The Genome of Rhyzopertha dominica (Fab.) (Coleoptera: Bostrichidae): Adaptation for Success

. 2022 Feb 28 ; 13 (3) : . [epub] 20220228

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35328000

Grantová podpora
R01 GM058634 NIGMS NIH HHS - United States

The lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae), is a major global pest of cereal grains. Infestations are difficult to control as larvae feed inside grain kernels, and many populations are resistant to both contact insecticides and fumigants. We sequenced the genome of R. dominica to identify genes responsible for important biological functions and develop more targeted and efficacious management strategies. The genome was assembled from long read sequencing and long-range scaffolding technologies. The genome assembly is 479.1 Mb, close to the predicted genome size of 480.4 Mb by flow cytometry. This assembly is among the most contiguous beetle assemblies published to date, with 139 scaffolds, an N50 of 53.6 Mb, and L50 of 4, indicating chromosome-scale scaffolds. Predicted genes from biologically relevant groups were manually annotated using transcriptome data from adults and different larval tissues to guide annotation. The expansion of carbohydrase and serine peptidase genes suggest that they combine to enable efficient digestion of cereal proteins. A reduction in the copy number of several detoxification gene families relative to other coleopterans may reflect the low selective pressure on these genes in an insect that spends most of its life feeding internally. Chemoreceptor genes contain elevated numbers of pseudogenes for odorant receptors that also may be related to the recent ontogenetic shift of R. dominica to a diet consisting primarily of stored grains. Analysis of repetitive sequences will further define the evolution of bostrichid beetles compared to other species. The data overall contribute significantly to coleopteran genetic research.

A N Belozersky Institute of Physico Chemical Biology Lomonosov Moscow State University 119991 Moscow Russia

Departamento de Entomologia Universidade Federal de Viçosa Viçosa 36570 900 MG Brazil

Department of Biochemistry Institute of Chemistry University of São Paulo Av Prof Lineu Prestes 748 São Paulo 05508 000 SP Brazil

Department of Biology University of Wisconsin Oshkosh Oshkosh WI 54901 USA

Department of Chemistry Lomonosov Moscow State University 119991 Moscow Russia

Department of Entomology and Plant Pathology North Carolina State University Raleigh NC 27695 USA

Department of Entomology and Plant Pathology Oklahoma State University Stillwater OK 74078 USA

Department of Entomology Texas A and M University College Station TX 77843 USA

Division of Molecular Biology Ruđer Bošković Institute Bijenička 54 10000 Zagreb Croatia

Faculty of Bioengineering and Bioinformatics Lomonosov Moscow State University 119991 Moscow Russia

Genome Informatics Section Computational and Statistical Genomics Branch National Human Genome Research Institute National Institutes of Health Bethesda MD 20892 USA

Institute of Biochemistry and Biophysics Polish Academy of Sciences Pawinskiego 5A 02 106 Warsaw Poland

Institute of Biological Sciences Federal University of Goiás Av Esperança s n Goiânia 74690 900 GO Brazil

Institute of Entomology Biology Centre of the Czech Academy of Sciences Branišovská 1160 31 370 05 České Budejovice Czech Republic

Institute of Plant Molecular Biology Biology Centre of the Czech Academy of Sciences Branišovská 1160 31 370 05 České Budejovice Czech Republic

School of Biological Sciences The University of Queensland Brisbane 4072 QLD Australia

USDA Agricultural Research Service Commodity Protection and Quality Research 9611 S Riverbend Ave Parlier CA 93648 USA

USDA Agricultural Research Service Insect Control and Cotton Disease Research 2771 F and B Road College Station TX 77845 USA

USDA Agricultural Research Service National Agricultural Library 10301 Baltimore Ave Beltsville MD 20705 USA

USDA ARS Center for Grain and Animal Health Research 1515 College Ave Manhattan KS 66502 USA

USDA ARS U S Arid Land Agricultural Research Center Maricopa AZ 85138 USA

USDA ARS U S Meat Animal Research Center Clay Center NE 68933 USA

Zobrazit více v PubMed

Lucas H. Crustacés, arachnides, myriopodes et hexapodes: Exploration scientifique de l’Algérie pendant les années 1840, 1841, 1842. Sci. Phys. Zool. Hist. Nat. Animaux Articul. 1849;1:1–403.

Fields P., Van Loon J., Dolinski M., Harris J., Burkholder W. The distribution of Rhyzopertha dominica (F.) in Western Canada. Can. Entomol. 1993;125:317–328. doi: 10.4039/Ent125317-2. DOI

Edde P. A review of the biology and control of Rhyzopertha dominica (F.) the lesser grain borer. J. Stored Prod. Res. 2012;48:1–18. doi: 10.1016/j.jspr.2011.08.007. DOI

Toews M.D., Campbell J.F., Arthur F.H., Ramaswamy S.B. Outdoor flight activity and immigration of Rhyzopertha dominica into seed wheat warehouses. Entomol. Exp. Appl. 2006;121:73–85. doi: 10.1111/j.1570-8703.2006.00462.x. DOI

Schwardt H.H. Life history of the lesser grain borer. J. Kans. Entomol. Soc. 1993;6:61–66.

Edde P.A., Phillips T.W. Potential host affinities for the lesser grain borer, Rhyzopertha dominica: Behavioral responses to host odors and pheromones and reproductive ability on non-grain hosts. Entomol. Exp. Appl. 2006;119:255–263. doi: 10.1111/j.1570-7458.2006.00417.x. DOI

Wright V.F., Fleming E.E., Post D., Wright F. Survival of Rhyzopertha dominica (Coleoptera, Bostrichidae ) on fruits and seeds collected from woodrat nests in Kansas. J. Kans. Entomol. Soc. 1990;63:344–347.

Jia F., Toews M.D., Campbell J.F., Ramaswamy S.B. Survival and reproduction of lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) on flora associated with native habitats in Kansas. J. Stored Prod. Res. 2008;44:366–372. doi: 10.1016/j.jspr.2008.06.001. DOI

Mahroof R.M., Edde P., Robertson B., Puckette J.A., Phillips T.W. Dispersal of Rhyzopertha dominica (Coleoptera: Bostrichidae) in different habitats. Environ. Entomol. 2010;39:930–938. doi: 10.1603/EN09243. PubMed DOI

Quellhorst H., Athanassiou C.G., Zhu K.Y., Morrison W.R. The biology, ecology and management of the larger grain borer, Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) J. Stored Prod. Res. 2021;94:101860. doi: 10.1016/j.jspr.2021.101860. DOI

Opit G.P., Phillips T.W., Aikins M.J., Hasan M.M. Phosphine resistance in Tribolium castaneum and Rhyzopertha dominica from stored wheat in Oklahoma. J. Econ. Entomol. 2012;105:1107–1114. doi: 10.1603/EC12064. PubMed DOI

Lorini I., Collins P.J., Daglish G.J., Nayak M.K., Pavic H. Detection and characterisation of strong resistance to phosphine in Brazilian Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae) Pest Manag. Sci. 2007;63:358–364. doi: 10.1002/ps.1344. PubMed DOI

Benhalima H., Chaudhry M., Mills K., Price N. Phosphine resistance in stored-product insects collected from various grain storage facilities in Morocco. J. Stored Prod. Res. 2004;40:241–249. doi: 10.1016/S0022-474X(03)00012-2. DOI

