Antimicrobial Treatment of Polymeric Medical Devices by Silver Nanomaterials and Related Technology
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
28212308
PubMed Central
PMC5343953
DOI
10.3390/ijms18020419
PII: ijms18020419
Knihovny.cz E-zdroje
- Klíčová slova
- antimicrobials, biocompatibility, medical devices, modification, nanostructures, polymers,
- MeSH
- antiinfekční látky aplikace a dávkování chemie MeSH
- biokompatibilní materiály chemie MeSH
- dezinfekce * metody MeSH
- infekce spojené se zdravotní péčí mikrobiologie prevence a kontrola přenos MeSH
- lidé MeSH
- nanostruktury * chemie ultrastruktura MeSH
- nanotechnologie MeSH
- polymery * chemie MeSH
- povrchové vlastnosti MeSH
- stříbro * chemie MeSH
- zdravotnické prostředky * mikrobiologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antiinfekční látky MeSH
- biokompatibilní materiály MeSH
- polymery * MeSH
- stříbro * MeSH
Antimicrobial biocompatible polymers form a group of highly desirable materials in medicinal technology that exhibit interesting thermal and mechanical properties, and high chemical resistance. There are numerous types of polymers with antimicrobial activity or antimicrobial properties conferred through their proper modification. In this review, we focus on the second type of polymers, especially those whose antimicrobial activity is conferred by nanotechnology. Nanotechnology processing is a developing area that exploits the antibacterial effects of broad-scale compounds, both organic and inorganic, to form value-added medical devices. This work gives an overview of nanostructured antimicrobial agents, especially silver ones, used together with biocompatible polymers as effective antimicrobial composites in healthcare. The bactericidal properties of non-conventional antimicrobial agents are compared with those of conventional ones and the advantages and disadvantages are discussed.
Zobrazit více v PubMed
Samuel U., Guggenbichlerb J.P. Prevention of catheter-related infections: The potential of a new nano-silver impregnated catheter. Int. J. Antimicrob. Agents. 2004;23:75–78. doi: 10.1016/j.ijantimicag.2003.12.004. PubMed DOI
Mangram A.J., Horan T.C., Pearson M.L., Silver L.C., Jarvis W.R. Guideline for prevention of surgical site infection, 1999. Am. J. Infect. Control. 1999;27:97–134. doi: 10.1016/S0196-6553(99)70088-X. PubMed DOI
Richards M.J., Edwards J.R., Culver D.H., Gaynes R.P. Nosocomial infections in combined medical-surgical intensive care units in the United States. Infect. Control Hosp. Epidemiol. 2000;21:510–515. doi: 10.1086/501795. PubMed DOI
Maki D.G., Cobb L., Garman J.K., Shapiro J.M., Ringer M., Helgerson R.B. An attachable silver-impregnated cuff for prevention of infection with central venous catheters: A prospective randomized multicenter trial. Am. J. Med. 1988;85:307–314. PubMed
Weber D.J., Raasch R., Rutala W.A. Nosocomial Infections in the ICU: The Growing Importance of Antibiotic-Resistant Pathogens. Chest. 1999;115:34–41. doi: 10.1378/chest.115.suppl_1.34S. PubMed DOI
Weinstein R.A. Nosocomial infection update. Emerg. Infect. Dis. 1998;4:416–420. doi: 10.3201/eid0403.980320. PubMed DOI PMC
Munoz-Bonilla A., Fernandez-Garcia M. Polymeric materials with antimicrobial activity. Prog. Polym. Sci. 2012;37:281–339. doi: 10.1016/j.progpolymsci.2011.08.005. DOI
