Dawe A.L., Hansen I.A. The aquaporin gene family of the yellow fever mosquito, Aedes aegypti. PLoS ONE. 2010;5:e15578. doi: 10.1371/journal.pone.0015578. PubMed DOI PMC
Fabrick J.A., Pei J., Hull J.J., Yool A.J. Molecular and functional characterization of multiple aquaporin water channel proteins from the western tarnished plant bug, Lygus hesperus. Insect Biochem. Mol. Biol. 2014;45:125–140. doi: 10.1016/j.ibmb.2013.12.002. PubMed DOI
Van Ekert E., Chauvigné F., Finn R.N., Mathew L.G., Hull J.J., Cerdà J., Fabrick J.A. Molecular and functional characterization of Bemisia tabaci aquaporins reveals the water channel diversity of hemipteran insects. Insect Biochem. Mol. Biol. 2016;77:39–51. doi: 10.1016/j.ibmb.2016.07.010. PubMed DOI
Yao X.-X., Meng Q.-W., Li G.-Q. RNA interference-mediated functional characterization of aquaporin genes in Tribolium castaneum. Insect Mol. Biol. 2018;27:234–246. doi: 10.1111/imb.12367. PubMed DOI
Midboe E.G., Candas M., Bulla L.A. Expression of a midgut-specific cadherin BT-R1 during the development of Manduca sexta larva. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2003;135:125–137. doi: 10.1016/S1096-4959(03)00054-X. PubMed DOI
Fabrick J.A., Wu Y., Wu Y. Roles of insect midgut cadherin in Bt intoxication and resistance. In: Soberón M., Gao A., Bravo A., editors. Bt Resistance: Characterization and Strategies for GM Crops Producing Bacillus Thuringiensis Toxins. Volume 4. CABI Crop Protection Compendium; Boston, MA, USA: 2015. pp. 69–86.
Adang M.J., Crickmore N., Jurat-Fuentes J.L. Diversity of Bacillus thuringiensis crystal toxins and mechanism of action. Adv. Insect Physiol. 2014;47:39–87. doi: 10.1016/b978-0-12-800197-4.00002-6. DOI
Dorsch J., Candas M., Griko N., Maaty W., Midboe E., Vadlamudi R., Bulla L. Cry1A toxins of Bacillus thuringiensis bind specifically to a region adjacent to the membrane-proximal extracellular domain of BT-R1 in Manduca sexta: Involvement of a cadherin in the entomopathogenicity of Bacillus thuringiensis. Insect Biochem. Mol. Biol. 2002;32:1025–1036. doi: 10.1016/S0965-1748(02)00040-1. PubMed DOI
Hua G., Jurat-Fuentes J.L., Adang M.J. Bt-R1a extracellular cadherin repeat 12 mediates Bacillus thuringiensis Cry1Ab binding and cytotoxicity. J. Biol. Chem. 2004;279:28051–28056. doi: 10.1074/jbc.M400237200. PubMed DOI
Gómez I., Lopez L.P., Muñoz-Garay C., Fernandez L., Pérez C., Sánchez J., Soberón M., Bravo A. Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis. Peptides. 2007;28:169–173. doi: 10.1016/j.peptides.2006.06.013. PubMed DOI
Sayed A., Nekl E.R., Siqueira H., Wang H.-C., Ffrench-Constant R., Bagley M., Siegfried B.D. A novel cadherin-like gene from western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), larval midgut tissue. Insect Mol. Biol. 2007;16:591–600. doi: 10.1111/j.1365-2583.2007.00755.x. PubMed DOI
Fabrick J., Oppert C., Lorenzen M.D., Morris K., Oppert B., Jurat-Fuentes J.L. A novel tenebrio molitor cadherin is a functional receptor for Bacillus thuringiensis Cry3Aa toxin. J. Biol. Chem. 2009;284:18401–18410. doi: 10.1074/jbc.M109.001651. PubMed DOI PMC
Hua G., Park Y., Adang M.J. Cadherin AdCad1 in Alphitobius diaperinus larvae is a receptor of Cry3Bb toxin from Bacillus thuringiensis. Insect Biochem. Mol. Biol. 2014;45:11–17. doi: 10.1016/j.ibmb.2013.10.007. PubMed DOI
Bel Y., Escriche B. Common genomic structure for the Lepidoptera cadherin-like genes. Gene. 2006;381:71–80. doi: 10.1016/j.gene.2006.07.001. PubMed DOI
Petersen M., Armisén D., Gibbs R.A., Hering L., Khila A., Mayer G., Richards S., Niehuis O., Misof B. Diversity and evolution of the transposable element repertoire in arthropods with particular reference to insects. BMC Ecol. Evol. 2019;19:1–15. doi: 10.1186/s12862-018-1324-9. PubMed DOI PMC
