• This record comes from PubMed

State-of-the-Art, and Perspectives of, Silver/Plasma Polymer Antibacterial Nanocomposites

. 2018 Aug 17 ; 7 (3) : . [epub] 20180817

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Links

PubMed 30126109
PubMed Central PMC6164522
DOI 10.3390/antibiotics7030078
PII: antibiotics7030078
Knihovny.cz E-resources

Urgent need for innovative and effective antibacterial coatings in different fields seems to have triggered the development of numerous strategies for the production of such materials. As shown in this short overview, plasma based techniques arouse considerable attention that is connected with the possibility to use these techniques for the production of advanced antibacterial Ag/plasma polymer coatings with tailor-made functional properties. In addition, the plasma-based deposition is believed to be well-suited for the production of novel multi-functional or stimuli-responsive antibacterial films.

See more in PubMed

Poncin-Epaillard F., Legeay G. Surface engineering of biomaterials with plasma techniques. J. Biomater. Sci. Polym. Ed. 2003;14:1005–1028. doi: 10.1163/156856203769231538. PubMed DOI

Siow K.S., Britcher L., Kumar S., Griesser H.J. Plasma Methods for the Generation of Chemically Reactive Surfaces for Biomolecule Immobilization and Cell Colonization—A Review. Plasma Process. Polym. 2006;3:392–418. doi: 10.1002/ppap.200600021. DOI

Pappas D. Status and potential of atmospheric plasma processing of materials. J. Vac. Sci. Technol. A Vacuum Surfaces Film. 2011;29 doi: 10.1116/1.3559547. DOI

Bruggeman P.J., Kushner M.J., Locke B.R., Gardeniers J.G.E., Graham W.G., Graves D.B., Hofman-Caris R.C.H.M., Maric D., Reid J.P., Ceriani E., et al. Plasma–liquid interactions: a review and roadmap. Plasma Sources Sci. Technol. 2016;25 doi: 10.1088/0963-0252/25/5/053002. DOI

Adamovich I., Baalrud S.D., Bogaerts A., Bruggeman P.J., Cappelli M., Colombo V., Czarnetzki U., Ebert U., Eden J.G., Favia P., et al. The 2017 plasma roadmap: Low temperature plasma science and technology. J. Phys. D. Appl. Phys. 2017;50 doi: 10.1088/1361-6463/aa76f5. DOI

Bekeschus S., Favia P., Robert E., von Woedtke T. White paper on plasma for medicine and hygiene: Future in plasma health sciences. Plasma Process. Polym. 2018 doi: 10.1002/ppap.201800033. DOI

Cvelbar U., Walsh J.L., Černák M., de Vries H.W., Reuter S., Belmonte T., Corbella C., Miron C., Hojnik N., Jurov A., et al. White paper on the future of plasma science and technology in plastics and textiles. Plasma Process. Polym. 2018 doi: 10.1002/ppap.201700228. DOI

Moisan M., Barbeau J., Moreau S., Pelletier J., Tabrizian M., Yahia L. Low-temperature sterilization using gas plasmas: A review of the experiments and an analysis of the inactivation mechanisms. Int. J. Pharm. 2001;226:1–21. doi: 10.1016/S0378-5173(01)00752-9. PubMed DOI

Laroussi M. Low Temperature Plasma-Based Sterilization: Overview and State-of-the-Art. Plasma Process. Polym. 2005;2:391–400. doi: 10.1002/ppap.200400078. DOI

Rossi F., Kylián O., Hasiwa M. Decontamination of surfaces by low pressure plasma discharges. Plasma Process. Polym. 2006;3:431–442. doi: 10.1002/ppap.200600011. DOI

Von Keudell A., Awakowicz P., Benedikt J., Raballand V., Yanguas-Gil A., Opretzka J., Flötgen C., Reuter R., Byelykh L., Halfmann H., et al. Inactivation of bacteria and biomolecules by low-pressure plasma discharges. Plasma Process. Polym. 2010;7:327–352. doi: 10.1002/ppap.200900121. DOI

Rossi F., Kylián O., Rauscher H., Hasiwa M., Gilliland D. Low pressure plasma discharges for the sterilization and decontamination of surfaces. New J. Phys. 2009;11 doi: 10.1088/1367-2630/11/11/115017. DOI

De Geyter N., Morent R. nonthermal plasma sterilization of living and nonliving surfaces. Annu. Rev. Biomed. Eng. 2012;14:255–274. doi: 10.1146/annurev-bioeng-071811-150110. PubMed DOI

Fridman G., Friedman G., Gutsol A., Shekhter A.B., Vasilets V.N., Fridman A. Applied plasma medicine. Plasma Process. Polym. 2008;5:503–533. doi: 10.1002/ppap.200700154. DOI

Kong M.G., Kroesen G., Morfill G., Nosenko T., Shimizu T., van Dijk J., Zimmermann J.L. Plasma medicine: An introductory review. New J. Phys. 2009;11 doi: 10.1088/1367-2630/11/11/115012. DOI

Laroussi M. Low-temperature plasmas for medicine? IEEE Trans. Plasma Sci. 2009;37:714–725. doi: 10.1109/TPS.2009.2017267. DOI