Timofeeva L., Kleshcheva N. Antimicrobial polymers: Mechanism of action, factors of activity, and applications. Appl. Microbiol. Biotechnol. 2011;89:475–792. doi: 10.1007/s00253-010-2920-9. PubMed DOI
Tashiro T. Antibacterial and bacterium adsorbing macromolecules. Macromol. Mater. Eng. 2001;286:63–87. doi: 10.1002/1439-2054(20010201)286:2<63::AID-MAME63>3.0.CO;2-H. DOI
Gabriel G.J., Som A., Madkour A.E., Eren T., Tew G.N. Infectious disease: Connecting innate immunity to biocidal polymers. Mater. Sci. Eng. R. 2007;57:28–64. doi: 10.1016/j.mser.2007.03.002. PubMed DOI PMC
Page K., Wilson M., Parkin I.P. Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. J. Mater. Chem. 2009;19:3819–3831. doi: 10.1039/b818698g. DOI
Roe D., Karandikar B., Bonn-Savage N., Gibbins B., Roullet J.B. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J. Antimicrob. Chemother. 2008;61:869–876. doi: 10.1093/jac/dkn034. PubMed DOI
Yao Y., Ohko Y., Sekiguchi Y., Fujishima A., Kubota Y. Self-sterilization using silicone catheters coated with Ag and TiO2 nanocomposite thin film. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008;85B:453–460. doi: 10.1002/jbm.b.30965. PubMed DOI
Siegel J., Polivkova M., Kasalkova N.S., Kolska Z., Svorcik V. Properties of silver nanostructure-coated PTFE and its biocompatibility. Nanoscale Res. Lett. 2013;8:1–10. doi: 10.1186/1556-276X-8-388. PubMed DOI PMC
Tamboli M.S., Kulkarni M.V., Patil R.H., Gade W.N., Navale S.C., Kale B.B. Nanowires of silver–polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent. Colloids Surf. B Biointerfaces. 2012;92:35–41. doi: 10.1016/j.colsurfb.2011.11.006. PubMed DOI
Feldman C., Kassel M., Cantrell J., Kaka S., Morar R., Mahomed A.G., Philips J.I. The presence and sequence of endotracheal tube colonization in patients undergoing mechanical ventilation. Eur. Respir. J. 1999;13:546–551. doi: 10.1183/09031936.99.13354699. PubMed DOI
Pfaller M.A. Nosocomial Candidiasis: Emerging Species, Reservoirs, and Modes of Transmission. Clin. Infect. Dis. 1996;22:89–94. doi: 10.1093/clinids/22.Supplement_2.S89. PubMed DOI
Schierholz J.M., Beuth J. Implant infections: A haven for opportunistic bacteria. J. Hosp. Infect. 2001;49:87–93. doi: 10.1053/jhin.2001.1052. PubMed DOI
Flemming H.C. Relevance of biofilms for the biodeterioration of surfaces of polymeric materials. Polym. Degrad. Stable. 1998;59:309–315. doi: 10.1016/S0141-3910(97)00189-4. DOI
Gao G.Z., Lange D., Hilpert K., Kindrachuk J., Zou Y.Q., Cheng J.T.J., Kazemzadeh-Narbat M., Yu K., Wang R.Z., Straus S.K., et al. The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials. 2011;32:3899–3909. doi: 10.1016/j.biomaterials.2011.02.013. PubMed DOI
Bergogne-Bérézin E., Decreé D., Joly-Guillou M.L. Opportunistic nosocomial multiply resistant bacterial infections—their treatment and prevention. J. Antimicrob. Chemother. A. 1993;32:39–47. doi: 10.1093/jac/32.suppl_A.39. PubMed DOI
Handwerger S., Raucher B., Altarac D., Monka J., Marchione S., Singh K.V., Murray B.E., Wolff J., Walters B. Nosocomial outbreak due to Enterococcus faecium highly resistant to vancomycin, penicillin, and gentamicin. Clin. Infect. Dis. 1993;16:750–755. doi: 10.1093/clind/16.6.750. PubMed DOI
