Round-shape gold nanoparticles: effect of particle size and concentration on Arabidopsis thaliana root growth

. 2018 Apr 10 ; 13 (1) : 95. [epub] 20180410

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29637317

Grantová podpora
17-10907S Grantová Agentura České Republiky
108/12/G108 Grantová Agentura České Republiky

Odkazy

PubMed 29637317
PubMed Central PMC5893504
DOI 10.1186/s11671-018-2510-9
PII: 10.1186/s11671-018-2510-9
Knihovny.cz E-zdroje

Nowadays, due to a wide range of applications of nanoparticles (NPs) in many industrial areas, accumulations of those entities in environment pose a great risk. Owing to their inertness, noble metal NPs may remain in contaminated soils nearly unchanged for long time. Within this context, size-, shape-, and concentration-dependent uptake of particles by plants belongs to unexplored area. In this work, we present water solutions of biologically friendly synthesized spherical AuNPs with pretty narrow size distribution in size range from 10 to 18 nm. Their thorough characterization by atomic absorption spectroscopy, mass spectroscopy-equipped inductively coupled plasma, dynamic light scattering (DLS), and TEM methods was followed by the study of their effect on the growth of Arabidopsis thaliana (primary and lateral roots), in particle size- and concentration-dependent manner. Due to strictly round-shape form of AuNPs and absence of particle agglomeration, DLS-derived size and size distribution were in good concordance with those obtained from TEM. The length and number of A. thaliana lateral roots were significantly affected by all types of AuNPs. Smallest AuNPs at highest concentration inhibited length of primary roots and, in contrast, enhanced hair root growth.

Zobrazit více v PubMed

Siegel J, Lyutakov O, Polívková M, Staszek M, Hubáček T, Švorčík V. Laser-assisted immobilization of colloid silver nanoparticles on polyethyleneterephthalate. Appl Surf Sci. 2017;420:661–668. doi: 10.1016/j.apsusc.2017.05.151. DOI

Staszek M, Siegel J, Polivkova M, Svorcik V. Influence of temperature on silver nanoparticle size prepared by sputtering into PVP-glycerol system. Mater Lett. 2017;186:341–344. doi: 10.1016/j.matlet.2016.10.036. DOI

Dai W, Yan J, Dai K, Li L, Guan N. Ultrafine metal nanoparticles loaded on TiO2 nanorods: synthesis strategy and photocatalytic activity. Chin J Catal. 2015;36:1968–1975. doi: 10.1016/S1872-2067(15)60954-8. DOI

Felix-Navarro RM, Beltran-Gastelum M, Reynoso-Soto EA, Paraguay-Delgado F, Alonso-Nunez G, Flores-Hernandez JR. Bimetallic Pt-Au nanoparticles supported on multi-wall carbon nanotubes as electrocatalysts for oxygen reduction. Renew Energy. 2016;87:31–41. doi: 10.1016/j.renene.2015.09.060. DOI

Geranio L, Heuberger M, Nowack B. The behavior of silver nanotextiles during washing. Environ Sci Technol. 2009;43:8113–8118. doi: 10.1021/es9018332. PubMed DOI

Marslin G, Selvakesavan RK, Franklin G, Sarmento B, Dias ACP. Antimicrobial activity of cream incorporated with silver nanoparticles biosynthesized from Withania somnifera. Int J Nanomedicine. 2015;10:5955–5963. PubMed PMC

Peiris PM, Deb P, Doolittle E, Doron G, Goldberg A, Govender P, et al. Vascular targeting of a gold nanoparticle to breast cancer metastasis. J Pharm Sci. 2015;104:2600–2610. doi: 10.1002/jps.24518. PubMed DOI PMC

Slepicka P, Kasalkova NS, Siegel J, Kolska Z, Bacakova L, Svorcik V. Nano-structured and functionalized surfaces for cytocompatibility improvement and bactericidal action. Biotechnol Adv. 2015;33:1120–1129. doi: 10.1016/j.biotechadv.2015.01.001. PubMed DOI

Slepicka P, Siegel J, Lyutakov O, Slepickova Kasalkova N, Kolska Z, Bacakova L et al (2017) Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol Adv. 10.1016/j.biotechadv.2017.12.011 PubMed

Hao J, Xu Y, Chen S, Zhang Y, Mai J, Lau T-K, et al. Broadband plasmon-enhanced polymer solar cells with power conversion efficiency of 9.26% using mixed Au nanoparticles. Opt Commun. 2016;362:50–58. doi: 10.1016/j.optcom.2015.07.032. DOI