Collins P.J., Daglish G., Bengston M., Lambkin T.M., Pavic H. Genetics of resistance to phosphine in Rhyzopertha dominica (Coleoptera: Bostrichidae) J. Econ. Entomol. 2002;95:862–869. doi: 10.1603/0022-0493-95.4.862. PubMed DOI

Schlipalius I.D., Chen W., Collins P.J., Nguyen T., Reilly P.E.B., Ebert P.R. Gene interactions constrain the course of evolution of phosphine resistance in the lesser grain borer, Rhyzopertha dominica. Heredity. 2008;100:506–516. doi: 10.1038/hdy.2008.4. PubMed DOI

Schlipalius D.I., Valmas N., Tuck A.G., Jagadeesan R., Ma L., Kaur R., Goldinger A., Anderson C., Kuang J., Zuryn S., et al. A core metabolic enzyme mediates resistance to phosphine gas. Science. 2012;338:807–810. doi: 10.1126/science.1224951. PubMed DOI

Arthur F.H. Grain protectants: Current status and prospects for the future. J. Stored Prod. Res. 1996;32:293–302. doi: 10.1016/S0022-474X(96)00033-1. DOI

Kavallieratos N.G., Athanassiou C.G., Arthur F.H. Efficacy of deltamethrin against stored-product beetles at short exposure intervals or on a partially treated rice mass. J. Econ. Entomol. 2015;108:1416–1421. doi: 10.1093/jee/tov060. PubMed DOI

Sehgal B., Subramanyam B., Arthur F.H., Gill B.S. Variation in susceptibility of laboratory and field strains of three stored-grain insect species to β -cyfluthrin and chlorpyrifos-methyl plus deltamethrin applied to concrete surfaces. Pest Manag. Sci. 2014;70:576–587. doi: 10.1002/ps.3580. PubMed DOI

Arthur F. Efficacy of methoprene for multi-year protection of stored wheat, brown rice, rough rice and corn. J. Stored Prod. Res. 2016;68:85–92. doi: 10.1016/j.jspr.2016.04.005. DOI

Haliscak J.P., Beeman R.W. Status of malathion resistance in five genera of beetles infesting farm-stored corn, wheat, and oats in the United States. J. Econ. Entomol. 1983;76:717–722. doi: 10.1093/jee/76.4.717. DOI

Guedes R.N.C., Kambhampati S., Dover B.A., Zhu K.Y. Biochemical mechanism of organophosphate resistance in Brazilian and U. S. populations of Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) Bull. Entomol. Res. 1997;87:581–586. doi: 10.1017/S0007485300038670. DOI

Guedes R.N., Zhu K., Kambhampati S., Dover B. Characterization of acetylcholinesterase purified from the lesser grain borer, Rhyzopertha dominica (Coleoptera: Bostrichidae) Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 1998;119:205–210. doi: 10.1016/S0742-8413(97)00208-9. PubMed DOI

Wang H.-T., Tsai C.-L., Chen M.-E. Nicotinic acetylcholine receptor subunit α6 associated with spinosad resistance in Rhyzopertha dominica (Coleoptera: Bostrichidae) Pestic. Biochem. Physiol. 2018;148:68–73. doi: 10.1016/j.pestbp.2018.03.016. PubMed DOI

Sakka M.K., Riga M., Ioannidis P., Baliota G.V., Tselika M., Jagadeesan R., Nayak M.K., Vontas J., Athanassiou C.G. Transcriptomic analysis of s-methoprene resistance in the lesser grain borer, Rhyzopertha dominica, and evaluation of piperonyl butoxide as a resistance breaker. BMC Genom. 2021;22:65. doi: 10.1186/s12864-020-07354-8. PubMed DOI PMC

Khorramshahi A., Burkholder W.E. Behavior of the lesser grain borer Rhyzopertha dominica (Coleoptera: Bostrichidae) J. Chem. Ecol. 1981;7:33–38. doi: 10.1007/BF00988633. PubMed DOI

Williams H.J., Silverstein R.M., Burkholder W.E., Khorramshahi A. Dominicalure 1 and 2: Components of aggregation pheromone from male lesser grain borer Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) J. Chem. Ecol. 1981;7:759–780. doi: 10.1007/BF00990308. PubMed DOI

Bashir T., Birkinshaw L., Hall D., Hodges R. Host odours enhance the responses of adult Rhyzopertha dominica to male-produced aggregation pheromone. Entomol. Exp. Appl. 2001;101:273–280. doi: 10.1046/j.1570-7458.2001.00912.x. DOI

Nguyen D.T., Hodges R.J., Belmain S.R. Do walking Rhyzopertha dominica (F.) locate cereal hosts by chance? J. Stored Prod. Res. 2008;44:90–99. doi: 10.1016/j.jspr.2007.06.008. DOI

Edde P., Phillips T.W., Robertson J.B., Dillwith J.W. Pheromone output by Rhyzopertha dominica (Coleoptera: Bostrichidae), as affected by host plant and beetle size. Ann. Entomol. Soc. Am. 2007;100:83–90. doi: 10.1603/0013-8746(2007)100[83:POBRDC]2.0.CO;2. DOI

Dowdy A.K., Howard R.W., Seitz L.M., McGaughey W.H. Response of Rhyzopertha dominica (Coleoptera: Bostrichidae) to its aggregation pheromone and wheat volatiles. Environ. Entomol. 1993;22:965–970. doi: 10.1093/ee/22.5.965. DOI

Cordeiro E.M.G., Campbell J.F., Phillips T.W. Movement and orientation decision modeling of Rhyzopertha dominica (Coleoptera: Bostrichidae) in the grain mass. Environ. Entomol. 2016;45:410–419. doi: 10.1093/ee/nvv232. PubMed DOI

Robertson H.M. Molecular evolution of the major arthropod chemoreceptor gene families. Annu. Rev. Entomol. 2019;64:227–242. doi: 10.1146/annurev-ento-020117-043322. PubMed DOI

Mitchell R.F., Andersson M.N. Insect Pheromone Biochemistry and Molecular Biology. Elsevier; Amsterdam, The Netherlands: 2020. Olfactory genomics of the Coleoptera; pp. 547–590.