Clark N.C., Hill B.C., O’Hara C.M., Steingrimsson O., Cooksey R.C. Epidemiologic typing of Enterobacter sakazakii in two neonatal nosocomial outbreaks. Diagn. Microbiol. Infect. Dis. 1990;13:467–472. doi: 10.1016/0732-8893(90)90078-A. PubMed DOI
Jarvis W.R. Epidemiology of nosocomial fungal infections, with emphasis on Candida species. Clin. Infect. Dis. 1995;20:1526–1530. doi: 10.1093/clinids/20.6.1526. PubMed DOI
Wong G.K.C., Ip M., Poon W.S., Mak C.W.K., Ng R.Y.T. Antibiotics-impregnated ventricular catheter versus systemic antibiotics for prevention of nosocomial CSF and non-CSF infections: A prospective randomised clinical trial. J. Neurol. Neurosurg. Psychiatry. 2010;81:1064–1067. doi: 10.1136/jnnp.2009.198523. PubMed DOI
Kristiansen J.E., Amaral L. The potential management of resistant infections with non-antibiotics. J. Antimicrob. Chemother. 1997;40:319–327. doi: 10.1093/jac/40.3.319. PubMed DOI
Toracchio S., Marzio L. Primary and secondary antibiotic resistance of Helicobacter pylori strains isolated in central Italy during the years 1998–2002. Dig. Liver Dis. 2003;35:541–545. doi: 10.1016/S1590-8658(03)00265-2. PubMed DOI
Chemaly R.F., Sharma P.S., Youssef S., Gerber D., Hwu P., Hanmod S.S., Jiang Y., Hachem R.Y., Raad I.I. The efficacy of catheters coated with minocycline and rifampin in the prevention of catheter-related bacteremia in cancer patients receiving high-dose interleukin-2. Int. J. Infect. Dis. 2010;14:548–552. doi: 10.1016/j.ijid.2009.08.007. PubMed DOI
Jose B., Antoci V., Zeiger A.R., Wickstrom E., Hickok N.J. Vancomycin covalently bonded to titanium beads kills Staphylococcus aureus. Chem. Biol. 2005;12:1041–1048. doi: 10.1016/j.chembiol.2005.06.013. PubMed DOI
Fox C.L., Modak S.M. Mechanism of silver sulfadiazine action on burn wound infections. Antimicrob. Agents Chemother. 1974;5:582–588. doi: 10.1128/AAC.5.6.582. PubMed DOI PMC
Elsner J.J., Berdicevsky I., Zilberman M. In vitro microbial inhibition and cellular response to novel biodegradable composite wound dressings with controlled release of antibiotics. Acta Biomater. 2011;7:325–336. doi: 10.1016/j.actbio.2010.07.013. PubMed DOI
Sheng W.H., Wang J.T., Chang S.C., Hsueh P.R., Luh K.T. Evaluation of antiseptic-impregnated central venous catheters for prevention of catheter-related infection in intensive care unit patients. Diagn. Microbiol. Infect. Dis. 2000;38:1–5. doi: 10.1016/S0732-8893(00)00166-8. PubMed DOI
Wainwright M., Phoenix D.A., Gaskell M., Marshall B. Photobactericidal activity of methylene blue derivatives against vancomycin-resistant Enterococcus spp. J. Antimicrob. Chemother. 1999;44:823–825. doi: 10.1093/jac/44.6.823. PubMed DOI
Rahbar M., Mehrgan H., Hadji-Nejad S. Enhancement of Vancomycin Activity by phenothiazines against vancomycin-resistant Enterococcus faecium in vitro. Basic Clin. Pharmacol. Toxicol. 2010;107:676–679. doi: 10.1111/j.1742-7843.2010.00558.x. PubMed DOI
Balazs D.J., Triandafillu K., Wood P., Chevolot Y., van Delden C., Harms H., Hollenstein C., Mathieu H.J. Inhibition of bacterial adhesion on PVC endotracheal tubes by RF-oxygen glow discharge, sodium hydroxide and silver nitrate treatments. Biomaterials. 2004;25:2139–2151. doi: 10.1016/j.biomaterials.2003.08.053. PubMed DOI
Becker R.O., Spadaro J.A. Treatment of orthopaedic infections with electrically generated silver ions: A preliminary report. J. Bone Jt. Surg. Am. 1978;60:871–881. doi: 10.2106/00004623-197860070-00001. PubMed DOI