Von Woedtke T., Metelmann H.-R., Weltmann K.-D. Clinical plasma medicine: state and perspectives of in vivo application of cold atmospheric plasma. Contrib. Plasma Phys. 2014;54:104–117. doi: 10.1002/ctpp.201310068. DOI

Ito M., Ohta T., Hori M. Plasma agriculture. J. Korean Phys. Soc. 2012;60:937–943. doi: 10.3938/jkps.60.937. DOI

Ambrico P.F., Šimek M., Morano M., De Miccolis Angelini R.M., Minafra A., Trotti P., Ambrico M., Prukner V., Faretra F. Reduction of microbial contamination and improvement of germination of sweet basil (Ocimum basilicum L.) seeds via surface dielectric barrier discharge. J. Phys. D. Appl. Phys. 2017;50 doi: 10.1088/1361-6463/aa77c8. DOI

Ito M., Oh J.-S., Ohta T., Shiratani M., Hori M. Current status and future prospects of agricultural applications using atmospheric-pressure plasma technologies. Plasma Process. Polym. 2018;15 doi: 10.1002/ppap.201700073. DOI

Šerá B., Šerý M. Non-thermal plasma treatment as a new biotechnology in relation to seeds, dry fruits, and grains. Plasma Sci. Technol. 2018;20 doi: 10.1088/2058-6272/aaacc6. DOI

Puač N., Gherardi M., Shiratani M. Plasma agriculture: A rapidly emerging field. Plasma Process. Polym. 2018;15 doi: 10.1002/ppap.201700174. DOI

Vasilev K., Griesser S.S., Griesser H.J. Antibacterial surfaces and coatings produced by plasma techniques. Plasma Process. Polym. 2011;8:1010–1023. doi: 10.1002/ppap.201100097. DOI

Sardella E., Palumbo F., Camporeale G., Favia P. Non-equilibrium plasma processing for the preparation of antibacterial surfaces. Materials. 2016;9:515. doi: 10.3390/ma9070515. PubMed DOI PMC

Nikiforov A., Deng X., Xiong Q., Cvelbar U., DeGeyter N., Morent R., Leys C. Non-thermal plasma technology for the development of antimicrobial surfaces: a review. J. Phys. D. Appl. Phys. 2016;49 doi: 10.1088/0022-3727/49/20/204002. DOI

Zille A., Almeida L., Amorim T., Carneiro N., Esteves M.F., Silva C.J., Souto A.P. Application of nanotechnology in antimicrobial finishing of biomedical textiles. Mater. Res. Express. 2014;1 doi: 10.1088/2053-1591/1/3/032003. DOI

Zille A., Oliveira F.R., Souto A.P. Plasma treatment in textile industry. Plasma Process. Polym. 2015;12:98–131. doi: 10.1002/ppap.201400052. DOI

Balagna C., Perero S., Ferraris S., Miola M., Fucale G., Manfredotti C., Battiato A., Santella D., Vernè E., Vittone E., Ferraris M. Antibacterial coating on polymer for space application. Mater. Chem. Phys. 2012;135:714–722. doi: 10.1016/j.matchemphys.2012.05.049. DOI

Appendini P., Hotchkiss J.H. Review of antimicrobial food packaging. Innov. Food Sci. Emerg. Technol. 2002;3:113–126. doi: 10.1016/S1466-8564(02)00012-7. DOI

Ferraris S., Perero S., Miola M., Vernè E., Rosiello A., Ferrazzo V., Valletta G., Sanchez J., Ohrlander M., Tjörnhammar S., et al. Chemical, mechanical and antibacterial properties of silver nanocluster/silica composite coated textiles for safety systems and aerospace applications. Appl. Surf. Sci. 2014;317:131–139. doi: 10.1016/j.apsusc.2014.07.196. DOI

Cloutier M., Mantovani D., Rosei F. Antibacterial coatings: Challenges, perspectives, and opportunities. Trends Biotechnol. 2015;33:637–652. doi: 10.1016/j.tibtech.2015.09.002. PubMed DOI

Kingshott P., Griesser H.J. Surfaces that resist bioadhesion. Curr. Opin. Solid State Mater. Sci. 1999;4:403–412. doi: 10.1016/S1359-0286(99)00018-2. DOI

Li G., Cheng G., Xue H., Chen S., Zhang F., Jiang S. Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. Biomaterials. 2008;29:4592–4597. doi: 10.1016/j.biomaterials.2008.08.021. PubMed DOI

Cheng G., Li G., Xue H., Chen S., Bryers J.D., Jiang S. Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials. 2009;30:5234–5240. doi: 10.1016/j.biomaterials.2009.05.058. PubMed DOI PMC

Choukourov A., Gordeev I., Arzhakov D., Artemenko A., Kousal J., Kylián O., Slavínská D., Biederman H. Does cross-link density of PEO-like plasma polymers influence their resistance to adsorption of fibrinogen? Plasma Process. Polym. 2012;9:48–58. doi: 10.1002/ppap.201100122. DOI

Buxadera-Palomero J., Calvo C., Torrent-Camarero S., Gil F.J., Mas-Moruno C., Canal C., Rodríguez D. Biofunctional polyethylene glycol coatings on titanium: An in vitro -based comparison of functionalization methods. Colloids Surf. B Biointerfaces. 2017;152:367–375. doi: 10.1016/j.colsurfb.2017.01.042. PubMed DOI