Andersson M.N., Keeling C.I., Mitchell R.F. Genomic content of chemosensory genes correlates with host range in wood-boring beetles (Dendroctonus ponderosae, Agrilus planipennis, and Anoplophora glabripennis) BMC Genom. 2019;20:690. doi: 10.1186/s12864-019-6054-x. PubMed DOI PMC

Mitchell R.F., Hughes D.T., Luetje C.W., Millar J.G., Soriano-Agatón F., Hanks L.M., Robertson H.M. Sequencing and characterizing odorant receptors of the cerambycid beetle Megacyllene caryae. Insect Biochem. Mol. Biol. 2012;42:499–505. doi: 10.1016/j.ibmb.2012.03.007. PubMed DOI PMC

Antony B., Johny J., Montagné N., Jacquin-Joly E., Capoduro R., Cali K., Persaud K., Al-Saleh M.A., Pain A. Pheromone receptor of the globally invasive quarantine pest of the palm tree, the red palm weevil (Rhynchophorus ferrugineus) Mol. Ecol. 2021;30:2025–2039. doi: 10.1111/mec.15874. PubMed DOI

Yuvaraj J.K., Roberts R.E., Sonntag Y., Hou X.-Q., Grosse-Wilde E., Machara A., Zhang D.-D., Hansson B.S., Johanson U., Löfstedt C., et al. Putative ligand binding sites of two functionally characterized bark beetle odorant receptors. BMC Biol. 2021;19:16. doi: 10.1186/s12915-020-00946-6. PubMed DOI PMC

Wang X., Wang S., Yi J., Li Y., Liu J., Wang J., Xi J. Three host plant volatiles, hexanal, lauric acid, and tetradecane, are detected by an antenna-biased expressed odorant receptor 27 in the dark black chafer Holotrichia parallela. J. Agric. Food Chem. 2020;68:7316–7323. doi: 10.1021/acs.jafc.0c00333. PubMed DOI

Hou X.Q., Yuvaraj J.K., Roberts R.E., Zhang D.D., Unelius C.R., Löfstedt C., Andersson M.N. Functional evolution of a bark beetle odorant receptor clade detecting monoterpenoids of different ecological origins. Mol. Biol. Evol. 2021;38:4934–4947. doi: 10.1093/molbev/msab218. PubMed DOI PMC

Ji T., Xu Z., Jia Q., Wang G., Hou Y. Non-palm plant volatile α-pinene is detected by antenna-biased expressed odorant receptor 6 in the Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) Front. Physiol. 2021;12:701545. doi: 10.3389/fphys.2021.701545. PubMed DOI PMC

Takada T., Sato R., Kikuta S. A mannitol/sorbitol receptor stimulates dietary intake in Tribolium castaneum. PLoS ONE. 2017;12:e0186420. doi: 10.1371/journal.pone.0186420. PubMed DOI PMC

Mandiana Diakite M., Wang J., Ali S., Wang M. Identification of chemosensory gene families in Rhyzopertha dominica (Coleoptera: Bostrichidae) Can. Entomol. 2016;148:8–21. doi: 10.4039/tce.2015.13. DOI

Schlipalius I.D., Cheng Q., Reilly P.E.B., Collins P.J., Ebert P.R. Genetic linkage analysis of the lesser grain borer Rhyzopertha dominica identifies two loci that confer high-level resistance to the fumigant phosphine. Genetics. 2002;161:773–782. doi: 10.1093/genetics/161.2.773. PubMed DOI PMC

Johnston J.S., Bernardini A., Hjelmen C.E. Genome size estimation and quantitative cytogenetics in insects. Program. Necrosis. 2019;1858:15–26. doi: 10.1007/978-1-4939-8775-7_2. PubMed DOI

Putnam N.H., O’Connell B.L., Stites J.C., Rice B.J., Blanchette M., Calef R., Troll C.J., Fields A., Hartley P.D., Sugnet C.W., et al. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 2016;26:342–350. doi: 10.1101/gr.193474.115. PubMed DOI PMC

Simão F.A., Waterhouse R.M., Ioannidis P., Kriventseva E.V., Zdobnov E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI

Lieberman-Aiden E., Van Berkum N.L., Williams L., Imakaev M., Ragoczy T., Telling A., Amit I., Lajoie B.R., Sabo P.J., Dorschner M.O., et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326:289–293. doi: 10.1126/science.1181369. PubMed DOI PMC

Masumoto H., Masukata H., Muro Y., Nozaki N., Okazaki T. A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J. Cell Biol. 1989;109:1963–1973. doi: 10.1083/jcb.109.5.1963. PubMed DOI PMC

Johnson A.D., Handsaker R.E., Pulit S.L., Nizzari M.M., O’Donnell C.J., de Bakker P.I.W. SNAP: A web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics. 2008;24:2938–2939. doi: 10.1093/bioinformatics/btn564. PubMed DOI PMC

Oppert B., Morgan T. Improved high-throughput bioassay for Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) J. Stored Prod. Res. 2013;52:68–73. doi: 10.1016/j.jspr.2012.11.001. DOI

Perkin L.C., Oppert B. Gene expression in Tribolium castaneum life stages: Identifying a species-specific target for pest control applications. PeerJ. 2019;7:e6946. doi: 10.7717/peerj.6946. PubMed DOI PMC

Mortazavi A., Williams B.A., McCue K., Schaeffer L., Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods. 2008;5:621–628. doi: 10.1038/nmeth.1226. PubMed DOI

Flynn J.M., Hubley R., Goubert C., Rosen J., Clark A.G., Feschotte C., Smit A.F. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl. Acad. Sci. USA. 2020;117:9451–9457. doi: 10.1073/pnas.1921046117. PubMed DOI PMC

Smit A.F.A., Hubley R., Green P. RepeatMasker Open-4.0. [(accessed on 5 January 2021)]. Available online: http://www.repeatmasker.org.

Stanke M., Steinkamp R., Waack S., Morgenstern B. AUGUSTUS: A web server for gene finding in eukaryotes. Nucleic Acids Res. 2004;32:W309–W312. doi: 10.1093/nar/gkh379. PubMed DOI PMC

Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC

Cantarel B.L., Korf I., Robb S.M., Parra G., Ross E., Moore B., Holt C., Alvarado A.S., Yandell M. MAKER: An easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 2007;18:188–196. doi: 10.1101/gr.6743907. PubMed DOI PMC

Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Chan P.P., Lowe T.M. Springer Protocols Handbooks. Volume 1962. Springer Science and Business Media; Cham, Switzerland: 2019. tRNAscan-SE: Searching for tRNA genes in genomic sequences; pp. 1–14. PubMed PMC

Broehan G., Kroeger T., Lorenzen M., Merzendorfer H. Functional analysis of the ATP-binding cassette (ABC) transporter gene family of Tribolium castaneum. BMC Genom. 2013;14:6. doi: 10.1186/1471-2164-14-6. PubMed DOI PMC

Grubbs N., Haas S., Beeman R.W., Lorenzen M.D. The ABCs of eye color in Tribolium castaneum: Orthologs of the Drosophila white, scarlet, and brown genes. Genetics. 2015;199:749–759. doi: 10.1534/genetics.114.173971. PubMed DOI PMC

Lee E., Helt A.G., Reese J.T., Munoz-Torres M.C., Childers C.P., Buels R.M., Stein L., Holmes I.H., Elsik C.G., Lewis E.S. Web Apollo: A web-based genomic annotation editing platform. Genome Biol. 2013;14:R93. doi: 10.1186/gb-2013-14-8-r93. PubMed DOI PMC

Skinner M.E., Uzilov A.V., Stein L.D., Mungall C.J., Holmes I.H. JBrowse: A next-generation genome browser. Genome Res. 2009;19:1630–1638. doi: 10.1101/gr.094607.109. PubMed DOI PMC

Finn R.D., Bateman A., Clements J., Coggill P., Eberhardt R.Y., Eddy S.R., Heger A., Hetherington K., Holm L., Mistry J., et al. Pfam: The protein families database. Nucleic Acids Res. 2014;42:D222–D230. doi: 10.1093/nar/gkt1223. PubMed DOI PMC