Panzner M.J., Deeraksa A., Smith A., Wright B.D., Hindi K.M., Kascatan-Nebioglu A., Torres A.G., Judy B.M., Hovis C.E., Hilliard J.K., et al. Synthesis and in vitro efficacy studies of silver carbene complexes on biosafety level 3 bacteria. Eur. J. Inorg. Chem. 2009;13:1739–1745. doi: 10.1002/ejic.200801159. PubMed DOI PMC
Li X.N., Robinson S.M., Gupta A., Saha K., Jiang Z.W., Moyano D.F., Sahar A., Riley M.A., Rotello V.M. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano. 2014;8:10682–10686. doi: 10.1021/nn5042625. PubMed DOI PMC
Ben-Sasson M., Zodrow K.R., Qi G.G., Kang Y., Giannelis E.P., Elimelech M. Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties. Environ. Sci. Technol. 2014;48:384–393. doi: 10.1021/es404232s. PubMed DOI
Adams C.P., Walker K.A., Obare S.O., Docherty K.M. Size-dependent antimicrobial effects of novel palladium nanoparticles. PLoS ONE. 2014;9:e85981. doi: 10.1371/journal.pone.0085981. PubMed DOI PMC
Maki D.G., Stolz S.M., Wheeler S., Mermel L.A. Prevention of central venous catheter-related bloodstream infection by use of an antiseptic-impregnated catheter: A randomized, controlled trial. Ann. Intern. Med. 1997;127:257–266. doi: 10.7326/0003-4819-127-4-199708150-00001. PubMed DOI
Martins M., Dastidar S.G., Fanning S., Kristiansen J.E., Molnar J., Pages J.M., Schelz Z., Spengler G., Viveiros M., Amaral L. Potential role of non-antibiotics (helper compounds) in the treatment of multidrug-resistant Gram-negative infections: Mechanisms for their direct and indirect activities. Int. J. Antimicrob. Agents. 2008;31:198–208. doi: 10.1016/j.ijantimicag.2007.10.025. PubMed DOI
Lansdown A.B. Silver in health care: Antimicrobial effects and safety in use. Curr. Probl. Dermatol. 2006;33:17–34. PubMed
Mijnendonckx K., Leys N., Mahillon J., Silver S., van Houdt R. Antimicrobial silver: Uses, toxicity and potential for resistance. Biomaterials. 2013;26:609–621. doi: 10.1007/s10534-013-9645-z. PubMed DOI
Aflori M., Miron C., Dobromir M., Drobota M. Bactericidal effect on Foley catheters obtained by plasma and silver nitrate treatments. High Perform. Polym. 2015;27:655–660. doi: 10.1177/0954008315584171. DOI
Kascatan-Nebioglu A., Panzner M.J., Tessier C.A., Cannon C.L., Youngs W.J. N-Heterocyclic carbene-silver complexes: A new class of antibiotics. Coord. Chem. Rev. 2007;251:884–895. doi: 10.1016/j.ccr.2006.08.019. DOI
Siegel J., Staszek M., Polivkova M., Reznickova A., Rimpelova S., Svorcik V. Green synthesized noble metals for biological applications. Mater. Today Proc. 2016;3:608–616. doi: 10.1016/j.matpr.2016.01.098. DOI
Siegel J., Polivkova M., Staszek M., Kolarova K., Rimpelova S., Svorcik V. Nanostructured silver coatings on polyimide and their antibacterial response. Mater. Lett. 2015;145:89–90. doi: 10.1016/j.matlet.2015.01.050. DOI
Polivkova M., Štrublová V., Hubáček T., Rimpelová S., Švorčík V., Siegel J. Surface characterization and antibacterial response of silver nanowire arrays supported on laser-treated polyethylene naphthalate. Mater. Sci. Eng. C. 2016 doi: 10.1016/j.msec.2016.11.072. PubMed DOI
Sotiriou G.A., Pratsinis S.E. Engineering nanosilver as an antibacterial, biosensor and bioimaging material. Curr. Opin. Chem. Eng. 2011;1:3–10. doi: 10.1016/j.coche.2011.07.001. PubMed DOI PMC