Green J.-B.D., Fulghum T., Nordhaus M.A. A review of immobilized antimicrobial agents and methods for testing. Biointerphases. 2011;6 doi: 10.1116/1.3645195. PubMed DOI

Kaur R., Liu S. Antibacterial surface design—Contact kill. Prog. Surf. Sci. 2016;91:136–153. doi: 10.1016/j.progsurf.2016.09.001. DOI

Elbourne A., Crawford R.J., Ivanova E.P. Nano-structured antimicrobial surfaces: From nature to synthetic analogues. J. Colloid Interface Sci. 2017;508:603–616. doi: 10.1016/j.jcis.2017.07.021. PubMed DOI

Tripathy A., Sen P., Su B., Briscoe W.H. Natural and bioinspired nanostructured bactericidal surfaces. Adv. Colloid Interface Sci. 2017;248:85–104. doi: 10.1016/j.cis.2017.07.030. PubMed DOI PMC

Campoccia D., Montanaro L., Arciola C.R. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials. 2013;34:8533–8554. doi: 10.1016/j.biomaterials.2013.07.089. PubMed DOI

Palumbo F., Camporeale G., Yang Y.-W., Wu J.-S., Sardella E., Dilecce G., Calvano C.D., Quintieri L., Caputo L., Baruzzi F., Favia P. Direct plasma deposition of lysozyme-embedded bio-composite thin films. Plasma Process. Polym. 2015;12:1302–1310. doi: 10.1002/ppap.201500039. DOI

Kratochvíl J., Kahoun D., Štěrba J., Langhansová H., Lieskovská J., Fojtíková P., Hanuš J., Kousal J., Kylián O., Straňák V. Plasma polymerized C:H:N:O thin films for controlled release of antibiotic substances. Plasma Process. Polym. 2018;15 doi: 10.1002/ppap.201700160. DOI

Daschner F., Langmaack H., Wiedemann B. Antibiotic resistance in intensive care unit areas. Infect. Control. 1983;4:382–387. doi: 10.1017/S0195941700059798. PubMed DOI

Neu H.C. The crisis in antibiotic resistance. Science. 1992;257:1064–1073. doi: 10.1126/science.257.5073.1064. PubMed DOI

Albrich W.C., Angstwurm M., Bader L., Gärtner R. Drug resistance in intensive care units. Infection. 1999;27:S19–S23. doi: 10.1007/BF02561665. PubMed DOI

Hanberger H., Diekema D., Fluit A., Jones R., Struelens M., Spencer R., Wolff M. Surveillance of antibiotic resistance in European ICUs. J. Hosp. Infect. 2001;48:161–176. doi: 10.1053/jhin.2001.0987. PubMed DOI

Loeffler J.M., Garbino J., Lew D., Harbarth S., Rohner P. Antibiotic consumption, bacterial resistance and their correlation in a swiss university hospital and its adult intensive care units. Scand. J. Infect. Dis. 2003;35:843–850. doi: 10.1080/00365540310016646. PubMed DOI

Levy S.B., Marshall B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med. 2004;10:S122–S129. doi: 10.1038/nm1145. PubMed DOI

Hsueh P.-R., Chen W.-H., Luh K.-T. Relationships between antimicrobial use and antimicrobial resistance in Gram-negative bacteria causing nosocomial infections from 1991–2003 at a university hospital in Taiwan. Int. J. Antimicrob. Agents. 2005;26:463–472. doi: 10.1016/j.ijantimicag.2005.08.016. PubMed DOI PMC

Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol. Rev. 2003;27:341–353. doi: 10.1016/S0168-6445(03)00047-0. PubMed DOI

Mijnendonckx K., Leys N., Mahillon J., Silver S., Van Houdt R. Antimicrobial silver: Uses, toxicity and potential for resistance. BioMetals. 2013;26:609–621. doi: 10.1007/s10534-013-9645-z. PubMed DOI

Chernousova S., Epple M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem. Int. Ed. 2013;52:1636–1653. doi: 10.1002/anie.201205923. PubMed DOI

Durán N., Durán M., de Jesus M.B., Seabra A.B., Fávaro W.J., Nakazato G. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine. 2016;12:789–799. doi: 10.1016/j.nano.2015.11.016. PubMed DOI

Wei L., Lu J., Xu H., Patel A., Chen Z.-S., Chen G. Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov. Today. 2015;20:595–601. doi: 10.1016/j.drudis.2014.11.014. PubMed DOI PMC

Lansdown A.B.G. A Pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices. Adv. Pharmacol. Sci. 2010;2010:1–16. doi: 10.1155/2010/910686. PubMed DOI PMC

Scholz J., Nocke G., Hollstein F., Weissbach A. Investigations on fabrics coated with precious metals using the magnetron sputter technique with regard to their anti-microbial properties. Surf. Coatings Technol. 2005;192:252–256. doi: 10.1016/j.surfcoat.2004.05.036. DOI

Sant S.B., Gill K.S., Burrell R.E. Nanostructure, dissolution and morphology characteristics of microcidal silver films deposited by magnetron sputtering. Acta Biomater. 2007;3:341–350. doi: 10.1016/j.actbio.2006.10.008. PubMed DOI

