Properties of silver nanostructure-coated PTFE and its biocompatibility
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
PubMed
24044426
PubMed Central
PMC3856450
DOI
10.1186/1556-276x-8-388
PII: 1556-276X-8-388
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Silver nanolayers were sputtered on polytetrafluoroethylene (PTFE) and subsequently transformed into discrete nanoislands by thermal annealing. The Ag/PTFE composites prepared under different conditions were characterized by several complementary methods (goniometry, UV-visible spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy), and new data on the mechanism of Ag layer growth and Ag atom clustering under annealing were obtained. Biocompatibility of selected Ag/PTFE composites was studied in vitro using vascular smooth muscle cell (VSMC) cultures. Despite of the well-known inhibitory properties of silver nanostructures towards broad spectrum of bacterial strains and cells, it was found that very thin silver coating stimulates both adhesion and proliferation of VSMCs.
Zobrazit více v PubMed
Alt V, Bechert T, Steinrucke P, Wagener M, Seidel P, Dingeldein E, Domann E, Schnettler R. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials. 2004;8:4383–4391. doi: 10.1016/j.biomaterials.2003.10.078. PubMed DOI
Croes S, Stobberingh EE, Stevens KNJ, Knetsch MLW, Koole LH. Antimicrobial and anti-thrombogenic features combined in hydrophilic surface coatings for skin-penetrating catheters. Synergy of co-embedded silver particles and heparin. Appl Mater Interfaces. 2012;8:2543–2550. PubMed
Varaprasad K, Mohan YM, Vimala K, Raju KM. Synthesis and characterization of hydrogel-silver nanoparticle-curcumin composites for wound dressing and antibacterial application. J Appl Polym Sci. 2011;8:784–796. doi: 10.1002/app.33508. DOI
Kumar PTS, Abhilash S, Manzoor K, Nair SV, Tamura H, Jayakumar R. Preparation and characterization of novel beta-chitin/nanosilver composite scaffolds for wound dressing applications. Carbohydr Polym. 2010;8:761–767. doi: 10.1016/j.carbpol.2009.12.024. DOI
Lee WF, Tsao KT. Effect of silver nanoparticles content on the various properties of nanocomposite hydrogels by in situ polymerization. J Mater Sci. 2010;8:89–97. doi: 10.1007/s10853-009-3896-7. DOI
Tyllianakis M, Dalas E, Christofidou M, Kallitsis JK, Chrissanthopoulos A, Koutsoukos PG, Bartzavali C, Gourdoupi N, Papadimitriou K, Oikonomou EK, Yannopoulos SN, Sevastos D. Novel composites materials from functionalized polymers and silver coated titanium oxide capable for calcium phosphate induction, control of orthopedic biofilm infections: an “in vitro” study. J Mater Sci Mater Med. 2010;8:2201–2211. doi: 10.1007/s10856-010-4086-5. PubMed DOI
Das K, Bose S, Bandyopadhyay A, Karandikar B, Gibbins BL. Surface coatings for improvement of bone cell materials and antimicrobial activities of Ti implants. J Biomed Mater Res B Appl Biomater. 2008;8:455–458. doi: 10.1002/jbm.b.31125. PubMed DOI
Saravanan S, Nethala S, Pattnaik S, Tripathi A, Moorthi A, Selvamurugan N. Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. Int J Biol Macromol. 2011;8:188–193. doi: 10.1016/j.ijbiomac.2011.04.010. PubMed DOI
Zhao LZ, Wang HR, Huo KF, Cui LY, Zhang WR, Ni HW, Zhang YM, Wu ZF, Chu PK. Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials. 2011;8:5706–5716. doi: 10.1016/j.biomaterials.2011.04.040. PubMed DOI
Ho CH, Tobis J, Sprich C, Thomann R, Tiller JC. Nanoseparated polymeric network with multiple antimicrobial properties. Adv Mater. 2004;8:957–961. doi: 10.1002/adma.200306253. DOI
Cioffi N, Rai M. Nano-Antimicrobials. Progress and Prospects. Berlin: Springer; 2012.
Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;8:76–83. doi: 10.1016/j.biotechadv.2008.09.002. PubMed DOI
Atiyeh BS, Costagliola M, Hayek SN, Dibo SA. Effect of silver on burn wound infection control and healing: review of the literature. Burns. 2007;8:139–148. doi: 10.1016/j.burns.2006.06.010. PubMed DOI
Chaw KC, Manimaran M, Tay FEH. Role of silver ions in destabilization of intermolecular adhesion forces measured by atomic force microscopy in Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother. 2005;8:4853–4859. doi: 10.1128/AAC.49.12.4853-4859.2005. PubMed DOI PMC
Marsich E, Travan A, Donati I, Turco G, Kulkova J, Moritz N, Aro HT, Crosera M, Paoletti S. Biological responses of silver-coated thermosets: an in vitro and in vivo study. Acta Biomater. 2013;8:5088–5099. doi: 10.1016/j.actbio.2012.10.002. PubMed DOI
Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;8:2346–2353. doi: 10.1088/0957-4484/16/10/059. PubMed DOI
Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;8:787–795. doi: 10.1038/nature05292. PubMed DOI
Hsin YH, Chen CF, Huang S, Shih TS, Lai PS, Chueh PJ. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett. 2008;8:130–139. doi: 10.1016/j.toxlet.2008.04.015. PubMed DOI
Siegel J, Juřík P, Kolská Z, Švorčík V. Annealing of silver nanolayers sputtered on polytetrafluoroethylene. Surf Intrerface Anal. 2013;8:1063–1066. doi: 10.1002/sia.5227. DOI
Elechiguerra JL, Larios-Lopez L, Liu C, Garcia-Gutierrez D, Camacho-Bragado A, Yacaman MJ. Corrosion at the nanoscale: the case of silver nanowires and nanoparticles. Chem Mater. 2005;8:6042–6052. doi: 10.1021/cm051532n. DOI
Kaspar TC, Droubay T, Chambers SA, Bagus PS. Spectroscopic evidence for Ag(III) in highly oxidized silver films by X-ray photoelectron spectroscopy. J Phys Chem C. 2010;8:21562–21571. doi: 10.1021/jp107914e. DOI
Siegel J, Krajcar R, Kolská Z, Sajdl P, Švorčík V. Annealing of gold nanostructures sputtered on polytetrafluoroethylene. Nanoscale Res Lett. 2011;8:588. doi: 10.1186/1556-276X-6-588. PubMed DOI PMC
Kalyuzhny G, Vaskevich A, Schneeweiss M, Rubinstein I. Transmission surface-plasmon resonance (T-SPR) measurements for monitoring adsorption on ultrathin gold island films. Chem Eur J. 2002;8:3850–3857. PubMed
Huang T, Xu XHN. Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy. J Mater Chem. 2010;8:9867–9876. doi: 10.1039/c0jm01990a. PubMed DOI PMC
Hubáček T, Siegel J, Khalili R, Slepičková-Kasálková N, Švorčík V. Carbon coatings on polymers and their biocompatibility. Appl Surf Sci. 2013;8:43–48.
Švorčík V, Hubáček T, Slepička P, Siegel J, Kolská Z, Bláhová O, Macková A, Hnatowicz V. Characterization of carbon nanolayers flash evaporated on PET and PTFE. Carbon. 2009;8:1770–1778. doi: 10.1016/j.carbon.2009.03.001. DOI
Losurdo M, Bergmair I, Giangregorio MM, Dastmalchi B, Bianco GV, Helgert C, Pshenay-Severin E, Falkner M, Pertsch T, Kley EB, Huebner U, Verschuuren MA, Muehlberger M, Hingerl K, Bruno G. Enhancing chemical and optical stability of silver nanostructures by low-temperature hydrogen atoms processing. J Phys Chem C. 2012;8:23004–23012. doi: 10.1021/jp307936k. DOI
Bacakova L, Filova E, Pařízek M, Ruml T, Švorčík V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol Adv. 2011;8:739–767. doi: 10.1016/j.biotechadv.2011.06.004. PubMed DOI
Wan Y, Wang Y, Liu Z, Qu X, Han B, Bei J, Wang S. Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured pply(L-lactide) Biomaterials. 2005;8:4453–4459. doi: 10.1016/j.biomaterials.2004.11.016. PubMed DOI
Kotál V, Švorčík V, Slepička P, Sajdl P, Bláhová O, Šutta P, Hnatowicz V. Gold coating of poly(ethylene terephthalate) modified by argon plasma. Plasma Process Polym. 2007;8:69–76. doi: 10.1002/ppap.200600069. DOI
Kaune G, Ruderer MA, Metwalli E, Wang W, Couet S, Schlage K, Röhlsberger R, Roth SV, Müller-Buschbaum P. In situ GISAXS study of gold film growth on conducting polymer films. Appl Mater Interf. 2009;8:353–362. doi: 10.1021/am8000727. PubMed DOI
Mueller CM, Spolenak R. Microstructure evolution during dewetting in thin Au films. Acta Mater. 2010;8:6035–6045. doi: 10.1016/j.actamat.2010.07.021. DOI
Kan CX, Zhu XG, Wang GH. Single-crystalline gold microplates: synthesis, characterization, and thermal stability. J Phys Chem B. 2006;8:4651–4656. doi: 10.1021/jp054800d. PubMed DOI
Kan CX, Wang GH, Zhu XG, Li CC, Cao BQ. Structure and thermal stability of gold nanoplates. Appl Phys Lett. 2006;8:071904. doi: 10.1063/1.2175500. DOI
Slepička P, Trostová S, Kasálková NS, Kolská Z, Malinský P, Macková A, Švorčík V. Nanostructuring of polymethylpentene by plasma and heat treatment for improved biocompatibility. Polym Degrad Stabil. 2012;8:1075–1082. doi: 10.1016/j.polymdegradstab.2012.04.013. DOI
Nanostructured Materials for Artificial Tissue Replacements
State-of-the-Art, and Perspectives of, Silver/Plasma Polymer Antibacterial Nanocomposites
Antimicrobial Treatment of Polymeric Medical Devices by Silver Nanomaterials and Related Technology