Polivkova M., Valova M., Siegel J., Rimpelova S., Hubacek T., Lyutakov O., Svorcik V. Antibacterial properties of palladium nanostructures sputtered on polyethylene naphthalate. RSC Adv. 2015;5:73767–73774. doi: 10.1039/C5RA09297C. DOI
Chaloupka K., Malam Y., Seifalian A.M. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010;28:580–588. doi: 10.1016/j.tibtech.2010.07.006. PubMed DOI
Chen X., Schluesener H.J. Nanosilver: A nanoproduct in medical application. Toxicol. Lett. 2008;176:1–12. doi: 10.1016/j.toxlet.2007.10.004. PubMed DOI
Yamanaka M., Hara K., Kudo J. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl. Environ. Microbiol. 2005;71:7589–7593. doi: 10.1128/AEM.71.11.7589-7593.2005. PubMed DOI PMC
Yoshida K., Tanagawa M., Atsuta M. Characterization and inhibitory effect of antibacterial dental resin composites incorporating silver-supported materials. J. Biomed. Mater. Res. A. 1999;47:516–522. doi: 10.1002/(SICI)1097-4636(19991215)47:4<516::AID-JBM7>3.0.CO;2-E. PubMed DOI
Kittler S., Greulich C., Diendorf J., Koller M., Epple M. Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem. Mater. 2010;22:4548–4554. doi: 10.1021/cm100023p. DOI
Chernousova S., Epple M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem. Int. Ed. 2013;52:1636–1653. doi: 10.1002/anie.201205923. PubMed DOI
Jung W.K., Koo H.C., Kim K.W., Shin S., Kim S.H., Park Y.H. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl. Environ. Microb. 2008;74:2171–2178. doi: 10.1128/AEM.02001-07. PubMed DOI PMC
Schierholz J.M., Wachol-Drewek Z., Lucas L.J., Pulverer G. Activity of silver ions in different media. Zent. Bl. Bakteriol. 1998;287:411–420. doi: 10.1016/S0934-8840(98)80178-3. PubMed DOI
Jansen B., Rinck M., Wolbring P., Strohmeier A., Jahns T. In vitro evaluation of the antimicrobial efficacy and biocompatibility of a silver-coated central venous catheter. J. Biomater. Appl. 1994;9:55–70. doi: 10.1177/088532829400900103. PubMed DOI
Osińska-Jaroszuk M., Ginalska G., Belcarz A., Uryniak A. Vascular prostheses with covalently bound gentamicin and amikacin reveal superior antibacterial properties than silver-impregnated ones: An in vitro study. Eur. J. Vasc. Endovasc. Surg. 2009;38:697–706. doi: 10.1016/j.ejvs.2009.09.003. PubMed DOI
Guggenbichler J.P., Boswald M., Lugauer S., Krall T. A new technology of microdispersed silver in polyurethane induces antimicrobial activity in central venous catheters. Infection. 1999;27:16–23. doi: 10.1007/BF02561612. PubMed DOI
Trooskin S.Z., Donetz A.P., Baxter J., Harvey R.A., Greco R.S. Infection-resistant continuous peritoneal dialysis catheters. Nephron. 1989;46:263–267. doi: 10.1159/000184366. PubMed DOI
Jansen B., Jansen S., Peters G., Pulverer G. In Vitro efficacy of a central venous catheter (‘Hydrocath’) loaded with teicoplanin to prevent bacterial colonization. J. Hosp. Infect. 1992;22:93–107. doi: 10.1016/0195-6701(92)90093-2. PubMed DOI
Raad I., Darouiche R., Hachem R., Mansouri M., Bodey G.P. The broad-spectrum activity and efficacy of catheters coated with minocycline and rifampin. J. Infect. Dis. 1996;173:418–424. doi: 10.1093/infdis/173.2.418. PubMed DOI
Hampl J., Schierholz J., Jansen B., Aschoff A. In vitro and in vivo efficacy of a rifampin-loaded silicone catheter for the prevention of CSF shunt infections. Acta Neurochir. 1995;133:147–152. doi: 10.1007/BF01420065. PubMed DOI