Mejía M.I., Restrepo G., Marín J.M., Sanjines R., Pulgarín C., Mielczarski E., Mielczarski J., Kiwi J. Magnetron-sputtered ag surfaces. New evidence for the nature of the Ag ions intervening in bacterial inactivation. ACS Appl. Mater. Interfaces. 2010;2:230–235. doi: 10.1021/am900662q. PubMed DOI

Jiang S.X., Qin W.F., Guo R.H., Zhang L. Surface functionalization of nanostructured silver-coated polyester fabric by magnetron sputtering. Surf. Coat. Technol. 2010;204:3662–3667. doi: 10.1016/j.surfcoat.2010.04.042. DOI

Baghriche O., Ruales C., Sanjines R., Pulgarin C., Zertal A., Stolitchnov I., Kiwi J. Ag-surfaces sputtered by DC and pulsed DC-magnetron sputtering effective in bacterial inactivation: Testing and characterization. Surf. Coat. Technol. 2012;206:2410–2416. doi: 10.1016/j.surfcoat.2011.10.041. DOI

Baghriche O., Zertal A., Ehiasarian A.P., Sanjines R., Pulgarin C., Kusiak-Nejman E., Morawski A.W., Kiwi J. Advantages of highly ionized pulse plasma magnetron sputtering (HIPIMS) of silver for improved E. coli inactivation. Thin Solid Films. 2012;520:3567–3573. doi: 10.1016/j.tsf.2011.12.060. DOI

Radetić M., Ilić V., Vodnik V., Dimitrijević S., Jovančić P., Šaponjić Z., Nedeljković J.M. Antibacterial effect of silver nanoparticles deposited on corona-treated polyester and polyamide fabrics. Polym. Adv. Technol. 2008;19:1816–1821. doi: 10.1002/pat.1205. DOI

Kostić M., Radić N., Obradović B.M., Dimitrijević S., Kuraica M.M., Škundrić P. Silver-loaded cotton/polyester fabric modified by dielectric barrier discharge treatment. Plasma Process. Polym. 2009;6:58–67. doi: 10.1002/ppap.200800087. DOI

Jiang H.Q., Manolache S., Wong A.C.L., Denes F.S. Plasma-enhanced deposition of silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics. J. Appl. Polym. Sci. 2004;93:1411–1422. doi: 10.1002/app.20561. DOI

Kramar A., Prysiazhnyi V., Dojčinović B., Mihajlovski K., Obradović B.M., Kuraica M.M., Kostić M. Antimicrobial viscose fabric prepared by treatment in DBD and subsequent deposition of silver and copper ions-Investigation of plasma aging effect. Surf. Coat. Technol. 2013;234:92–99. doi: 10.1016/j.surfcoat.2013.03.030. DOI

Shen T., Liu Y., Zhu Y., Yang D.-Q., Sacher E. Improved adhesion of Ag NPs to the polyethylene terephthalate surface via atmospheric plasma treatment and surface functionalization. Appl. Surf. Sci. 2017;411:411–418. doi: 10.1016/j.apsusc.2017.03.149. DOI

Ibrahim N.A., Eid B.M., Abdel-Aziz M.S. Effect of plasma superficial treatments on antibacterial functionalization and coloration of cellulosic fabrics. Appl. Surf. Sci. 2017;392:1126–1133. doi: 10.1016/j.apsusc.2016.09.141. DOI

Yasuda H. Plasma Polymerization. Academic Press; New York, NY, USA: 1985.

Goodman J. The formation of thin polymer films in the gas discharge. J. Polym. Sci. 1960;44:551–552. doi: 10.1002/pol.1960.1204414428. DOI

D'Agostino R. Plasma Deposition, Treatment, and Etching of Polymers. Academic Press; Orlando, FL, USA: 1990.

Biederman H., Osada Y. Plasma Polymerization Processes. Elsevier; New York, NY, USA: 1992.

Shi F.F. Recent advances in polymer thin films prepared by plasma polymerization synthesis, structural characterization, properties and applications. Surf. Coat. Technol. 1996;82:1–15. doi: 10.1016/0257-8972(95)02621-5. DOI

Friedrich J. Mechanisms of plasma polymerization—Reviewed from a chemical point of view. Plasma Process. Polym. 2011;8:783–802. doi: 10.1002/ppap.201100038. DOI

Zille A., Fernandes M.M., Francesko A., Tzanov T., Fernandes M., Oliveira F.R., Almeida L., Amorim T., Carneiro N., Esteves M.F., Souto A.P. Size and aging effects on antimicrobial efficiency of silver nanoparticles coated on polyamide fabrics activated by atmospheric DBD plasma. ACS Appl. Mater. Interfaces. 2015;7:13731–13744. doi: 10.1021/acsami.5b04340. PubMed DOI

Vasilev K., Sah V., Anselme K., Ndi C., Mateescu M., Dollmann B., Martinek P., Ys H., Ploux L., Griesser H.J. Tunable antibacterial coatings that support mammalian cell growth. Nano. Lett. 2010;10:202–207. doi: 10.1021/nl903274q. PubMed DOI

Ploux L., Mateescu M., Anselme K., Vasilev K. antibacterial properties of silver-loaded plasma polymer coatings. J. Nanomater. 2012;2012:1–9. doi: 10.1155/2012/674145. DOI