Ma X, Geiser-Lee J, Deng Y, Kolmakov A. Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ. 2010;408:3053–3061. doi: 10.1016/j.scitotenv.2010.03.031. PubMed DOI

Lee CW, Mahendra S, Zodrow K, Li D, Tsai Y-C, Braam J, et al. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem. 2010;29:669–675. doi: 10.1002/etc.58. PubMed DOI

Kumar V, Guleria P, Kumar V, Yadav SK. Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ. 2013;461:462–468. doi: 10.1016/j.scitotenv.2013.05.018. PubMed DOI

Polivkova M, Siegel J, Rimpelova S, Hubacek T, Kolska Z, Svorcik V. Cytotoxicity of Pd nanostructures supported on PEN: influence of sterilization on Pd/PEN interface. Mater Sci Eng C-Mater Biol Appl. 2017;70:479–486. doi: 10.1016/j.msec.2016.09.032. PubMed DOI

Reznickova A, Siegel J, Slavikova N, Kolska Z, Staszek M, Svorcik V. Metal nanoparticles designed PET: preparation, characterization and biological response. React Funct Polym. 2016;105:1–8. doi: 10.1016/j.reactfunctpolym.2016.05.012. DOI

Staszek M, Siegel J, Rimpelova S, Lyutakov O, Svorcik V. Cytotoxicity of noble metal nanoparticles sputtered into glycerol. Mater Lett. 2015;158:351–354. doi: 10.1016/j.matlet.2015.06.021. DOI

Polivkova M, Valova M, Siegel J, Rimpelova S, Hubacek T, Lyutakov O, Svorcik V. Antibacterial properties of palladium nanostructures sputtered on polyethylene naphthalate. RSC Adv. 2015;5:73767–73774. doi: 10.1039/C5RA09297C. DOI

Polivkova M, Hubacek T, Staszek M, Svorcik V, Siegel J (2017) Antimicrobial treatment of polymeric medical devices by silver nanomaterials and related technology. Int J Mol Sci 18:419 PubMed PMC

Siegel J, Polivkova M, Staszek M, Kolarova K, Rimpelova S, Svorcik V. Nanostructured silver coatings on polyimide and their antibacterial response. Mater Lett. 2015;145:87–90. doi: 10.1016/j.matlet.2015.01.050. DOI

Bastus NG, Comenge J, Puntes V. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir. 2011;27:11098–11105. doi: 10.1021/la201938u. PubMed DOI

Wang J, Koo Y, Alexander A, Yang Y, Westerhof S, Zhang Q, et al. Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environ Sci Technol. 2013;47:5442–5449. doi: 10.1021/es4004334. PubMed DOI

Uskokovic V. Dynamic light scattering based microelectrophoresis: main prospects and limitations. J Dispers Sci Technol. 2012;33:1762–1786. doi: 10.1080/01932691.2011.625523. PubMed DOI PMC

Singh A, Jani K, Kumari P, Agarwal PK. Effect of MgCl2 and double concentration of Murashige and Skoog medium on in vitro plantlet and root cultures generation in halophytic grasswort Salicornia brachiata. Plant Cell Tissue Org Cult. 2015;120:563–570. doi: 10.1007/s11240-014-0622-1. DOI

Brunetti P, Zanella L, De Paolis A, Di Litta D, Cecchetti V, Falasca G, et al. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis. J Exp Bot. 2015;66:3815–3829. doi: 10.1093/jxb/erv185. PubMed DOI PMC

Geisler-Lee J, Wang Q, Yao Y, Zhang W, Geisler M, Li K, et al. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology. 2013;7:323–337. doi: 10.3109/17435390.2012.658094. PubMed DOI

Canas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931 PubMed

Ma Z, Bielenberg DG, Brown KM, Lynch JP. Regulation of root hair density by phosphorus availability in Arabidopsis thaliana. Plant Cell and Environment. 2001;24:459–467. doi: 10.1046/j.1365-3040.2001.00695.x. DOI

Garcia-Sanchez S, Bernales I, Cristobal S (2015) Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. BMC Genomics 16:341 PubMed PMC

Wang Y, Zhang W, Li K, Sun F, Han C, Wang Y, et al. Salt-induced plasticity of root hair development is caused by ion disequilibrium in Arabidopsis thaliana. J Plant Res. 2008;121:87–96. doi: 10.1007/s10265-007-0123-y. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...