Antimicrobial Treatment of Polymeric Medical Devices by Silver Nanomaterials and Related Technology

. 2017 Feb 15 ; 18 (2) : . [epub] 20170215

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid28212308

Antimicrobial biocompatible polymers form a group of highly desirable materials in medicinal technology that exhibit interesting thermal and mechanical properties, and high chemical resistance. There are numerous types of polymers with antimicrobial activity or antimicrobial properties conferred through their proper modification. In this review, we focus on the second type of polymers, especially those whose antimicrobial activity is conferred by nanotechnology. Nanotechnology processing is a developing area that exploits the antibacterial effects of broad-scale compounds, both organic and inorganic, to form value-added medical devices. This work gives an overview of nanostructured antimicrobial agents, especially silver ones, used together with biocompatible polymers as effective antimicrobial composites in healthcare. The bactericidal properties of non-conventional antimicrobial agents are compared with those of conventional ones and the advantages and disadvantages are discussed.

Zobrazit více v PubMed

Samuel U., Guggenbichlerb J.P. Prevention of catheter-related infections: The potential of a new nano-silver impregnated catheter. Int. J. Antimicrob. Agents. 2004;23:75–78. doi: 10.1016/j.ijantimicag.2003.12.004. PubMed DOI

Mangram A.J., Horan T.C., Pearson M.L., Silver L.C., Jarvis W.R. Guideline for prevention of surgical site infection, 1999. Am. J. Infect. Control. 1999;27:97–134. doi: 10.1016/S0196-6553(99)70088-X. PubMed DOI

Richards M.J., Edwards J.R., Culver D.H., Gaynes R.P. Nosocomial infections in combined medical-surgical intensive care units in the United States. Infect. Control Hosp. Epidemiol. 2000;21:510–515. doi: 10.1086/501795. PubMed DOI

Maki D.G., Cobb L., Garman J.K., Shapiro J.M., Ringer M., Helgerson R.B. An attachable silver-impregnated cuff for prevention of infection with central venous catheters: A prospective randomized multicenter trial. Am. J. Med. 1988;85:307–314. PubMed

Weber D.J., Raasch R., Rutala W.A. Nosocomial Infections in the ICU: The Growing Importance of Antibiotic-Resistant Pathogens. Chest. 1999;115:34–41. doi: 10.1378/chest.115.suppl_1.34S. PubMed DOI

Weinstein R.A. Nosocomial infection update. Emerg. Infect. Dis. 1998;4:416–420. doi: 10.3201/eid0403.980320. PubMed DOI PMC

Munoz-Bonilla A., Fernandez-Garcia M. Polymeric materials with antimicrobial activity. Prog. Polym. Sci. 2012;37:281–339. doi: 10.1016/j.progpolymsci.2011.08.005. DOI

Timofeeva L., Kleshcheva N. Antimicrobial polymers: Mechanism of action, factors of activity, and applications. Appl. Microbiol. Biotechnol. 2011;89:475–792. doi: 10.1007/s00253-010-2920-9. PubMed DOI

Tashiro T. Antibacterial and bacterium adsorbing macromolecules. Macromol. Mater. Eng. 2001;286:63–87. doi: 10.1002/1439-2054(20010201)286:2<63::AID-MAME63>3.0.CO;2-H. DOI

Gabriel G.J., Som A., Madkour A.E., Eren T., Tew G.N. Infectious disease: Connecting innate immunity to biocidal polymers. Mater. Sci. Eng. R. 2007;57:28–64. doi: 10.1016/j.mser.2007.03.002. PubMed DOI PMC

Page K., Wilson M., Parkin I.P. Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. J. Mater. Chem. 2009;19:3819–3831. doi: 10.1039/b818698g. DOI

Roe D., Karandikar B., Bonn-Savage N., Gibbins B., Roullet J.B. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J. Antimicrob. Chemother. 2008;61:869–876. doi: 10.1093/jac/dkn034. PubMed DOI

Yao Y., Ohko Y., Sekiguchi Y., Fujishima A., Kubota Y. Self-sterilization using silicone catheters coated with Ag and TiO2 nanocomposite thin film. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008;85B:453–460. doi: 10.1002/jbm.b.30965. PubMed DOI