Kumar V., Jolivalt C., Pulpytel J., Jafari R., Arefi-Khonsari F. Development of silver nanoparticle loaded antibacterial polymer mesh using plasma polymerization process. J. Biomed. Mater. Res. A. 2013;101A:1121–1132. doi: 10.1002/jbm.a.34419. PubMed DOI

Fahmy A., Friedrich J., Poncin-Epaillard F., Debarnot D. Plasma polymerized allyl alcohol/O2 thin films embedded with silver nanoparticles. Thin Solid Films. 2016;616:339–347. doi: 10.1016/j.tsf.2016.08.045. DOI

Maréchal N., Quesnel E., Pauleau Y. Silver thin films deposited by magnetron sputtering. Thin Solid Films. 1994;241:34–38. doi: 10.1016/0040-6090(94)90391-3. DOI

Charton C., Fahland M. Growth of Ag films on PET deposited by magnetron sputtering. Vacuum. 2002;68:65–73. doi: 10.1016/S0042-207X(02)00289-0. DOI

Asanithi P., Chaiyakun S., Limsuwan P. Growth of silver nanoparticles by DC magnetron sputtering. J. Nanomater. 2012;2012:1–8. doi: 10.1155/2012/963609. DOI

Siegel J., Polívková M., Kasálková N., Kolská Z., Švorčík V. Properties of silver nanostructure-coated PTFE and its biocompatibility. Nanoscale Res. Lett. 2013;8 doi: 10.1186/1556-276X-8-388. PubMed DOI PMC

Šubr M., Kuzminova A., Kylián O., Procházka M. Surface-enhanced Raman scattering (SERS) of riboflavin on nanostructured Ag surfaces: The role of excitation wavelength, plasmon resonance and molecular resonance. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018;197:202–207. doi: 10.1016/j.saa.2018.01.055. PubMed DOI

Shahidi S., Ghoranneviss M. Plasma sputtering for fabrication of antibacterial and ultraviolet protective fabric. Cloth. Text. Res. J. 2016;34:37–47. doi: 10.1177/0887302X15594455. DOI

Hanuš J., Libenská H., Khalakhan I., Kuzminova A., Kylián O., Biederman H. Localized surface plasmon resonance tuning via nanostructured gradient Ag surfaces. Mater. Lett. 2017;192:119–122. doi: 10.1016/j.matlet.2016.12.044. DOI

Wang L., Li L., Chen W.-D. Investigation of the properties of silver thin films deposited by DC magnetron sputtering. Surf. Rev. Lett. 2017;24 doi: 10.1142/S0218625X17500536. DOI

Haberland H., Karrais M., Mall M., Thurner Y. Thin films from energetic cluster impact: A feasibility study. J. Vac. Sci. Technol. A Vacuum Surfaces Film. 1992;10:3266–3271. doi: 10.1116/1.577853. DOI

Huttel Y. Gas-Phase Synthesis of Nanoparticles. Wiley-VCH; Weinheim, Germany: 2017.

Binns C. Nanoclusters deposited on surfaces. Surf. Sci. Rep. 2001;44:1–49. doi: 10.1016/S0167-5729(01)00015-2. DOI

Wegner K., Piseri P., Tafreshi H.V., Milani P. Cluster beam deposition: a tool for nanoscale science and technology. J. Phys. D. Appl. Phys. 2006;39 doi: 10.1088/0022-3727/39/22/R02. DOI

Popok V.N., Barke I., Campbell E.E.B., Meiwes-Broer K.-H. Cluster–surface interaction: From soft landing to implantation. Surf. Sci. Rep. 2011;66:347–377. doi: 10.1016/j.surfrep.2011.05.002. DOI

Grammatikopoulos P., Steinhauer S., Vernieres J., Singh V., Sowwan M. Nanoparticle design by gas-phase synthesis. Adv. Phys. X. 2016;1:81–100. doi: 10.1080/23746149.2016.1142829. DOI

Kratochvíl J., Kuzminova A., Kylián O., Biederman H. Comparison of magnetron sputtering and gas aggregation nanoparticle source used for fabrication of silver nanoparticle films. Surf. Coat. Technol. 2015;275:296–302. doi: 10.1016/j.surfcoat.2015.05.003. DOI

Petr M., Kylián O., Hanuš J., Kuzminova A., Vaidulych M., Khalakhan I., Choukourov A., Slavínská D., Biederman H. Surfaces with roughness gradient and invariant surface chemistry produced by means of gas aggregation source and magnetron sputtering. Plasma Process. Polym. 2016;13:663–671. doi: 10.1002/ppap.201500202. DOI

Alissawi N., Zaporojtchenko V., Strunskus T., Hrkac T., Kocabas I., Erkartal B., Chakravadhanula V.S.K., Kienle L., Grundmeier G., Garbe-Schönberg D., et al. Tuning of the ion release properties of silver nanoparticles buried under a hydrophobic polymer barrier. J. Nanopart. Res. 2012;14:928. doi: 10.1007/s11051-012-0928-z. DOI

Alissawi N., Peter T., Strunskus T., Ebbert C., Grundmeier G., Faupel F. Plasma-polymerized HMDSO coatings to adjust the silver ion release properties of Ag/polymer nanocomposites. J. Nanopart. Res. 2013;15:2080. doi: 10.1007/s11051-013-2080-9. DOI