Groeger J.S., Lucas A.B., Coit D., Laquaglia M., Brown A.E., Turnbull A., Exelby P. A prospective, randomized evaluation of the effect of silver impregnated subcutaneous cuffs for preventing tunneled chronic venous access catheter infections in cancer patients. Ann. Surg. 1993;218:206–210. doi: 10.1097/00000658-199308000-00014. PubMed DOI PMC
Bassetti S., Hu J., d’Agostino R.B., Sherertz R.J. Prolonged antimicrobial activity of a catheter containing chlorhexidine-silver sulfadiazine extends protection against catheter infections in vivo. Antimicrob. Agents Chemother. 2001;45:1535–1538. doi: 10.1128/AAC.45.5.1535-1538.2001. PubMed DOI PMC
Braydich-Stolle L., Hussain S., Schlager J.J., Hofmann M.C. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 2005;88:412–419. doi: 10.1093/toxsci/kfi256. PubMed DOI PMC
Diakowska D., Lewandowski A., Kopec W., Diakowski W., Chrzanowska T. Oxidative DNA damage and total antioxidant status in serum of patients with esophageal squamous cell carcinoma. Hepatogastroenterology. 2007;54:1701–1704. PubMed
Ahamed M., Karns M., Goodson M., Rowe J., Hussain S.M., Schlager J.J., Hong Y.L. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol. Appl. Pharmacol. 2008;233:404–410. doi: 10.1016/j.taap.2008.09.015. PubMed DOI
Huang Y., Duan X.F., Wei Q.Q., Lieber C.M. Directed assembly of one-dimensional nanostructures into functional networks. Science. 2001;291:630–633. doi: 10.1126/science.291.5504.630. PubMed DOI
Xia Y.N., Yang P.D., Sun Y.G., Wu Y.Y., Mayers B., Gates B., Yin Y.D., Kim F., Yan Y.Q. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003;15:353–389. doi: 10.1002/adma.200390087. DOI
Staszek M., Siegel J., Rimpelova S., Lyutakov O., Svorcik V. Cytotoxicity of noble metal nanoparticles sputtered into glycerol. Mater. Lett. 2015;158:351–354. doi: 10.1016/j.matlet.2015.06.021. DOI
Sun Y.G., Xia Y.N. Shape-controlled synthesis of gold and silver nanoparticles. Science. 2002;298:2176–2179. doi: 10.1126/science.1077229. PubMed DOI
Kim J.S., Kuk E., Yu K.N., Kim J.H., Park S.J., Lee H.J., Kim S.H., Park Y.K., Park Y.H., Hwang C.Y., et al. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2014;10:1119. doi: 10.1016/j.nano.2006.12.001. PubMed DOI
Pal S., Tak Y.K., Song J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007;73:1712–1720. doi: 10.1128/AEM.02218-06. PubMed DOI PMC
Maneerung T., Tokura S., Rujiravanit R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr. Polym. 2008;72:43–51. doi: 10.1016/j.carbpol.2007.07.025. DOI
Cohen M.S., Stern J.M., Vanni A.J., Kelley R.S., Baumgart E., Field D., Libertino J.A., Summerhayes I.C. In vitro analysis of a nanocrystalline silver-coated surgical mesh. Surg. Infect. 2007;8:397–403. doi: 10.1089/sur.2006.032. PubMed DOI
Loo C.Y., Young P.M., Lee W.H., Cavaliere R., Whitchurch C.B., Rohanizadeh R. Non-cytotoxic silver nanoparticle-polyvinyl alcohol hydrogels with anti-biofilm activity: Designed as coatings for endotracheal tube materials. Biofouling. 2014;30:773–788. doi: 10.1080/08927014.2014.926475. PubMed DOI
Sun Y.G., Gates B., Mayers B., Xia Y.N. Crystalline silver nanowires by soft solution processing. Nano Lett. 2002;2:165–168. doi: 10.1021/nl010093y. DOI