Siegel J., Polivkova M., Kasalkova N.S., Kolska Z., Svorcik V. Properties of silver nanostructure-coated PTFE and its biocompatibility. Nanoscale Res. Lett. 2013;8:1–10. doi: 10.1186/1556-276X-8-388. PubMed DOI PMC

Tamboli M.S., Kulkarni M.V., Patil R.H., Gade W.N., Navale S.C., Kale B.B. Nanowires of silver–polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent. Colloids Surf. B Biointerfaces. 2012;92:35–41. doi: 10.1016/j.colsurfb.2011.11.006. PubMed DOI

Feldman C., Kassel M., Cantrell J., Kaka S., Morar R., Mahomed A.G., Philips J.I. The presence and sequence of endotracheal tube colonization in patients undergoing mechanical ventilation. Eur. Respir. J. 1999;13:546–551. doi: 10.1183/09031936.99.13354699. PubMed DOI

Pfaller M.A. Nosocomial Candidiasis: Emerging Species, Reservoirs, and Modes of Transmission. Clin. Infect. Dis. 1996;22:89–94. doi: 10.1093/clinids/22.Supplement_2.S89. PubMed DOI

Schierholz J.M., Beuth J. Implant infections: A haven for opportunistic bacteria. J. Hosp. Infect. 2001;49:87–93. doi: 10.1053/jhin.2001.1052. PubMed DOI

Flemming H.C. Relevance of biofilms for the biodeterioration of surfaces of polymeric materials. Polym. Degrad. Stable. 1998;59:309–315. doi: 10.1016/S0141-3910(97)00189-4. DOI

Gao G.Z., Lange D., Hilpert K., Kindrachuk J., Zou Y.Q., Cheng J.T.J., Kazemzadeh-Narbat M., Yu K., Wang R.Z., Straus S.K., et al. The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials. 2011;32:3899–3909. doi: 10.1016/j.biomaterials.2011.02.013. PubMed DOI

Bergogne-Bérézin E., Decreé D., Joly-Guillou M.L. Opportunistic nosocomial multiply resistant bacterial infections—their treatment and prevention. J. Antimicrob. Chemother. A. 1993;32:39–47. doi: 10.1093/jac/32.suppl_A.39. PubMed DOI

Handwerger S., Raucher B., Altarac D., Monka J., Marchione S., Singh K.V., Murray B.E., Wolff J., Walters B. Nosocomial outbreak due to Enterococcus faecium highly resistant to vancomycin, penicillin, and gentamicin. Clin. Infect. Dis. 1993;16:750–755. doi: 10.1093/clind/16.6.750. PubMed DOI

Clark N.C., Hill B.C., O’Hara C.M., Steingrimsson O., Cooksey R.C. Epidemiologic typing of Enterobacter sakazakii in two neonatal nosocomial outbreaks. Diagn. Microbiol. Infect. Dis. 1990;13:467–472. doi: 10.1016/0732-8893(90)90078-A. PubMed DOI

Jarvis W.R. Epidemiology of nosocomial fungal infections, with emphasis on Candida species. Clin. Infect. Dis. 1995;20:1526–1530. doi: 10.1093/clinids/20.6.1526. PubMed DOI

Wong G.K.C., Ip M., Poon W.S., Mak C.W.K., Ng R.Y.T. Antibiotics-impregnated ventricular catheter versus systemic antibiotics for prevention of nosocomial CSF and non-CSF infections: A prospective randomised clinical trial. J. Neurol. Neurosurg. Psychiatry. 2010;81:1064–1067. doi: 10.1136/jnnp.2009.198523. PubMed DOI

Kristiansen J.E., Amaral L. The potential management of resistant infections with non-antibiotics. J. Antimicrob. Chemother. 1997;40:319–327. doi: 10.1093/jac/40.3.319. PubMed DOI

Toracchio S., Marzio L. Primary and secondary antibiotic resistance of Helicobacter pylori strains isolated in central Italy during the years 1998–2002. Dig. Liver Dis. 2003;35:541–545. doi: 10.1016/S1590-8658(03)00265-2. PubMed DOI