Gómez I., Oltean D.I., Gill S.S., Bravo A., Soberón M. Mapping the epitope in cadherin-like receptors involved in Bacillus thuringiensis Cry1A toxin interaction using phage display. J. Biol. Chem. 2001;276:28906–28912. doi: 10.1074/jbc.M103007200. PubMed DOI
Whalon M.E., Miller D.L., Hollingworth R.M., Grafius E.J., Miller J.R. Selection of a Colorado potato beetle (Coleoptera: Chrysomelidae) strain resistant to Bacillus thuringiensis. J. Econ. Entomol. 1993;86:226–233. doi: 10.1093/jee/86.2.226. DOI
Oppert B., Morgan T.D., Kramer K.J. Efficacy of Bacillus thuringiensis Cry3Aa protoxin and protease inhibitors against coleopteran storage pests. Pest Manag. Sci. 2011;67:568–573. doi: 10.1002/ps.2099. PubMed DOI
Turk V., Stoka V., Vasiljeva O., Renko M., Sun T., Turk B., Turk D. Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochim. Biophys. Acta BBA—Proteins Proteom. 2012;1824:68–88. doi: 10.1016/j.bbapap.2011.10.002. PubMed DOI PMC
Terra W.R., Ferreira C. Insect digestive enzymes: Properties, compartmentalization and function. Comp. Biochem. Physiol. Part B Comp. Biochem. 1994;109:1–62. doi: 10.1016/0305-0491(94)90141-4. DOI
Wolfson J.L., Murdock L.L. Diversity in digestive proteinase activity among insects. J. Chem. Ecol. 1990;16:1089–1102. doi: 10.1007/BF01021013. PubMed DOI
Terra W.R., Cristofoletti P. Midgut proteinases in three divergent species of Coleoptera. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 1996;113:725–730. doi: 10.1016/0305-0491(95)02037-3. DOI
Goptar I., Semashko T., Danilenko S., Lysogorskaya E., Oksenoit E., Zhuzhikov D., Belozersky M., Dunaevsky Y., Oppert B., Filippova I., et al. Cysteine digestive peptidases function as post-glutamine cleaving enzymes in tenebrionid stored-product pests. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2012;161:148–154. doi: 10.1016/j.cbpb.2011.10.005. PubMed DOI
Martynov A.G., Elpidina E.N., Perkin L., Oppert B. Functional analysis of C1 family cysteine peptidases in the larval gut of Tenebrio molitor and Tribolium castaneum. BMC Genom. 2015;16:75. doi: 10.1186/s12864-015-1306-x. PubMed DOI PMC
Perkin L., Elpidina E.N., Oppert B. Expression patterns of cysteine peptidase genes across the Tribolium castaneum life cycle provide clues to biological function. PeerJ. 2016;4:e1581. doi: 10.7717/peerj.1581. PubMed DOI PMC
Oppert B., Elpidina E.N., Toutges M., Mazumdar-Leighton S. Microarray analysis reveals strategies of Tribolium castaneum larvae to compensate for cysteine and serine protease inhibitors. Comp. Biochem. Physiol. Part D Genom. Proteom. 2010;5:280–287. doi: 10.1016/j.cbd.2010.08.001. PubMed DOI
Novinec M., Lenarčič B. Papain-like peptidases: Structure, function, and evolution. Biomol. Concepts. 2013;4:287–308. doi: 10.1515/bmc-2012-0054. PubMed DOI
Wex T., Lipyansky A., Brömme N.C., Wex H., Guan X.Q., Brömme D. TIN-ag-RP, a novel catalytically inactive cathepsin B-related protein with EGF domains, is predominantly expressed in vascular smooth muscle cells. Biochemistry. 2001;40:1350–1357. doi: 10.1021/bi002266o. PubMed DOI
Schlipalius D., Tuck A.G., Jagadeesan R., Nguyen T., Kaur R., Subramanian S., Barrero R., Nayak M., Ebert P.R. Variant linkage analysis using de novo transcriptome sequencing identifies a conserved phosphine resistance gene in insects. Genetics. 2018;209:281–290. doi: 10.1534/genetics.118.300688. PubMed DOI PMC
Wu C., Chakrabarty S., Jin M., Liu K., Xiao Y. Insect ATP-Binding Cassette (ABC) transporters: Roles in xenobiotic detoxification and Bt insecticidal activity. Int. J. Mol. Sci. 2019;20:2829. doi: 10.3390/ijms20112829. PubMed DOI PMC