Kuzminova A., Beranová J., Polonskyi O., Shelemin A., Kylián O., Choukourov A., Slavínská D., Biederman H. Antibacterial nanocomposite coatings produced by means of gas aggregation source of silver nanoparticles. Surf. Coat. Technol. 2016;294:225–230. doi: 10.1016/j.surfcoat.2016.03.097. DOI

Blanchard N.E., Naik V.V., Geue T., Kahle O., Hegemann D., Heuberger M. Response of plasma-polymerized hexamethyldisiloxane films to aqueous environments. Langmuir. 2015;31:12944–12953. doi: 10.1021/acs.langmuir.5b03010. PubMed DOI

Kylián O., Kratochvíl J., Petr M., Kuzminova A., Slavínská D., Biederman H., Beranová J. Ag/C:F Antibacterial and hydrophobic nanocomposite coatings. Funct. Mater. Lett. 2017;10 doi: 10.1142/S1793604717500291. DOI

Deng X., Yu Nikiforov A., Coenye T., Cools P., Aziz G., Morent R., De Geyter N., Leys C. Antimicrobial nano-silver non-woven polyethylene terephthalate fabric via an atmospheric pressure plasma deposition process. Sci. Rep. 2015;5 doi: 10.1038/srep10138. PubMed DOI PMC

Deng X., Nikiforov A., Vujosevic D., Vuksanovic V., Mugoša B., Cvelbar U., De Geyter N., Morent R., Leys C. Antibacterial activity of nano-silver non-woven fabric prepared by atmospheric pressure plasma deposition. Mater. Lett. 2015;149:95–99. doi: 10.1016/j.matlet.2015.02.112. DOI

Morrison D.T., Robertson T.R.F. sputtering of plastics. Thin Solid Films. 1973;15:87–101. doi: 10.1016/0040-6090(73)90207-1. DOI

Holland L., Biederman H., Ojha S. Sputtered and plasma polymerized fluorocarbon films. Thin Solid Films. 1976;35:19–21. doi: 10.1016/0040-6090(76)90267-4. DOI

Biederman H., Ojha S.M., Holland L. The properties of fluorocarbon films prepared by RF sputtering and plasma polymerization in inert and active gas. Thin Solid Films. 1977;41:329–339. doi: 10.1016/0040-6090(77)90319-4. DOI

Biederman H. RF sputtering of polymers and its potential application. Vacuum. 2000;59:594–599. doi: 10.1016/S0042-207X(00)00321-3. DOI

Wang W.-C. Ultrathin fluoropolymer films deposited on a polyimide (kapton®) surface by RF magnetron sputtering of poly(tetrafluoroethylene) Plasma Process. Polym. 2007;4:88–97. doi: 10.1002/ppap.200600075. DOI

Kylián O., Hanuš J., Choukourov A., Kousal J., Slavínská D., Biederman H. Deposition of amino-rich thin films by RF magnetron sputtering of nylon. J. Phys. D. Appl. Phys. 2009;42 doi: 10.1088/0022-3727/42/14/142001. DOI

Drábik M., Polonskyi O., Kylián O., Čechvala J., Artemenko A., Gordeev I., Choukourov A., Slavínská D., Matolínová I., Biederman H. Super-hydrophobic coatings prepared by RF magnetron sputtering of PTFE. Plasma Process. Polym. 2010;7:544–551. doi: 10.1002/ppap.200900164. DOI

Schäfer J., Foest R., Quade A., Ohl A., Weltmann K.-D. Local deposition of SiO x plasma polymer films by a miniaturized atmospheric pressure plasma jet (APPJ) J. Phys. D. Appl. Phys. 2008;41 doi: 10.1088/0022-3727/41/19/194010. DOI

Lommatzsch U., Ihde J. Plasma polymerization of HMDSO with an atmospheric pressure plasma jet for corrosion protection of aluminum and low-adhesion surfaces. Plasma Process. Polym. 2009;6:642–648. doi: 10.1002/ppap.200900032. DOI

Vogelsang A., Ohl A., Foest R., Schröder K., Weltmann K.-D. Hydrophobic coatings deposited with an atmospheric pressure microplasma jet. J. Phys. D. Appl. Phys. 2010;43 doi: 10.1088/0022-3727/43/48/485201. DOI

Chen G., Zhou M., Zhang Z., Lv G., Massey S., Smith W., Tatoulian M. Acrylic acid polymer coatings on silk fibers by room-temperature APGD plasma jets. Plasma Process. Polym. 2011;8:701–708. doi: 10.1002/ppap.201100008. DOI

Belmonte T., Henrion G., Gries T. Nonequilibrium atmospheric plasma deposition. J. Therm. Spray Technol. 2011;20:744–759. doi: 10.1007/s11666-011-9642-0. DOI

Yim J.H., Rodriguez-Santiago V., Williams A.A., Gougousi T., Pappas D.D., Hirvonen J.K. Atmospheric pressure plasma enhanced chemical vapor deposition of hydrophobic coatings using fluorine-based liquid precursors. Surf. Coat. Technol. 2013;234:21–32. doi: 10.1016/j.surfcoat.2013.03.028. DOI