Chemaly R.F., Sharma P.S., Youssef S., Gerber D., Hwu P., Hanmod S.S., Jiang Y., Hachem R.Y., Raad I.I. The efficacy of catheters coated with minocycline and rifampin in the prevention of catheter-related bacteremia in cancer patients receiving high-dose interleukin-2. Int. J. Infect. Dis. 2010;14:548–552. doi: 10.1016/j.ijid.2009.08.007. PubMed DOI

Jose B., Antoci V., Zeiger A.R., Wickstrom E., Hickok N.J. Vancomycin covalently bonded to titanium beads kills Staphylococcus aureus. Chem. Biol. 2005;12:1041–1048. doi: 10.1016/j.chembiol.2005.06.013. PubMed DOI

Fox C.L., Modak S.M. Mechanism of silver sulfadiazine action on burn wound infections. Antimicrob. Agents Chemother. 1974;5:582–588. doi: 10.1128/AAC.5.6.582. PubMed DOI PMC

Elsner J.J., Berdicevsky I., Zilberman M. In vitro microbial inhibition and cellular response to novel biodegradable composite wound dressings with controlled release of antibiotics. Acta Biomater. 2011;7:325–336. doi: 10.1016/j.actbio.2010.07.013. PubMed DOI

Sheng W.H., Wang J.T., Chang S.C., Hsueh P.R., Luh K.T. Evaluation of antiseptic-impregnated central venous catheters for prevention of catheter-related infection in intensive care unit patients. Diagn. Microbiol. Infect. Dis. 2000;38:1–5. doi: 10.1016/S0732-8893(00)00166-8. PubMed DOI

Wainwright M., Phoenix D.A., Gaskell M., Marshall B. Photobactericidal activity of methylene blue derivatives against vancomycin-resistant Enterococcus spp. J. Antimicrob. Chemother. 1999;44:823–825. doi: 10.1093/jac/44.6.823. PubMed DOI

Rahbar M., Mehrgan H., Hadji-Nejad S. Enhancement of Vancomycin Activity by phenothiazines against vancomycin-resistant Enterococcus faecium in vitro. Basic Clin. Pharmacol. Toxicol. 2010;107:676–679. doi: 10.1111/j.1742-7843.2010.00558.x. PubMed DOI

Balazs D.J., Triandafillu K., Wood P., Chevolot Y., van Delden C., Harms H., Hollenstein C., Mathieu H.J. Inhibition of bacterial adhesion on PVC endotracheal tubes by RF-oxygen glow discharge, sodium hydroxide and silver nitrate treatments. Biomaterials. 2004;25:2139–2151. doi: 10.1016/j.biomaterials.2003.08.053. PubMed DOI

Becker R.O., Spadaro J.A. Treatment of orthopaedic infections with electrically generated silver ions: A preliminary report. J. Bone Jt. Surg. Am. 1978;60:871–881. doi: 10.2106/00004623-197860070-00001. PubMed DOI

Panzner M.J., Deeraksa A., Smith A., Wright B.D., Hindi K.M., Kascatan-Nebioglu A., Torres A.G., Judy B.M., Hovis C.E., Hilliard J.K., et al. Synthesis and in vitro efficacy studies of silver carbene complexes on biosafety level 3 bacteria. Eur. J. Inorg. Chem. 2009;13:1739–1745. doi: 10.1002/ejic.200801159. PubMed DOI PMC

Li X.N., Robinson S.M., Gupta A., Saha K., Jiang Z.W., Moyano D.F., Sahar A., Riley M.A., Rotello V.M. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano. 2014;8:10682–10686. doi: 10.1021/nn5042625. PubMed DOI PMC

Ben-Sasson M., Zodrow K.R., Qi G.G., Kang Y., Giannelis E.P., Elimelech M. Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties. Environ. Sci. Technol. 2014;48:384–393. doi: 10.1021/es404232s. PubMed DOI

Adams C.P., Walker K.A., Obare S.O., Docherty K.M. Size-dependent antimicrobial effects of novel palladium nanoparticles. PLoS ONE. 2014;9:e85981. doi: 10.1371/journal.pone.0085981. PubMed DOI PMC

Maki D.G., Stolz S.M., Wheeler S., Mermel L.A. Prevention of central venous catheter-related bloodstream infection by use of an antiseptic-impregnated catheter: A randomized, controlled trial. Ann. Intern. Med. 1997;127:257–266. doi: 10.7326/0003-4819-127-4-199708150-00001. PubMed DOI