Mitchell R.F., Schneider T.M., Schwartz A.M., Andersson M.N., McKenna D.D. The diversity and evolution of odorant receptors in beetles (Coleoptera) Insect Mol. Biol. 2020;29:77–91. doi: 10.1111/imb.12611. PubMed DOI

Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., Söding J., et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011;7:539. doi: 10.1038/msb.2011.75. PubMed DOI PMC

Edgar R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC

Kumar S., Stecher G., Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC

Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC

Capella-Gutiérrez S., Silla-Martínez J.M., Gabaldón T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC

Price M.N., Dehal P.S., Arkin A.P. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490. doi: 10.1371/journal.pone.0009490. PubMed DOI PMC

Rambaut A., Drummond A.J. Molecular Evolution, Phylogenetics and Epidemiology. [(accessed on 5 January 2021)]. FigTree v1.3.1. Available online: http://tree.bio.ed.ac.uk/software/figtree/

Li H., Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC

Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC

Haas B.J., Papanicolaou A., Yassour M., Grabherr M., Blood P.D., Bowden J., Couger M.B., Eccles D., Li B., Lieber M., et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013;8:1494–1512. doi: 10.1038/nprot.2013.084. PubMed DOI PMC

Zhang Y., Park C., Bennett C., Thornton M., Kim D. Rapid and accurate alignment of nucleotide conversion sequencing reads with HISAT-3N. Genome Res. 2021;31:1290–1295. doi: 10.1101/gr.275193.120. PubMed DOI PMC

Kovaka S., Zimin A.V., Pertea G.M., Razaghi R., Salzberg S.L., Pertea M. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 2019;20:278. doi: 10.1186/s13059-019-1910-1. PubMed DOI PMC

Cao X., Jiang H. Integrated modeling of structural genes using MCuNovo. In: Brown S., Pfrender M., editors. Insect Genomics. Methods in Molecular Biology. Volume 1858. Humana Press; New York, NY, USA: 2019. pp. 45–57. PubMed DOI

Warburton P.E., Giordano J., Cheung F., Gelfand Y., Benson G. Inverted repeat structure of the human genome: The X-chromosome contains a preponderance of large, highly homologous inverted repeats that contain testes genes. Genome Res. 2004;14:1861–1869. doi: 10.1101/gr.2542904. PubMed DOI PMC

Fu L., Niu B., Zhu Z., Wu S., Li W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150–3152. doi: 10.1093/bioinformatics/bts565. PubMed DOI PMC

Marchler-Bauer A., Derbyshire M.K., Gonzales N.R., Lu S., Chitsaz F., Geer L.Y., Geer R.C., He J., Gwadz M., Hurwitz D.I., et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015;43:D222–D226. doi: 10.1093/nar/gku1221. PubMed DOI PMC

Jurka J., Kapitonov V.V., Pavlicek A., Klonowski P., Kohany O., Walichiewicz J. Repbase update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 2005;110:462–467. doi: 10.1159/000084979. PubMed DOI

Gelfand Y., Rodriguez A., Benson G. TRDB—The Tandem Repeats Database. Nucleic Acids Res. 2007;35:D80–D87. doi: 10.1093/nar/gkl1013. PubMed DOI PMC

Smith S.G., Brower J.H. Chromosome numbers of stored-product Coleoptera. J. Kans. Entomol. Soc. 1974;47:317–328.

Guedes R.N.C., Dover B.A., Kambhampati S. Resistance to chlorpyrifos-methyl, pirimiphos-methyl, and malathion in Brazilian and U.S. populations of Rhyzopertha dominica (Coleopera: Bostrichidae) J. Econ. Entomol. 1996;89:27–32. doi: 10.1093/jee/89.1.27. DOI

Daglish G.J., Nayak M.K. Prevalence of resistance to deltamethrin in Rhyzopertha dominica (F.) in eastern Australia. J. Stored Prod. Res. 2018;78:45–49. doi: 10.1016/j.jspr.2018.06.003. DOI

Daglish G., Holloway J.C., Nayak M.K. Implications of methoprene resistance for managing Rhyzopertha dominica (F.) in stored grain. J. Stored Prod. Res. 2013;54:8–12. doi: 10.1016/j.jspr.2013.03.006. DOI

Adedipe F., Grubbs N., Coates B., Wiegmman B., Lorenzen M. Structural and functional insights into the Diabrotica virgifera virgifera ATP-binding cassette transporter gene family. BMC Genom. 2019;20:899. doi: 10.1186/s12864-019-6218-8. PubMed DOI PMC

Evans J.D., McKenna D., Scully E., Cook S.C., Dainat B., Egekwu N., Grubbs N., Lopez D., Lorenzen M., Reyna S.M., et al. Genome of the small hive beetle (Aethina tumida, Coleoptera: Nitidulidae), a worldwide parasite of social bee colonies, provides insights into detoxification and herbivory. GigaScience. 2018;7:138. doi: 10.1093/gigascience/giy138. PubMed DOI PMC

Xue H.-J., Niu Y.-W., Segraves K.A., Nie R.-E., Hao Y.-J., Zhang L.-L., Cheng X.-C., Zhang X.-W., Li W.-Z., Chen R.-S., et al. The draft genome of the specialist flea beetle Altica viridicyanea (Coleoptera: Chrysomelidae) BMC Genom. 2021;22:243. doi: 10.1186/s12864-021-07558-6. PubMed DOI PMC

Strauss A.S., Wang D., Stock M., Gretscher R., Groth M., Boland W., Burse A. Tissue-specific transcript profiling for ABC transporters in the sequestering larvae of the phytophagous leaf beetle Chrysomela populi. PLoS ONE. 2014;9:e98637. doi: 10.1371/journal.pone.0098637. PubMed DOI PMC

Dean M., Rzhetsky A., Allikmets R. The human ATP-Binding Cassette (ABC) transporter superfamily. Genome Res. 2001;11:1156–1166. doi: 10.1101/gr.184901. PubMed DOI

David J.-P., Ismail H.M., Chandor-Proust A., Paine M.J.I. Role of cytochrome P450s in insecticide resistance: Impact on the control of mosquito-borne diseases and use of insecticides on Earth. Philos. Trans. R. Soc. B Biol. Sci. 2013;368:20120429. doi: 10.1098/rstb.2012.0429. PubMed DOI PMC

Zhu F., Moural T.W., Shah K., Palli S.R. Integrated analysis of cytochrome P450 gene superfamily in the red flour beetle, Tribolium castaneum. BMC Genom. 2013;14:174. doi: 10.1186/1471-2164-14-174. PubMed DOI PMC

Jackson C.J., Liu J.-W., Carr P.D., Younus F., Coppin C., Meirelles T., Lethier M., Pandey G., Ollis D.L., Russell R.J., et al. Structure and function of an insect -carboxylesterase (Esterase7) associated with insecticide resistance. Proc. Natl. Acad. Sci. USA. 2013;110:10177–10182. doi: 10.1073/pnas.1304097110. PubMed DOI PMC

Rane R., Walsh T., Pearce S.L., Jermiin L., Gordon K., Richards S., Oakeshott J.G. Are feeding preferences and insecticide resistance associated with the size of detoxifying enzyme families in insect herbivores? Curr. Opin. Insect Sci. 2016;13:70–76. doi: 10.1016/j.cois.2015.12.001. PubMed DOI