Gordeev I., Šimek M., Prukner V., Artemenko A., Kousal J., Nikitin D., Choukourov A., Biederman H. Deposition of poly (ethylene oxide)-like plasma polymers on inner surfaces of cavities by means of atmospheric-pressure SDBD-based jet. Plasma Process. Polym. 2016;13:823–833. doi: 10.1002/ppap.201500214. DOI

Stallard C.P., Solar P., Biederman H., Dowling D.P. Deposition of non-fouling PEO-like coatings using a low temperature atmospheric pressure plasma jet. Plasma Process. Polym. 2016;13:241–252. doi: 10.1002/ppap.201500034. DOI

Ricci Castro A.H., Kodaira F.V.P., Prysiazhnyi V., Mota R.P., Kostov K.G. Deposition of thin films using argon/acetylene atmospheric pressure plasma jet. Surf. Coat. Technol. 2017;312:13–18. doi: 10.1016/j.surfcoat.2016.07.036. DOI

Favia P., Vulpio M., Marino R., D’Agostino R., Mota R.P., Catalano M. Plasma-deposition of ag-containing polyethyleneoxide-like coatings. Plasmas Polym. 2000;5:1–14. doi: 10.1023/A:1009517408368. DOI

Sardella E., Favia P., Gristina R., Nardulli M., D’Agostino R. Plasma-Aided Micro-and Nanopatterning Processes for Biomedical Applications. Plasma Process. Polym. 2006;3:456–469. doi: 10.1002/ppap.200600041. DOI

Guillemot G., Despax B., Raynaud P., Zanna S., Marcus P., Schmitz P., Mercier-Bonin M. Plasma deposition of silver nanoparticles onto stainless steel for the prevention of fungal biofilms: A case study on saccharomyces cerevisiae. Plasma Process. Polym. 2008;5:228–238. doi: 10.1002/ppap.200700088. DOI

Saulou C., Despax B., Raynaud P., Zanna S., Marcus P., Mercier-Bonin M. Plasma deposition of organosilicon polymer thin films with embedded nanosilver for prevention of microbial adhesion. Appl. Surf. Sci. 2009;256:S35–S39. doi: 10.1016/j.apsusc.2009.04.118. DOI

Ferraris M., Perero S., Miola M., Ferraris S., Verné E., Morgiel J. Silver nanocluster-silica composite coatings with antibacterial properties. Mater. Chem. Phys. 2010;120:123–126. doi: 10.1016/j.matchemphys.2009.10.034. DOI

Chen W., Liu Y., Courtney H.S., Bettenga M., Agrawal C.M., Bumgardner J.D., Ong J.L. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials. 2006;27:5512–5517. doi: 10.1016/j.biomaterials.2006.07.003. PubMed DOI

Xiong J., Ghori M.Z., Henkel B., Strunskus T., Schürmann U., Deng M., Kienle L., Faupel F. Tuning silver ion release properties in reactively sputtered Ag/TiOx nanocomposites. Appl. Phys. A. 2017;123:470. doi: 10.1007/s00339-017-1088-x. DOI

Zaporojtchenko V., Podschun R., Schürmann U., Kulkarni A., Faupel F. Physico-chemical and antimicrobial properties of co-sputtered Ag-Au/PTFE nanocomposite coatings. Nanotechnology. 2006;17:4904–4908. doi: 10.1088/0957-4484/17/19/020. DOI

Lischer S., Korner E., Balazs D.J., Shen D., Wick P., Grieder K., Haas D., Heuberger M., Hegemann D. Antibacterial burst-release from minimal Ag-containing plasma polymer coatings. J. R. Soc. Interface. 2011;8:1019–1030. doi: 10.1098/rsif.2010.0596. PubMed DOI PMC

Körner E., Hanselmann B., Cierniak P., Hegemann D. Tailor-made silver release properties of silver-containing functional plasma polymer coatings adjusted through a macroscopic kinetics approach. Plasma Chem. Plasma Process. 2012;32:619–627. doi: 10.1007/s11090-012-9362-3. DOI

Allion-Maurer A., Saulou-Bérion C., Briandet R., Zanna S., Lebleu N., Marcus P., Raynaud P., Despax B., Mercier-Bonin M. Plasma-deposited nanocomposite polymer-silver coating against Escherichia coli and Staphylococcus aureus: Antibacterial properties and ageing. Surf. Coat. Technol. 2015;281:1–10. doi: 10.1016/j.surfcoat.2015.09.025. DOI

Saulou C., Despax B., Raynaud P., Zanna S., Seyeux A., Marcus P., Audinot J.N., Mercier-Bonin M. Plasma-mediated nanosilver-organosilicon composite films deposited on stainless steel: Synthesis, surface characterization, and evaluation of anti-adhesive and anti-microbial properties on the model yeast saccharomyces cerevisiae. Plasma Process. Polym. 2012;9:324–338. doi: 10.1002/ppap.201100033. DOI

Agarwala M., Barman T., Gogoi D., Choudhury B., Pal A.R., Yadav R.N.S. Highly effective antibiofilm coating of silver-polymer nanocomposite on polymeric medical devices deposited by one step plasma process. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014;102:1223–1235. doi: 10.1002/jbm.b.33106. PubMed DOI