Martins M., Dastidar S.G., Fanning S., Kristiansen J.E., Molnar J., Pages J.M., Schelz Z., Spengler G., Viveiros M., Amaral L. Potential role of non-antibiotics (helper compounds) in the treatment of multidrug-resistant Gram-negative infections: Mechanisms for their direct and indirect activities. Int. J. Antimicrob. Agents. 2008;31:198–208. doi: 10.1016/j.ijantimicag.2007.10.025. PubMed DOI

Lansdown A.B. Silver in health care: Antimicrobial effects and safety in use. Curr. Probl. Dermatol. 2006;33:17–34. PubMed

Mijnendonckx K., Leys N., Mahillon J., Silver S., van Houdt R. Antimicrobial silver: Uses, toxicity and potential for resistance. Biomaterials. 2013;26:609–621. doi: 10.1007/s10534-013-9645-z. PubMed DOI

Aflori M., Miron C., Dobromir M., Drobota M. Bactericidal effect on Foley catheters obtained by plasma and silver nitrate treatments. High Perform. Polym. 2015;27:655–660. doi: 10.1177/0954008315584171. DOI

Kascatan-Nebioglu A., Panzner M.J., Tessier C.A., Cannon C.L., Youngs W.J. N-Heterocyclic carbene-silver complexes: A new class of antibiotics. Coord. Chem. Rev. 2007;251:884–895. doi: 10.1016/j.ccr.2006.08.019. DOI

Siegel J., Staszek M., Polivkova M., Reznickova A., Rimpelova S., Svorcik V. Green synthesized noble metals for biological applications. Mater. Today Proc. 2016;3:608–616. doi: 10.1016/j.matpr.2016.01.098. DOI

Siegel J., Polivkova M., Staszek M., Kolarova K., Rimpelova S., Svorcik V. Nanostructured silver coatings on polyimide and their antibacterial response. Mater. Lett. 2015;145:89–90. doi: 10.1016/j.matlet.2015.01.050. DOI

Polivkova M., Štrublová V., Hubáček T., Rimpelová S., Švorčík V., Siegel J. Surface characterization and antibacterial response of silver nanowire arrays supported on laser-treated polyethylene naphthalate. Mater. Sci. Eng. C. 2016 doi: 10.1016/j.msec.2016.11.072. PubMed DOI

Sotiriou G.A., Pratsinis S.E. Engineering nanosilver as an antibacterial, biosensor and bioimaging material. Curr. Opin. Chem. Eng. 2011;1:3–10. doi: 10.1016/j.coche.2011.07.001. PubMed DOI PMC

Polivkova M., Valova M., Siegel J., Rimpelova S., Hubacek T., Lyutakov O., Svorcik V. Antibacterial properties of palladium nanostructures sputtered on polyethylene naphthalate. RSC Adv. 2015;5:73767–73774. doi: 10.1039/C5RA09297C. DOI

Chaloupka K., Malam Y., Seifalian A.M. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010;28:580–588. doi: 10.1016/j.tibtech.2010.07.006. PubMed DOI

Chen X., Schluesener H.J. Nanosilver: A nanoproduct in medical application. Toxicol. Lett. 2008;176:1–12. doi: 10.1016/j.toxlet.2007.10.004. PubMed DOI

Yamanaka M., Hara K., Kudo J. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl. Environ. Microbiol. 2005;71:7589–7593. doi: 10.1128/AEM.71.11.7589-7593.2005. PubMed DOI PMC

Yoshida K., Tanagawa M., Atsuta M. Characterization and inhibitory effect of antibacterial dental resin composites incorporating silver-supported materials. J. Biomed. Mater. Res. A. 1999;47:516–522. doi: 10.1002/(SICI)1097-4636(19991215)47:4<516::AID-JBM7>3.0.CO;2-E. PubMed DOI

Kittler S., Greulich C., Diendorf J., Koller M., Epple M. Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem. Mater. 2010;22:4548–4554. doi: 10.1021/cm100023p. DOI

Chernousova S., Epple M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem. Int. Ed. 2013;52:1636–1653. doi: 10.1002/anie.201205923. PubMed DOI

Jung W.K., Koo H.C., Kim K.W., Shin S., Kim S.H., Park Y.H. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl. Environ. Microb. 2008;74:2171–2178. doi: 10.1128/AEM.02001-07. PubMed DOI PMC