McKenna D.D., Scully E.D., Pauchet Y., Hoover K., Kirsch R., Geib S.M., Mitchell R.F., Waterhouse R.M., Ahn S.-J., Arsala D., et al. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle–plant interface. Genome Biol. 2016;17:227. doi: 10.1186/s13059-016-1088-8. PubMed DOI PMC

Kaplanoglu E., Chapman P., Scott I., Donly C. Overexpression of a cytochrome P450 and a UDP-glycosyltransferase is associated with imidacloprid resistance in the Colorado potato beetle, Leptinotarsa decemlineata. Sci. Rep. 2017;7:1762. doi: 10.1038/s41598-017-01961-4. PubMed DOI PMC

Scully E.D., Geib S.M., Carlson E.J., Tien M., McKenna D., Hoover K. Functional genomics and microbiome profiling of the Asian longhorned beetle (Anoplophora glabripennis) reveal insights into the digestive physiology and nutritional ecology of wood feeding beetles. BMC Genom. 2014;15:1096. doi: 10.1186/1471-2164-15-1096. PubMed DOI PMC

Zhang J., Yang M., Wang W., Sun H., Xu Y., Ma L., Sun Y., Zhu C. prag01, a novel deltamethrin-resistance-associated gene from Culex pipiens pallens. Parasitol. Res. 2011;108:417–423. doi: 10.1007/s00436-010-2082-9. PubMed DOI

Vosshall L.B., Hansson B.S. A unified nomenclature system for the insect olfactory coreceptor. Chem. Senses. 2011;36:497–498. doi: 10.1093/chemse/bjr022. PubMed DOI

Dippel S., Kollmann M., Oberhofer G., Montino A., Knoll C., Krala M., Rexer K.-H., Frank S., Kumpf R., Schachtner J., et al. Morphological and transcriptomic analysis of a beetle chemosensory system reveals a gnathal olfactory center. BMC Biol. 2016;14:90. doi: 10.1186/s12915-016-0304-z. PubMed DOI PMC

Croset V., Rytz R., Cummins S.F., Budd A., Brawand D., Kaessmann H., Gibson T.J., Benton R. Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genet. 2010;6:e1001064. doi: 10.1371/journal.pgen.1001064. PubMed DOI PMC

Rytz R., Croset V., Benton R. Ionotropic Receptors (IRs): Chemosensory ionotropic glutamate receptors in Drosophila and beyond. Insect Biochem. Mol. Biol. 2013;43:888–897. doi: 10.1016/j.ibmb.2013.02.007. PubMed DOI

Sánchez-Alcañiz J.A., Silbering A.F., Croset V., Zappia G., Sivasubramaniam A.K., Abuin L., Sahai S.Y., Münch D., Steck K., Auer T.O., et al. An expression atlas of variant ionotropic glutamate receptors identifies a molecular basis of carbonation sensing. Nat. Commun. 2018;9:4252. doi: 10.1038/s41467-018-06453-1. PubMed DOI PMC

Hussain A., Zhang M., Üçpunar H., Svensson T., Quillery E., Gompel N., Ignell R., Kadow I.C.G. Ionotropic chemosensory receptors mediate the taste and smell of polyamines. PLoS Biol. 2016;14:e1002454. doi: 10.1371/journal.pbio.1002454. PubMed DOI PMC

Knecht Z.A., Silbering A.F., Cruz J., Yang L., Croset V., Benton R., Garrity P.A. Ionotropic receptor-dependent moist and dry cells control hygrosensation in Drosophila. eLife. 2017;6:e26654. doi: 10.7554/eLife.26654. PubMed DOI PMC

Pauchet Y., Wilkinson P., Chauhan R., Ffrench-Constant R. Diversity of beetle genes encoding novel plant cell wall degrading enzymes. PLoS ONE. 2010;5:e15635. doi: 10.1371/journal.pone.0015635. PubMed DOI PMC

Consortium T.G.S., Richards S., Gibbs R.A., Weinstock G.M., Brown S.J., Denell R. The genome of the model beetle and pest Tribolium castaneum. Nature. 2008;452:949–955. doi: 10.1038/nature06784. PubMed DOI

Da Lage J.-L. The amylases of insects. Int. J. Insect Sci. 2018;10:1179543318804783. doi: 10.1177/1179543318804783. PubMed DOI PMC

Da Costa-Latgé S.G., Bates P., Dillon R., Genta F.A. Characterization of glycoside hydrolase families 13 and 31 reveals expansion and diversification of α-amylase genes in the phlebotomine Lutzomyia longipalpis and modulation of sandfly glycosidase activities by leishmania infection. Front. Physiol. 2021;12:635633. doi: 10.3389/fphys.2021.635633. PubMed DOI PMC

Keeling C.I., Henderson H., Li M., Yuen M., Clark E.L., Fraser J.D., Huber D.P., Liao N.Y., Docking T.R., Birol I., et al. Transcriptome and full-length cDNA resources for the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major insect pest of pine forests. Insect Biochem. Mol. Biol. 2012;42:525–536. doi: 10.1016/j.ibmb.2012.03.010. PubMed DOI

Sicker D., Frey M., Schulz M., Gierl A. Role of natural benzoxazinones in the survival strategy of plants. Int. Rev. Cytol. 2000;198:319–346. doi: 10.1016/s0074-7696(00)98008-2. PubMed DOI

Hanhineva K., Rogachev I., Aura A.-M., Aharoni A., Poutanen K., Mykkänen H. Qualitative characterization of benzoxazinoid derivatives in whole grain rye and wheat by LC-MS metabolite profiling. J. Agric. Food Chem. 2011;59:921–927. doi: 10.1021/jf103612u. PubMed DOI

Robert C.A., Zhang X., Machado R.A., Schirmer S., Lori M., Mateo P., Erb M., Gershenzon J. Sequestration and activation of plant toxins protect the western corn rootworm from enemies at multiple trophic levels. eLife. 2017;6:e29307. doi: 10.7554/eLife.29307. PubMed DOI PMC

Davison A., Blaxter M. Ancient origin of glycosyl hydrolase family 9 cellulase genes. Mol. Biol. Evol. 2005;22:1273–1284. doi: 10.1093/molbev/msi107. PubMed DOI

Lo N., Tokuda G., Watanabe H., Rose H., Slaytor M., Maekawa K., Bandi C., Noda H. Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr. Biol. 2000;10:801–804. doi: 10.1016/S0960-9822(00)00561-3. PubMed DOI

Zhou X., Kovaleva E.S., Wu-Scharf D., Campbell J.H., Buchman G.W., Boucias D.G., Scharf M.E. Production and characterization of a recombinant beta-1,4-endoglucanase (glycohydrolase family 9) from the termite Reticulitermes flavipes. Arch. Insect Biochem. Physiol. 2010;74:147–162. doi: 10.1002/arch.20368. PubMed DOI

Shelomi M., Watanabe H., Arakawa G. Endogenous cellulase enzymes in the stick insect (Phasmatodea) gut. J. Insect Physiol. 2014;60:25–30. doi: 10.1016/j.jinsphys.2013.10.007. PubMed DOI