Montella I.R., Schama R., Valle D. The classification of esterases: An important gene family involved in insecticide resistance—A review. Memórias Inst. Oswaldo Cruz. 2012;107:437–449. doi: 10.1590/S0074-02762012000400001. PubMed DOI
Ahn S.-J., Vogel H., Heckel D.G. Comparative analysis of the UDP-glycosyltransferase multigene family in insects. Insect Biochem. Mol. Biol. 2012;42:133–147. doi: 10.1016/j.ibmb.2011.11.006. PubMed DOI
Abdel-Latief M. A family of chemoreceptors in Tribolium castaneum (Tenebrionidae: Coleoptera) PLoS ONE. 2007;19:e1319. doi: 10.1371/journal.pone.0001319. PubMed DOI PMC
Engsontia P., Sangket U., Robertson H.M., Satasook C. Diversification of the ant odorant receptor gene family and positive selection on candidate cuticular hydrocarbon receptors. BMC Res. Notes. 2015;8:380. doi: 10.1186/s13104-015-1371-x. PubMed DOI PMC
Biebl S., Querner P. Transportation of wood boring beetles in wooden transport boxes, wooden pallets, and newly bought wood in museums. Stud. Conserv. 2021;66:44–50. doi: 10.1080/00393630.2020.1756126. DOI
Six D.L. A major symbiont shift supports a major niche shift in a clade of tree-killing bark beetles. Ecol. Entomol. 2020;45:190–201. doi: 10.1111/een.12786. DOI
Konarev A., Dolgikh V., Senderskiy I., Konarev A., Kapustkina A., Lovegrove A. Characterisation of proteolytic enzymes of Eurygaster integriceps Put. (Sunn bug), a major pest of cereals. J. Asia-Pac. Entomol. 2019;22:379–385. doi: 10.1016/j.aspen.2019.02.001. DOI
McKenna D.D., Wild A.L., Kanda K., Bellamy C.L., Beutel R.G., Caterino M.S., Farnum C.W., Hawks D.C., Ivie M.A., Jameson M.L., et al. The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Syst. Entomol. 2015;40:835–880. doi: 10.1111/syen.12132. DOI
Kaur R., Daniels E.V., Nayak M.K., Ebert P.R., Schlipalius I.D. Determining changes in the distribution and abundance of aRhyzopertha dominicaphosphine resistance allele in farm grain storages using a DNA marker. Pest Manag. Sci. 2013;69:685–688. doi: 10.1002/ps.3514. PubMed DOI
Schlipalius D.I., Tuck A.G., Pavic H., Daglish G.J., Nayak M.K., Ebert P.R. A high-throughput system used to determine frequency and distribution of phosphine resistance across large geographical regions. Pest Manag. Sci. 2019;75:1091–1098. doi: 10.1002/ps.5221. PubMed DOI
Nayak M.K., Jagadeesan R., Singarayan V.T., Nath N.S., Pavic H., Dembowski B., Daglish G.J., Schlipalius D.I., Ebert P.R. First report of strong phosphine resistance in stored grain insects in a far northern tropical region of Australia, combining conventional and genetic diagnostics. J. Stored Prod. Res. 2021;92:101813. doi: 10.1016/j.jspr.2021.101813. DOI
Henikoff S., Ahmad K., Malik H.S. The centromere paradox: Stable inheritance with rapidly evolving DNA. Science. 2001;293:1098–1102. doi: 10.1126/science.1062939. PubMed DOI
Heslop-Harrison J.S., Schwarzacher T. Nucleosomes and centromeric DNA packaging. Proc. Natl. Acad. Sci. USA. 2013;110:19974–19975. doi: 10.1073/pnas.1319945110. PubMed DOI PMC
Ugarkovic D., Podnar M., Plohl M. Satellite DNA of the red flour beetle Tribolium castaneum—Comparative study of satellites from the genus Tribolium. Mol. Biol. Evol. 1996;13:1059–1066. doi: 10.1093/oxfordjournals.molbev.a025668. PubMed DOI
Wang S., Lorenzen M., Beeman R.W., Brown S.J. Analysis of repetitive DNA distribution patterns in the Tribolium castaneum genome. Genome Biol. 2008;9:R61. doi: 10.1186/gb-2008-9-3-r61. PubMed DOI PMC
Saito N., Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987;4:406–425. PubMed
Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 1985;39:783. doi: 10.1111/j.1558-5646.1985.tb00420.x. PubMed DOI
Schwarz R., Dayhoff M. Matrices for detecting distant relationships. In: Dayhoff M., editor. Atlas of Protein Sequences. National Biomedical Research Foundation; Washington, DC, USA: 1979. pp. 353–358.