Schierholz J.M., Wachol-Drewek Z., Lucas L.J., Pulverer G. Activity of silver ions in different media. Zent. Bl. Bakteriol. 1998;287:411–420. doi: 10.1016/S0934-8840(98)80178-3. PubMed DOI

Jansen B., Rinck M., Wolbring P., Strohmeier A., Jahns T. In vitro evaluation of the antimicrobial efficacy and biocompatibility of a silver-coated central venous catheter. J. Biomater. Appl. 1994;9:55–70. doi: 10.1177/088532829400900103. PubMed DOI

Osińska-Jaroszuk M., Ginalska G., Belcarz A., Uryniak A. Vascular prostheses with covalently bound gentamicin and amikacin reveal superior antibacterial properties than silver-impregnated ones: An in vitro study. Eur. J. Vasc. Endovasc. Surg. 2009;38:697–706. doi: 10.1016/j.ejvs.2009.09.003. PubMed DOI

Guggenbichler J.P., Boswald M., Lugauer S., Krall T. A new technology of microdispersed silver in polyurethane induces antimicrobial activity in central venous catheters. Infection. 1999;27:16–23. doi: 10.1007/BF02561612. PubMed DOI

Trooskin S.Z., Donetz A.P., Baxter J., Harvey R.A., Greco R.S. Infection-resistant continuous peritoneal dialysis catheters. Nephron. 1989;46:263–267. doi: 10.1159/000184366. PubMed DOI

Jansen B., Jansen S., Peters G., Pulverer G. In Vitro efficacy of a central venous catheter (‘Hydrocath’) loaded with teicoplanin to prevent bacterial colonization. J. Hosp. Infect. 1992;22:93–107. doi: 10.1016/0195-6701(92)90093-2. PubMed DOI

Raad I., Darouiche R., Hachem R., Mansouri M., Bodey G.P. The broad-spectrum activity and efficacy of catheters coated with minocycline and rifampin. J. Infect. Dis. 1996;173:418–424. doi: 10.1093/infdis/173.2.418. PubMed DOI

Hampl J., Schierholz J., Jansen B., Aschoff A. In vitro and in vivo efficacy of a rifampin-loaded silicone catheter for the prevention of CSF shunt infections. Acta Neurochir. 1995;133:147–152. doi: 10.1007/BF01420065. PubMed DOI

Groeger J.S., Lucas A.B., Coit D., Laquaglia M., Brown A.E., Turnbull A., Exelby P. A prospective, randomized evaluation of the effect of silver impregnated subcutaneous cuffs for preventing tunneled chronic venous access catheter infections in cancer patients. Ann. Surg. 1993;218:206–210. doi: 10.1097/00000658-199308000-00014. PubMed DOI PMC

Bassetti S., Hu J., d’Agostino R.B., Sherertz R.J. Prolonged antimicrobial activity of a catheter containing chlorhexidine-silver sulfadiazine extends protection against catheter infections in vivo. Antimicrob. Agents Chemother. 2001;45:1535–1538. doi: 10.1128/AAC.45.5.1535-1538.2001. PubMed DOI PMC

Braydich-Stolle L., Hussain S., Schlager J.J., Hofmann M.C. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 2005;88:412–419. doi: 10.1093/toxsci/kfi256. PubMed DOI PMC

Diakowska D., Lewandowski A., Kopec W., Diakowski W., Chrzanowska T. Oxidative DNA damage and total antioxidant status in serum of patients with esophageal squamous cell carcinoma. Hepatogastroenterology. 2007;54:1701–1704. PubMed

Ahamed M., Karns M., Goodson M., Rowe J., Hussain S.M., Schlager J.J., Hong Y.L. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol. Appl. Pharmacol. 2008;233:404–410. doi: 10.1016/j.taap.2008.09.015. PubMed DOI

Huang Y., Duan X.F., Wei Q.Q., Lieber C.M. Directed assembly of one-dimensional nanostructures into functional networks. Science. 2001;291:630–633. doi: 10.1126/science.291.5504.630. PubMed DOI

Xia Y.N., Yang P.D., Sun Y.G., Wu Y.Y., Mayers B., Gates B., Yin Y.D., Kim F., Yan Y.Q. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003;15:353–389. doi: 10.1002/adma.200390087. DOI