Rawlings N.D., Barrett A.J., Thomas P.D., Huang X., Bateman A., Finn R.D. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018;46:D624–D632. doi: 10.1093/nar/gkx1134. PubMed DOI PMC

Cunningham D.F., O’Connor B. Proline specific peptidases. Biochim. Biophys. Acta BBA—Protein Struct. Mol. Enzym. 1997;1343:160–186. doi: 10.1016/S0167-4838(97)00134-9. PubMed DOI

Dunaevsky Y.E., Tereshchenkova V.F., Oppert B., Belozersky M.A., Filippova I.Y., Elpidina E.N. Human proline specific peptidases: A comprehensive analysis. Biochim. Biophys. Acta BBA—Gen. Subj. 2020;1864:129636. doi: 10.1016/j.bbagen.2020.129636. PubMed DOI

Shewry P.R., Halford N.G. Cereal seed storage proteins: Structures, properties and role in grain utilization. J. Exp. Bot. 2002;53:947–958. doi: 10.1093/jexbot/53.370.947. PubMed DOI

Shewry P.R., Tatham A.S. The prolamin storage proteins of cereal seeds: Structure and evolution. Biochem. J. 1990;267:1–12. doi: 10.1042/bj2670001. PubMed DOI PMC

Goptar I.A., Filippova I.Y., Lysogorskaya E.N., Oksenoit E.S., Vinokurov K.S., Zhuzhikov D.P., Bulushova N.V., Zalunin I.A., Dunaevsky Y.E., Belozersky M.A., et al. Localization of post-proline cleaving peptidases in Tenebrio molitor larval midgut. Biochimie. 2008;90:508–514. doi: 10.1016/j.biochi.2007.11.002. PubMed DOI

Kakimoto T., Oshima G., Yeh H., Erdös E. Purification of lysosomal prolylcarboxypeptidase angiotensinase C. Biochim. Biophys. Acta BBA—Enzym. 1973;302:178–182. doi: 10.1016/0005-2744(73)90021-1. PubMed DOI

Odya C., Marinkovic D., Hammon K., Stewart T., Erdös E. Purification and properties of prolylcarboxypeptidase (angiotensinase C) from human kidney. J. Biol. Chem. 1978;253:5927–5931. doi: 10.1016/S0021-9258(17)34557-X. PubMed DOI

Tan F., Morris P., Skidgel R., Erdös E. Sequencing and cloning of human prolylcarboxypeptidase (angiotensinase C). Similarity to both serine carboxypeptidase and prolylendopeptidase families. J. Biol. Chem. 1993;268:16631–16638. doi: 10.1016/S0021-9258(19)85465-0. PubMed DOI

Tereshchenkova V.F., Goptar I.A., Kulemzina I.A., Zhuzhikov D.P., Serebryakova M., Belozersky M.A., Dunaevsky Y.E., Oppert B., Filippova I.Y., Elpidina E.N. Dipeptidyl peptidase 4—An important digestive peptidase in Tenebrio molitor larvae. Insect Biochem. Mol. Biol. 2016;76:38–48. doi: 10.1016/j.ibmb.2016.07.003. PubMed DOI

Di Cera E. Serine proteases. IUBMB Life. 2009;61:510–515. doi: 10.1002/iub.186. PubMed DOI PMC

Srinivasan A., Giri A.P., Gupta V.S. Structural and functional diversities in lepidopteran serine proteases. Cell. Mol. Biol. Lett. 2006;11:132–154. doi: 10.2478/s11658-006-0012-8. PubMed DOI PMC

Konarev A.V., Fomicheva Y.V. Cross analysis of the interaction of alpha-amylase and proteinase components of insects with protein inhibitors from wheat endosperm. Biokhimiya. 1991;56:628–638.

Zhu Y.-C., Baker J.E. Characterization of midgut trypsin-like enzymes and three trypsinogen cDNAs from the lesser grain borer, Rhyzopertha dominica (Coleoptera: Bostrichidae) Insect Biochem. Mol. Biol. 1999;29:1053–1063. doi: 10.1016/S0965-1748(99)00081-8. PubMed DOI

Zhu Y.-C., Baker J.E. Molecular cloning and characterization of a midgut chymotrypsin-like enzyme from the lesser grain borer, Rhyzopertha dominica. Arch. Insect Biochem. Physiol. 2000;43:173–184. doi: 10.1002/(SICI)1520-6327(200004)43:4<173::AID-ARCH3>3.0.CO;2-8. PubMed DOI

Miao Z., Cao X., Jiang H. Digestion-related proteins in the tobacco hornworm, Manduca sexta. Insect Biochem. Mol. Biol. 2020;126:103457. doi: 10.1016/j.ibmb.2020.103457. PubMed DOI PMC

Cao X., Jiang H. Building a platform for predicting functions of serine protease-related proteins in Drosophila melanogaster and other insects. Insect Biochem. Mol. Biol. 2018;103:53–69. doi: 10.1016/j.ibmb.2018.10.006. PubMed DOI PMC

Agre P. Aquaporin water channels. Biosci. Rep. 2004;24:127–163. doi: 10.1007/s10540-005-2577-2. PubMed DOI

Verkman A. Aquaporins. Curr. Biol. 2013;23:R52–R55. doi: 10.1016/j.cub.2012.11.025. PubMed DOI PMC

Finn R.N., Cerdà J. Evolution and functional diversity of aquaporins. Biol. Bull. 2015;229:6–23. doi: 10.1086/BBLv229n1p6. PubMed DOI

Fu D., Libson A., Miercke L.J.W., Weitzman C., Nollert P., Krucinski J., Stroud R.M. Structure of a glycerol-conducting channel and the basis for its selectivity. Science. 2000;290:481–486. doi: 10.1126/science.290.5491.481. PubMed DOI

Sui H., Han B.-G., Lee J.K., Walian P.J., Jap B.K. Structural basis of water-specific transport through the AQP1 water channel. Nature. 2001;414:872–878. doi: 10.1038/414872a. PubMed DOI

Beitz E., Wu B., Holm L.M., Schultz J.E., Zeuthen T. Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons. Proc. Natl. Acad. Sci. USA. 2006;103:269–274. doi: 10.1073/pnas.0507225103. PubMed DOI PMC

Fu D., Lu M. The structural basis of water permeation and proton exclusion in aquaporins (review) Mol. Membr. Biol. 2007;24:366–374. doi: 10.1080/09687680701446965. PubMed DOI

Almasalmeh A., Krenc D., Wu B., Beitz E. Structural determinants of the hydrogen peroxide permeability of aquaporins. FEBS J. 2014;281:647–656. doi: 10.1111/febs.12653. PubMed DOI

Finn R.N., Chauvigné F., Stavang J.A., Belles X., Cerdà J. Insect glycerol transporters evolved by functional co-option and gene replacement. Nat. Commun. 2015;6:7814. doi: 10.1038/ncomms8814. PubMed DOI PMC

Stavang J.A., Chauvigné F., Kongshaug H., Cerdà J., Nilsen F., Finn R.N. Phylogenomic and functional analyses of salmon lice aquaporins uncover the molecular diversity of the superfamily in Arthropoda. BMC Genom. 2015;16:618. doi: 10.1186/s12864-015-1814-8. PubMed DOI PMC