Sun Y.G., Xia Y.N. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv. Mater. 2002;14:833–837. doi: 10.1002/1521-4095(20020605)14:11<833::AID-ADMA833>3.0.CO;2-K. DOI
Choi S., Park J., Hyun W., Kim J., Kim J., Lee Y.B., Song C., Hwang H.J., Kim J.H., Hyeon T., et al. Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS Nano. 2015;9:6626–6633. doi: 10.1021/acsnano.5b02790. PubMed DOI
Rebollar E., Frischauf I., Olbrich M., Peterbauer T., Hering S., Preiner J., Hinterdorfer P., Romanin C., Heitz J. Proliferation of aligned mammalian cells on laser-nanostructured polystyrene. Biomaterials. 2008;29:1796–1806. doi: 10.1016/j.biomaterials.2007.12.039. PubMed DOI
Mirzadeh H., Dadsetan M. Influence of laser surface modifying of polyethylene terephthalate on fibroblast cell adhesion. Radiat. Phys. Chem. 2003;67:381–385. doi: 10.1016/S0969-806X(03)00071-9. DOI
Xu C.Y., Yang F., Wang S., Ramakrishna S. In vitro study of human vascular endothelial cell function on materials with various surface roughness. J. Biomed. Mater. Res. 2004;71:154–161. doi: 10.1002/jbm.a.30143. PubMed DOI
Arnold M., Cavalcanti-Adam E.A., Glass R., Blümmel J., Eck W., Kantlehner M., Kessler H., Spatz J.P. Activation of integrin function by nanopatterned adhesive interfaces. Chemphyschem. 2004;5:383–388. doi: 10.1002/cphc.200301014. PubMed DOI
Bollen C.M.L., Lambrechts P., Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: A review of the literature. Dent. Mater. 1997;13:258–269. doi: 10.1016/S0109-5641(97)80038-3. PubMed DOI
Rimondini L., Faré S., Brambilla E., Felloni A., Consonni C., Brossa F., Carrassi A. The effect of surface roughness on early in vivo plaque colonization on titanium. J. Periodontol. 1997;68:556–562. doi: 10.1902/jop.1997.68.6.556. PubMed DOI
Cui J.H., Liu Y.L. Preparation of graphene oxide with silver nanowires to enhance antibacterial properties and cell compatibility. RSC Adv. 2015;5:85748–85755. doi: 10.1039/C5RA16371D. DOI
Tang C.L., Sun W., Lu J.M., Yan W. Role of the anions in the hydrothermally formed silver nanowires and their antibacterial property. J. Colloid Interface Sci. 2014;416:86–94. doi: 10.1016/j.jcis.2013.10.036. PubMed DOI
Zhao C., Deng B., Chen G.C., Lei B., Hua H., Peng H.L., Yan Z.M. Large-area chemical vapor deposition-grown monolayer graphene-wrapped silver nanowires for broad-spectrum and robust antimicrobial coating. Nano Res. 2016;9:963–973. doi: 10.1007/s12274-016-0984-2. DOI
Stoehr L.C., Gonzalez E., Stampfl A., Casals E., Duschl A., Puntes V., Oostingh G. J. Shape matters: Effects of silver nanospheres and wires on human alveolar epithelial cells. Part. Fibre Toxicol. 2011;8:1–15. doi: 10.1186/1743-8977-8-36. PubMed DOI PMC
Zhang T., Wang L., Chen Q., Chen C. Cytotoxic potential of silver nanoparticles. Yonsei Med. J. 2014;55:283–291. doi: 10.3349/ymj.2014.55.2.283. PubMed DOI PMC
Kim M. J., Shin S. Toxic effects of silver nanoparticles and nanowires on erythrocyte rheology. Food Chem. Toxicol. 2014;67:80–86. doi: 10.1016/j.fct.2014.02.006. PubMed DOI
Siegel J., Jurik P., Kolska Z., Svorcik V. Annealing of silver nanolayers sputtered on polytetrafluoroethylene. Surf. Interface Anal. 2013;45:1063–1066. doi: 10.1002/sia.5227. DOI
Chinnasamy R., Krishnamoorthy R., Shamugam R.K., Thangavelu R.R. Synthesis and antibacterial studies of nanostructured Ag thin films. Adv. Mater. Res. 2013;678:291–296.