Staszek M., Siegel J., Rimpelova S., Lyutakov O., Svorcik V. Cytotoxicity of noble metal nanoparticles sputtered into glycerol. Mater. Lett. 2015;158:351–354. doi: 10.1016/j.matlet.2015.06.021. DOI

Sun Y.G., Xia Y.N. Shape-controlled synthesis of gold and silver nanoparticles. Science. 2002;298:2176–2179. doi: 10.1126/science.1077229. PubMed DOI

Kim J.S., Kuk E., Yu K.N., Kim J.H., Park S.J., Lee H.J., Kim S.H., Park Y.K., Park Y.H., Hwang C.Y., et al. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2014;10:1119. doi: 10.1016/j.nano.2006.12.001. PubMed DOI

Pal S., Tak Y.K., Song J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007;73:1712–1720. doi: 10.1128/AEM.02218-06. PubMed DOI PMC

Maneerung T., Tokura S., Rujiravanit R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr. Polym. 2008;72:43–51. doi: 10.1016/j.carbpol.2007.07.025. DOI

Cohen M.S., Stern J.M., Vanni A.J., Kelley R.S., Baumgart E., Field D., Libertino J.A., Summerhayes I.C. In vitro analysis of a nanocrystalline silver-coated surgical mesh. Surg. Infect. 2007;8:397–403. doi: 10.1089/sur.2006.032. PubMed DOI

Loo C.Y., Young P.M., Lee W.H., Cavaliere R., Whitchurch C.B., Rohanizadeh R. Non-cytotoxic silver nanoparticle-polyvinyl alcohol hydrogels with anti-biofilm activity: Designed as coatings for endotracheal tube materials. Biofouling. 2014;30:773–788. doi: 10.1080/08927014.2014.926475. PubMed DOI

Sun Y.G., Gates B., Mayers B., Xia Y.N. Crystalline silver nanowires by soft solution processing. Nano Lett. 2002;2:165–168. doi: 10.1021/nl010093y. DOI

Sun Y.G., Xia Y.N. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv. Mater. 2002;14:833–837. doi: 10.1002/1521-4095(20020605)14:11<833::AID-ADMA833>3.0.CO;2-K. DOI

Choi S., Park J., Hyun W., Kim J., Kim J., Lee Y.B., Song C., Hwang H.J., Kim J.H., Hyeon T., et al. Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS Nano. 2015;9:6626–6633. doi: 10.1021/acsnano.5b02790. PubMed DOI

Rebollar E., Frischauf I., Olbrich M., Peterbauer T., Hering S., Preiner J., Hinterdorfer P., Romanin C., Heitz J. Proliferation of aligned mammalian cells on laser-nanostructured polystyrene. Biomaterials. 2008;29:1796–1806. doi: 10.1016/j.biomaterials.2007.12.039. PubMed DOI

Mirzadeh H., Dadsetan M. Influence of laser surface modifying of polyethylene terephthalate on fibroblast cell adhesion. Radiat. Phys. Chem. 2003;67:381–385. doi: 10.1016/S0969-806X(03)00071-9. DOI

Xu C.Y., Yang F., Wang S., Ramakrishna S. In vitro study of human vascular endothelial cell function on materials with various surface roughness. J. Biomed. Mater. Res. 2004;71:154–161. doi: 10.1002/jbm.a.30143. PubMed DOI

Arnold M., Cavalcanti-Adam E.A., Glass R., Blümmel J., Eck W., Kantlehner M., Kessler H., Spatz J.P. Activation of integrin function by nanopatterned adhesive interfaces. Chemphyschem. 2004;5:383–388. doi: 10.1002/cphc.200301014. PubMed DOI

Bollen C.M.L., Lambrechts P., Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: A review of the literature. Dent. Mater. 1997;13:258–269. doi: 10.1016/S0109-5641(97)80038-3. PubMed DOI

Rimondini L., Faré S., Brambilla E., Felloni A., Consonni C., Brossa F., Carrassi A. The effect of surface roughness on early in vivo plaque colonization on titanium. J. Periodontol. 1997;68:556–562. doi: 10.1902/jop.1997.68.6.556. PubMed DOI