Morishita Y., Matsuzaki T., Hara-Chikuma M., Andoo A., Shimono M., Matsuki A., Kobayashi K., Ikeda M., Yamamoto T., Verkman A., et al. Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule. Mol. Cell. Biol. 2005;25:7770–7779. doi: 10.1128/MCB.25.17.7770-7779.2005. PubMed DOI PMC

Gorelick A.D., Praetorius J., Tsunenari T., Nielsen S., Agre P. Aquaporin-11: A channel protein lacking apparent transport function expressed in brain. BMC Biochem. 2006;7:14. doi: 10.1186/1471-2091-7-14. PubMed DOI PMC

Drake L.L., Boudko D.Y., Marinotti O., Carpenter V.K., Dawe A.L., Hansen I.A. The aquaporin gene family of the yellow fever mosquito, Aedes aegypti. PLoS ONE. 2010;5:e15578. doi: 10.1371/journal.pone.0015578. PubMed DOI PMC

Fabrick J.A., Pei J., Hull J.J., Yool A.J. Molecular and functional characterization of multiple aquaporin water channel proteins from the western tarnished plant bug, Lygus hesperus. Insect Biochem. Mol. Biol. 2014;45:125–140. doi: 10.1016/j.ibmb.2013.12.002. PubMed DOI

Van Ekert E., Chauvigné F., Finn R.N., Mathew L.G., Hull J.J., Cerdà J., Fabrick J.A. Molecular and functional characterization of Bemisia tabaci aquaporins reveals the water channel diversity of hemipteran insects. Insect Biochem. Mol. Biol. 2016;77:39–51. doi: 10.1016/j.ibmb.2016.07.010. PubMed DOI

Yao X.-X., Meng Q.-W., Li G.-Q. RNA interference-mediated functional characterization of aquaporin genes in Tribolium castaneum. Insect Mol. Biol. 2018;27:234–246. doi: 10.1111/imb.12367. PubMed DOI

Midboe E.G., Candas M., Bulla L.A. Expression of a midgut-specific cadherin BT-R1 during the development of Manduca sexta larva. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2003;135:125–137. doi: 10.1016/S1096-4959(03)00054-X. PubMed DOI

Fabrick J.A., Wu Y., Wu Y. Roles of insect midgut cadherin in Bt intoxication and resistance. In: Soberón M., Gao A., Bravo A., editors. Bt Resistance: Characterization and Strategies for GM Crops Producing Bacillus Thuringiensis Toxins. Volume 4. CABI Crop Protection Compendium; Boston, MA, USA: 2015. pp. 69–86.

Adang M.J., Crickmore N., Jurat-Fuentes J.L. Diversity of Bacillus thuringiensis crystal toxins and mechanism of action. Adv. Insect Physiol. 2014;47:39–87. doi: 10.1016/b978-0-12-800197-4.00002-6. DOI

Dorsch J., Candas M., Griko N., Maaty W., Midboe E., Vadlamudi R., Bulla L. Cry1A toxins of Bacillus thuringiensis bind specifically to a region adjacent to the membrane-proximal extracellular domain of BT-R1 in Manduca sexta: Involvement of a cadherin in the entomopathogenicity of Bacillus thuringiensis. Insect Biochem. Mol. Biol. 2002;32:1025–1036. doi: 10.1016/S0965-1748(02)00040-1. PubMed DOI

Hua G., Jurat-Fuentes J.L., Adang M.J. Bt-R1a extracellular cadherin repeat 12 mediates Bacillus thuringiensis Cry1Ab binding and cytotoxicity. J. Biol. Chem. 2004;279:28051–28056. doi: 10.1074/jbc.M400237200. PubMed DOI

Gómez I., Lopez L.P., Muñoz-Garay C., Fernandez L., Pérez C., Sánchez J., Soberón M., Bravo A. Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis. Peptides. 2007;28:169–173. doi: 10.1016/j.peptides.2006.06.013. PubMed DOI

Sayed A., Nekl E.R., Siqueira H., Wang H.-C., Ffrench-Constant R., Bagley M., Siegfried B.D. A novel cadherin-like gene from western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), larval midgut tissue. Insect Mol. Biol. 2007;16:591–600. doi: 10.1111/j.1365-2583.2007.00755.x. PubMed DOI

Fabrick J., Oppert C., Lorenzen M.D., Morris K., Oppert B., Jurat-Fuentes J.L. A novel tenebrio molitor cadherin is a functional receptor for Bacillus thuringiensis Cry3Aa toxin. J. Biol. Chem. 2009;284:18401–18410. doi: 10.1074/jbc.M109.001651. PubMed DOI PMC

Hua G., Park Y., Adang M.J. Cadherin AdCad1 in Alphitobius diaperinus larvae is a receptor of Cry3Bb toxin from Bacillus thuringiensis. Insect Biochem. Mol. Biol. 2014;45:11–17. doi: 10.1016/j.ibmb.2013.10.007. PubMed DOI

Bel Y., Escriche B. Common genomic structure for the Lepidoptera cadherin-like genes. Gene. 2006;381:71–80. doi: 10.1016/j.gene.2006.07.001. PubMed DOI

Petersen M., Armisén D., Gibbs R.A., Hering L., Khila A., Mayer G., Richards S., Niehuis O., Misof B. Diversity and evolution of the transposable element repertoire in arthropods with particular reference to insects. BMC Ecol. Evol. 2019;19:1–15. doi: 10.1186/s12862-018-1324-9. PubMed DOI PMC

Gómez I., Oltean D.I., Gill S.S., Bravo A., Soberón M. Mapping the epitope in cadherin-like receptors involved in Bacillus thuringiensis Cry1A toxin interaction using phage display. J. Biol. Chem. 2001;276:28906–28912. doi: 10.1074/jbc.M103007200. PubMed DOI

Whalon M.E., Miller D.L., Hollingworth R.M., Grafius E.J., Miller J.R. Selection of a Colorado potato beetle (Coleoptera: Chrysomelidae) strain resistant to Bacillus thuringiensis. J. Econ. Entomol. 1993;86:226–233. doi: 10.1093/jee/86.2.226. DOI

Oppert B., Morgan T.D., Kramer K.J. Efficacy of Bacillus thuringiensis Cry3Aa protoxin and protease inhibitors against coleopteran storage pests. Pest Manag. Sci. 2011;67:568–573. doi: 10.1002/ps.2099. PubMed DOI

Turk V., Stoka V., Vasiljeva O., Renko M., Sun T., Turk B., Turk D. Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochim. Biophys. Acta BBA—Proteins Proteom. 2012;1824:68–88. doi: 10.1016/j.bbapap.2011.10.002. PubMed DOI PMC

Terra W.R., Ferreira C. Insect digestive enzymes: Properties, compartmentalization and function. Comp. Biochem. Physiol. Part B Comp. Biochem. 1994;109:1–62. doi: 10.1016/0305-0491(94)90141-4. DOI

Wolfson J.L., Murdock L.L. Diversity in digestive proteinase activity among insects. J. Chem. Ecol. 1990;16:1089–1102. doi: 10.1007/BF01021013. PubMed DOI

Terra W.R., Cristofoletti P. Midgut proteinases in three divergent species of Coleoptera. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 1996;113:725–730. doi: 10.1016/0305-0491(95)02037-3. DOI