Aleksandrova T.P., Vais A.A., Masliy A.I., Burmistrov V.A., Gusev A.A., Bagavieva S.K. Synthetic fibers with silver-containing coatings and their antimicrobial properties. Mater. Manuf. Process. 2015;30:798–803. doi: 10.1080/10426914.2015.1004712. DOI
Dubas S.T., Kumlangdudsana P., Potiyaraj P. Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids Surf. A. 2006;289:105–109. doi: 10.1016/j.colsurfa.2006.04.012. DOI
Carvalho D., Sousa T., Morais P.V., Piedade A.P. Polymer/metal nanocomposite coating with antimicrobial activity against hospital isolated pathogen. Appl. Surf. Sci. 2016;379:489–496. doi: 10.1016/j.apsusc.2016.04.109. DOI
Siegel J., Krajcar R., Kolska Z., Hnatowicz V., Svorcik V. Annealing of gold nanostructures sputtered on polytetrafluoroethylene. Nanoscale Res. Lett. 2011;6:1–9. doi: 10.1186/1556-276X-6-588. PubMed DOI PMC
Wang Y.L., Xia Y.N. Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Lett. 2004;4:2047–2050. doi: 10.1021/nl048689j. DOI
Biswas A., Bayer I.S., Biris A.S., Wang T., Dervishi E., Faupel F. Advances in top-down and bottom-up surface nanofabrication: Techniques, applications & future prospects. Adv. Colloid Interface Sci. 2012;170:2–27. PubMed
Xu C.A., van Zalinge H., Pearson J.L., Glidle A., Cooper J.M., Cumming D.R.S., Haiss W., Yao J.L., Schiffrin D.J., Proupin-Perez M., et al. A combined top-down bottom-up approach for introducing nanoparticle networks into nanoelectrode gaps. Nanotechnology. 2006;17:3333–3339. doi: 10.1088/0957-4484/17/14/001. PubMed DOI
Iravani S., Korbekandi H., Mirmohammadi S.V., Zolfaghari B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci. 2014;9:385–406. PubMed PMC
Gudikandula K., Maringanti S.C. Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. J. Exp. Nanosci. 2016;11:714–721. doi: 10.1080/17458080.2016.1139196. DOI
Garcia-Barrasa J., Lopez-de-Luzuriaga J.M., Monge M. Silver nanoparticles: Synthesis through chemical methods in solution and biomedical applications. Cent. Eur. J. Chem. 2011;9:7–19. doi: 10.2478/s11532-010-0124-x. DOI
Thakkar K.N., Mhatre S.S., Parikh R.Y. Biological synthesis of metallic nanoparticles. Nanomedicine. 2010;6:257–262. doi: 10.1016/j.nano.2009.07.002. PubMed DOI
Leach A.M., McDowell M., Gall K. Deformation of top-down and bottom-up silver nanowires. Adv. Funct. Mater. 2007;17:43–51. doi: 10.1002/adfm.200600735. DOI
Tak Y., Hong S.J., Lee J.S., Yong K. Solution-based synthesis of a cds nanoparticle/zno nanowire heterostructure array. Cryst. Growth Des. 2009;9:2627–2632. doi: 10.1021/cg801076b. DOI
Heurlin M., Magnusson M.H., Lindgren D., Ek M., Wallenberg L.R., Deppert K., Samuelson L. Continuous gas-phase synthesis of nanowires with tunable properties. Nature. 2012;492:90–94. doi: 10.1038/nature11652. PubMed DOI
Li S.Z., Huang X., Liu Q., Cao X.H., Huo F.W., Zhang H., Gan C.L. Vapor-liquid-solid growth of endotaxial semiconductor nanowires. Nano Lett. 2012;12:5565–5570. doi: 10.1021/nl3025196. PubMed DOI
Crowell J.E. Chemical methods of thin film deposition: Chemical vapor deposition, atomic layer deposition, and related technologies. J. Vac. Sci. Technol. A. 2003;21:88–95. doi: 10.1116/1.1600451. DOI
Reichelt K., Jiang X. The preparation of thin films by physical vapour deposition methods. Thin Solid Films. 1990;191:91–126. doi: 10.1016/0040-6090(90)90277-K. DOI
Humphreys R.G., Satchell J.S., Chew N.G., Edwards J.A., Goodyear S.W., Blenkinsop S.E., Dosser O.D., Cullis A.G. Physical vapour deposition techniques for the growth of YBa2Cu3O7 thin films. Supercond. Sci. Technol. 1990;3:38–52. doi: 10.1088/0953-2048/3/1/006. DOI
Mane R.S., Lokhande C.D. Chemical deposition method for metal chalcogenide thin films. Mater. Chem. Phys. 2000;65:1–31. doi: 10.1016/S0254-0584(00)00217-0. DOI
Slepička P., Slepičková Kasálková N., Siegel J., Kolská Z., Bačáková L., Švorčík V. Nano-structured and functionalized surfaces for cytocompatibility improvement and bactericidal action. Biotechnol. Adv. 2015;33:1120–1129. doi: 10.1016/j.biotechadv.2015.01.001. PubMed DOI
Antibacterial Properties of Silver Nanoclusters with Carbon Support on Flexible Polymer
Nanostructured Materials for Artificial Tissue Replacements