Cui J.H., Liu Y.L. Preparation of graphene oxide with silver nanowires to enhance antibacterial properties and cell compatibility. RSC Adv. 2015;5:85748–85755. doi: 10.1039/C5RA16371D. DOI

Tang C.L., Sun W., Lu J.M., Yan W. Role of the anions in the hydrothermally formed silver nanowires and their antibacterial property. J. Colloid Interface Sci. 2014;416:86–94. doi: 10.1016/j.jcis.2013.10.036. PubMed DOI

Zhao C., Deng B., Chen G.C., Lei B., Hua H., Peng H.L., Yan Z.M. Large-area chemical vapor deposition-grown monolayer graphene-wrapped silver nanowires for broad-spectrum and robust antimicrobial coating. Nano Res. 2016;9:963–973. doi: 10.1007/s12274-016-0984-2. DOI

Stoehr L.C., Gonzalez E., Stampfl A., Casals E., Duschl A., Puntes V., Oostingh G. J. Shape matters: Effects of silver nanospheres and wires on human alveolar epithelial cells. Part. Fibre Toxicol. 2011;8:1–15. doi: 10.1186/1743-8977-8-36. PubMed DOI PMC

Zhang T., Wang L., Chen Q., Chen C. Cytotoxic potential of silver nanoparticles. Yonsei Med. J. 2014;55:283–291. doi: 10.3349/ymj.2014.55.2.283. PubMed DOI PMC

Kim M. J., Shin S. Toxic effects of silver nanoparticles and nanowires on erythrocyte rheology. Food Chem. Toxicol. 2014;67:80–86. doi: 10.1016/j.fct.2014.02.006. PubMed DOI

Siegel J., Jurik P., Kolska Z., Svorcik V. Annealing of silver nanolayers sputtered on polytetrafluoroethylene. Surf. Interface Anal. 2013;45:1063–1066. doi: 10.1002/sia.5227. DOI

Chinnasamy R., Krishnamoorthy R., Shamugam R.K., Thangavelu R.R. Synthesis and antibacterial studies of nanostructured Ag thin films. Adv. Mater. Res. 2013;678:291–296.

Aleksandrova T.P., Vais A.A., Masliy A.I., Burmistrov V.A., Gusev A.A., Bagavieva S.K. Synthetic fibers with silver-containing coatings and their antimicrobial properties. Mater. Manuf. Process. 2015;30:798–803. doi: 10.1080/10426914.2015.1004712. DOI

Dubas S.T., Kumlangdudsana P., Potiyaraj P. Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids Surf. A. 2006;289:105–109. doi: 10.1016/j.colsurfa.2006.04.012. DOI

Carvalho D., Sousa T., Morais P.V., Piedade A.P. Polymer/metal nanocomposite coating with antimicrobial activity against hospital isolated pathogen. Appl. Surf. Sci. 2016;379:489–496. doi: 10.1016/j.apsusc.2016.04.109. DOI

Siegel J., Krajcar R., Kolska Z., Hnatowicz V., Svorcik V. Annealing of gold nanostructures sputtered on polytetrafluoroethylene. Nanoscale Res. Lett. 2011;6:1–9. doi: 10.1186/1556-276X-6-588. PubMed DOI PMC

Wang Y.L., Xia Y.N. Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Lett. 2004;4:2047–2050. doi: 10.1021/nl048689j. DOI

Biswas A., Bayer I.S., Biris A.S., Wang T., Dervishi E., Faupel F. Advances in top-down and bottom-up surface nanofabrication: Techniques, applications & future prospects. Adv. Colloid Interface Sci. 2012;170:2–27. PubMed

Xu C.A., van Zalinge H., Pearson J.L., Glidle A., Cooper J.M., Cumming D.R.S., Haiss W., Yao J.L., Schiffrin D.J., Proupin-Perez M., et al. A combined top-down bottom-up approach for introducing nanoparticle networks into nanoelectrode gaps. Nanotechnology. 2006;17:3333–3339. doi: 10.1088/0957-4484/17/14/001. PubMed DOI

Iravani S., Korbekandi H., Mirmohammadi S.V., Zolfaghari B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci. 2014;9:385–406. PubMed PMC

Gudikandula K., Maringanti S.C. Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. J. Exp. Nanosci. 2016;11:714–721. doi: 10.1080/17458080.2016.1139196. DOI