Juknius T., Ružauskas M., Tamulevičius T., Šiugždinienė R., Juknienė I., Vasiliauskas A., Jurkevičiūtė A., Tamulevičius S. Antimicrobial properties of diamond-like carbon/silver nanocomposite thin films deposited on textiles: Towards smart bandages. Materials. 2016;9:371. doi: 10.3390/ma9050371. PubMed DOI PMC

Vaidulych M., Hanuš J., Steinhartová T., Kylián O., Choukourov A., Beranová J., Khalakhan I., Biederman H. Deposition of Ag/a-C:H nanocomposite films with Ag surface enrichment. Plasma Process. Polym. 2017;14 doi: 10.1002/ppap.201600256. DOI

Polonskyi O., Solař P., Kylián O., Drábik M., Artemenko A., Kousal J., Hanuš J., Pešička J., Matolínová I., Kolíbalová E., et al. Nanocomposite metal/plasma polymer films prepared by means of gas aggregation cluster source. Thin Solid Films. 2012;520:4155–4162. doi: 10.1016/j.tsf.2011.04.100. DOI

Peter T., Rehders S., Schürmann U., Strunskus T., Zaporojtchenko V., Faupel F. High rate deposition system for metal-cluster/SiOxCyHz –polymer nanocomposite thin films. J. Nanopart. Res. 2013;15 doi: 10.1007/s11051-013-1710-6. DOI

Hanuš J., Steinhartová T., Kylián O., Kousal J., Malinský P., Choukourov A., Macková A., Biederman H. Deposition of Cu/a-C:H Nanocomposite Films. Plasma Process. Polym. 2016;13:879–887. doi: 10.1002/ppap.201500208. DOI

Zimmermann R., Pfuch A., Horn K., Weisser J., Heft A., Röder M., Linke R., Schnabelrauch M., Schimanski A. An approach to create silver containing antibacterial coatings by use of atmospheric pressure plasma chemical vapour deposition (APCVD) and combustion chemical vapour deposition (CCVD) in an economic way. Plasma Process. Polym. 2011;8:295–304. doi: 10.1002/ppap.201000113. DOI

Beier O., Pfuch A., Horn K., Weisser J., Schnabelrauch M., Schimanski A. Low temperature deposition of antibacterially active silicon oxide layers containing silver nanoparticles, prepared by atmospheric pressure plasma chemical vapor deposition. Plasma Process. Polym. 2013;10:77–87. doi: 10.1002/ppap.201200059. DOI

Gerullis S., Pfuch A., Spange S., Kettner F., Plaschkies K., Küzün B., Kosmachev P.V., Volokitin G.G., Grünler B. Thin antimicrobial silver, copper or zinc containing SiOx films on wood polymer composites (WPC) applied by atmospheric pressure plasma chemical vapour deposition (APCVD) and sol–gel technology. Eur. J. Wood Wood Prod. 2018;76:229–241. doi: 10.1007/s00107-017-1220-9. DOI

Deng X., Leys C., Vujosevic D., Vuksanovic V., Cvelbar U., De Geyter N., Morent R., Nikiforov A. Engineering of Composite Organosilicon Thin Films with Embedded Silver Nanoparticles via Atmospheric Pressure Plasma Process for Antibacterial Activity. Plasma Process. Polym. 2014;11:921–930. doi: 10.1002/ppap.201400042. DOI

Liguori A., Traldi E., Toccaceli E., Laurita R., Pollicino A., Focarete M.L., Colombo V., Gherardi M. Co-deposition of plasma-polymerized polyacrylic acid and silver nanoparticles for the production of nanocomposite coatings using a non-equilibrium atmospheric pressure plasma jet. Plasma Process. Polym. 2016;13:623–632. doi: 10.1002/ppap.201500143. DOI

Kulaga E., Ploux L., Balan L., Schrodj G., Roucoules V. Mechanically responsive antibacterial plasma polymer coatings for textile biomaterials. Plasma Process. Polym. 2014;11:63–79. doi: 10.1002/ppap.201300091. DOI

Pan Y.V., Wesley R.A., Luginbuhl R., Denton D.D., Ratner B.D. Plasma polymerized N-Isopropylacrylamide: Synthesis and characterization of a smart thermally responsive coating. Biomacromolecules. 2001;2:32–36. doi: 10.1021/bm0000642. PubMed DOI

Spridon D., Curecheriu L., Dobromir M., Dumitrascu N. Synthesis of poly (N-isopropylacrylamide) under atmospheric pressure plasma conditions. J. Appl. Polym. Sci. 2012;124:2377–2382. doi: 10.1002/app.35280. DOI

Chen Y., Tang X.L., Chen B.T., Qiu G. Low temperature plasma vapor treatment of thermo-sensitive poly(N-isopropylacrylamide) and its application. Appl. Surf. Sci. 2013;268:332–336. doi: 10.1016/j.apsusc.2012.12.089. DOI

Moreno-Couranjou M., Palumbo F., Sardella E., Frache G., Favia P., Choquet P. Plasma deposition of thermo-responsive thin films from n-vinylcaprolactam. Plasma Process. Polym. 2014;11:816–821. doi: 10.1002/ppap.201400019. DOI

Muzammil I., Li Y., Lei M. Tunable wettability and pH-responsiveness of plasma copolymers of acrylic acid and octafluorocyclobutane. Plasma Process. Polym. 2017;14 doi: 10.1002/ppap.201700053. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...