Goptar I., Semashko T., Danilenko S., Lysogorskaya E., Oksenoit E., Zhuzhikov D., Belozersky M., Dunaevsky Y., Oppert B., Filippova I., et al. Cysteine digestive peptidases function as post-glutamine cleaving enzymes in tenebrionid stored-product pests. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2012;161:148–154. doi: 10.1016/j.cbpb.2011.10.005. PubMed DOI

Martynov A.G., Elpidina E.N., Perkin L., Oppert B. Functional analysis of C1 family cysteine peptidases in the larval gut of Tenebrio molitor and Tribolium castaneum. BMC Genom. 2015;16:75. doi: 10.1186/s12864-015-1306-x. PubMed DOI PMC

Perkin L., Elpidina E.N., Oppert B. Expression patterns of cysteine peptidase genes across the Tribolium castaneum life cycle provide clues to biological function. PeerJ. 2016;4:e1581. doi: 10.7717/peerj.1581. PubMed DOI PMC

Oppert B., Elpidina E.N., Toutges M., Mazumdar-Leighton S. Microarray analysis reveals strategies of Tribolium castaneum larvae to compensate for cysteine and serine protease inhibitors. Comp. Biochem. Physiol. Part D Genom. Proteom. 2010;5:280–287. doi: 10.1016/j.cbd.2010.08.001. PubMed DOI

Novinec M., Lenarčič B. Papain-like peptidases: Structure, function, and evolution. Biomol. Concepts. 2013;4:287–308. doi: 10.1515/bmc-2012-0054. PubMed DOI

Wex T., Lipyansky A., Brömme N.C., Wex H., Guan X.Q., Brömme D. TIN-ag-RP, a novel catalytically inactive cathepsin B-related protein with EGF domains, is predominantly expressed in vascular smooth muscle cells. Biochemistry. 2001;40:1350–1357. doi: 10.1021/bi002266o. PubMed DOI

Schlipalius D., Tuck A.G., Jagadeesan R., Nguyen T., Kaur R., Subramanian S., Barrero R., Nayak M., Ebert P.R. Variant linkage analysis using de novo transcriptome sequencing identifies a conserved phosphine resistance gene in insects. Genetics. 2018;209:281–290. doi: 10.1534/genetics.118.300688. PubMed DOI PMC

Wu C., Chakrabarty S., Jin M., Liu K., Xiao Y. Insect ATP-Binding Cassette (ABC) transporters: Roles in xenobiotic detoxification and Bt insecticidal activity. Int. J. Mol. Sci. 2019;20:2829. doi: 10.3390/ijms20112829. PubMed DOI PMC

Montella I.R., Schama R., Valle D. The classification of esterases: An important gene family involved in insecticide resistance—A review. Memórias Inst. Oswaldo Cruz. 2012;107:437–449. doi: 10.1590/S0074-02762012000400001. PubMed DOI

Ahn S.-J., Vogel H., Heckel D.G. Comparative analysis of the UDP-glycosyltransferase multigene family in insects. Insect Biochem. Mol. Biol. 2012;42:133–147. doi: 10.1016/j.ibmb.2011.11.006. PubMed DOI

Abdel-Latief M. A family of chemoreceptors in Tribolium castaneum (Tenebrionidae: Coleoptera) PLoS ONE. 2007;19:e1319. doi: 10.1371/journal.pone.0001319. PubMed DOI PMC

Engsontia P., Sangket U., Robertson H.M., Satasook C. Diversification of the ant odorant receptor gene family and positive selection on candidate cuticular hydrocarbon receptors. BMC Res. Notes. 2015;8:380. doi: 10.1186/s13104-015-1371-x. PubMed DOI PMC

Biebl S., Querner P. Transportation of wood boring beetles in wooden transport boxes, wooden pallets, and newly bought wood in museums. Stud. Conserv. 2021;66:44–50. doi: 10.1080/00393630.2020.1756126. DOI

Six D.L. A major symbiont shift supports a major niche shift in a clade of tree-killing bark beetles. Ecol. Entomol. 2020;45:190–201. doi: 10.1111/een.12786. DOI

Konarev A., Dolgikh V., Senderskiy I., Konarev A., Kapustkina A., Lovegrove A. Characterisation of proteolytic enzymes of Eurygaster integriceps Put. (Sunn bug), a major pest of cereals. J. Asia-Pac. Entomol. 2019;22:379–385. doi: 10.1016/j.aspen.2019.02.001. DOI

McKenna D.D., Wild A.L., Kanda K., Bellamy C.L., Beutel R.G., Caterino M.S., Farnum C.W., Hawks D.C., Ivie M.A., Jameson M.L., et al. The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Syst. Entomol. 2015;40:835–880. doi: 10.1111/syen.12132. DOI

Kaur R., Daniels E.V., Nayak M.K., Ebert P.R., Schlipalius I.D. Determining changes in the distribution and abundance of aRhyzopertha dominicaphosphine resistance allele in farm grain storages using a DNA marker. Pest Manag. Sci. 2013;69:685–688. doi: 10.1002/ps.3514. PubMed DOI

Schlipalius D.I., Tuck A.G., Pavic H., Daglish G.J., Nayak M.K., Ebert P.R. A high-throughput system used to determine frequency and distribution of phosphine resistance across large geographical regions. Pest Manag. Sci. 2019;75:1091–1098. doi: 10.1002/ps.5221. PubMed DOI

Nayak M.K., Jagadeesan R., Singarayan V.T., Nath N.S., Pavic H., Dembowski B., Daglish G.J., Schlipalius D.I., Ebert P.R. First report of strong phosphine resistance in stored grain insects in a far northern tropical region of Australia, combining conventional and genetic diagnostics. J. Stored Prod. Res. 2021;92:101813. doi: 10.1016/j.jspr.2021.101813. DOI

Henikoff S., Ahmad K., Malik H.S. The centromere paradox: Stable inheritance with rapidly evolving DNA. Science. 2001;293:1098–1102. doi: 10.1126/science.1062939. PubMed DOI

Heslop-Harrison J.S., Schwarzacher T. Nucleosomes and centromeric DNA packaging. Proc. Natl. Acad. Sci. USA. 2013;110:19974–19975. doi: 10.1073/pnas.1319945110. PubMed DOI PMC

Ugarkovic D., Podnar M., Plohl M. Satellite DNA of the red flour beetle Tribolium castaneum—Comparative study of satellites from the genus Tribolium. Mol. Biol. Evol. 1996;13:1059–1066. doi: 10.1093/oxfordjournals.molbev.a025668. PubMed DOI

Wang S., Lorenzen M., Beeman R.W., Brown S.J. Analysis of repetitive DNA distribution patterns in the Tribolium castaneum genome. Genome Biol. 2008;9:R61. doi: 10.1186/gb-2008-9-3-r61. PubMed DOI PMC

Saito N., Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987;4:406–425. PubMed

Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 1985;39:783. doi: 10.1111/j.1558-5646.1985.tb00420.x. PubMed DOI

Schwarz R., Dayhoff M. Matrices for detecting distant relationships. In: Dayhoff M., editor. Atlas of Protein Sequences. National Biomedical Research Foundation; Washington, DC, USA: 1979. pp. 353–358.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...