Garcia-Barrasa J., Lopez-de-Luzuriaga J.M., Monge M. Silver nanoparticles: Synthesis through chemical methods in solution and biomedical applications. Cent. Eur. J. Chem. 2011;9:7–19. doi: 10.2478/s11532-010-0124-x. DOI

Thakkar K.N., Mhatre S.S., Parikh R.Y. Biological synthesis of metallic nanoparticles. Nanomedicine. 2010;6:257–262. doi: 10.1016/j.nano.2009.07.002. PubMed DOI

Leach A.M., McDowell M., Gall K. Deformation of top-down and bottom-up silver nanowires. Adv. Funct. Mater. 2007;17:43–51. doi: 10.1002/adfm.200600735. DOI

Tak Y., Hong S.J., Lee J.S., Yong K. Solution-based synthesis of a cds nanoparticle/zno nanowire heterostructure array. Cryst. Growth Des. 2009;9:2627–2632. doi: 10.1021/cg801076b. DOI

Heurlin M., Magnusson M.H., Lindgren D., Ek M., Wallenberg L.R., Deppert K., Samuelson L. Continuous gas-phase synthesis of nanowires with tunable properties. Nature. 2012;492:90–94. doi: 10.1038/nature11652. PubMed DOI

Li S.Z., Huang X., Liu Q., Cao X.H., Huo F.W., Zhang H., Gan C.L. Vapor-liquid-solid growth of endotaxial semiconductor nanowires. Nano Lett. 2012;12:5565–5570. doi: 10.1021/nl3025196. PubMed DOI

Crowell J.E. Chemical methods of thin film deposition: Chemical vapor deposition, atomic layer deposition, and related technologies. J. Vac. Sci. Technol. A. 2003;21:88–95. doi: 10.1116/1.1600451. DOI

Reichelt K., Jiang X. The preparation of thin films by physical vapour deposition methods. Thin Solid Films. 1990;191:91–126. doi: 10.1016/0040-6090(90)90277-K. DOI

Humphreys R.G., Satchell J.S., Chew N.G., Edwards J.A., Goodyear S.W., Blenkinsop S.E., Dosser O.D., Cullis A.G. Physical vapour deposition techniques for the growth of YBa2Cu3O7 thin films. Supercond. Sci. Technol. 1990;3:38–52. doi: 10.1088/0953-2048/3/1/006. DOI

Mane R.S., Lokhande C.D. Chemical deposition method for metal chalcogenide thin films. Mater. Chem. Phys. 2000;65:1–31. doi: 10.1016/S0254-0584(00)00217-0. DOI

Slepička P., Slepičková Kasálková N., Siegel J., Kolská Z., Bačáková L., Švorčík V. Nano-structured and functionalized surfaces for cytocompatibility improvement and bactericidal action. Biotechnol. Adv. 2015;33:1120–1129. doi: 10.1016/j.biotechadv.2015.01.001. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Decoration of Ultramicrotome-Cut Polymers with Silver Nanoparticles: Effect of Post-Deposition Laser Treatment

. 2022 Dec 14 ; 15 (24) : . [epub] 20221214

Antibacterial Properties of Silver Nanoclusters with Carbon Support on Flexible Polymer

. 2022 Aug 03 ; 12 (15) : . [epub] 20220803

Genomic Damage Induced in Nicotiana tabacum L. Plants by Colloidal Solution with Silver and Gold Nanoparticles

. 2021 Jun 21 ; 10 (6) : . [epub] 20210621

Surface Texturing of Polyethylene Terephthalate Induced by Excimer Laser in Silver Nanoparticle Colloids

. 2021 Jun 12 ; 14 (12) : . [epub] 20210612

Optomechanical Processing of Silver Colloids: New Generation of Nanoparticle-Polymer Composites with Bactericidal Effect

. 2020 Dec 30 ; 22 (1) : . [epub] 20201230

Nanostructured Materials for Artificial Tissue Replacements

. 2020 Apr 05 ; 21 (7) : . [epub] 20200405

Round-shape gold nanoparticles: effect of particle size and concentration on Arabidopsis thaliana root growth

. 2018 Apr 10 ; 13 (1) : 95. [epub] 20180410

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...