State-of-the-Art, and Perspectives of, Silver/Plasma Polymer Antibacterial Nanocomposites
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
30126109
PubMed Central
PMC6164522
DOI
10.3390/antibiotics7030078
PII: antibiotics7030078
Knihovny.cz E-resources
- Keywords
- antibacterial coatings, nanocomposites, non-equilibrium plasma, plasma polymers, silver,
- Publication type
- Journal Article MeSH
- Review MeSH
Urgent need for innovative and effective antibacterial coatings in different fields seems to have triggered the development of numerous strategies for the production of such materials. As shown in this short overview, plasma based techniques arouse considerable attention that is connected with the possibility to use these techniques for the production of advanced antibacterial Ag/plasma polymer coatings with tailor-made functional properties. In addition, the plasma-based deposition is believed to be well-suited for the production of novel multi-functional or stimuli-responsive antibacterial films.
See more in PubMed
Poncin-Epaillard F., Legeay G. Surface engineering of biomaterials with plasma techniques. J. Biomater. Sci. Polym. Ed. 2003;14:1005–1028. doi: 10.1163/156856203769231538. PubMed DOI
Siow K.S., Britcher L., Kumar S., Griesser H.J. Plasma Methods for the Generation of Chemically Reactive Surfaces for Biomolecule Immobilization and Cell Colonization—A Review. Plasma Process. Polym. 2006;3:392–418. doi: 10.1002/ppap.200600021. DOI
Pappas D. Status and potential of atmospheric plasma processing of materials. J. Vac. Sci. Technol. A Vacuum Surfaces Film. 2011;29 doi: 10.1116/1.3559547. DOI
Bruggeman P.J., Kushner M.J., Locke B.R., Gardeniers J.G.E., Graham W.G., Graves D.B., Hofman-Caris R.C.H.M., Maric D., Reid J.P., Ceriani E., et al. Plasma–liquid interactions: a review and roadmap. Plasma Sources Sci. Technol. 2016;25 doi: 10.1088/0963-0252/25/5/053002. DOI
Adamovich I., Baalrud S.D., Bogaerts A., Bruggeman P.J., Cappelli M., Colombo V., Czarnetzki U., Ebert U., Eden J.G., Favia P., et al. The 2017 plasma roadmap: Low temperature plasma science and technology. J. Phys. D. Appl. Phys. 2017;50 doi: 10.1088/1361-6463/aa76f5. DOI
Bekeschus S., Favia P., Robert E., von Woedtke T. White paper on plasma for medicine and hygiene: Future in plasma health sciences. Plasma Process. Polym. 2018 doi: 10.1002/ppap.201800033. DOI
Cvelbar U., Walsh J.L., Černák M., de Vries H.W., Reuter S., Belmonte T., Corbella C., Miron C., Hojnik N., Jurov A., et al. White paper on the future of plasma science and technology in plastics and textiles. Plasma Process. Polym. 2018 doi: 10.1002/ppap.201700228. DOI
Moisan M., Barbeau J., Moreau S., Pelletier J., Tabrizian M., Yahia L. Low-temperature sterilization using gas plasmas: A review of the experiments and an analysis of the inactivation mechanisms. Int. J. Pharm. 2001;226:1–21. doi: 10.1016/S0378-5173(01)00752-9. PubMed DOI
Laroussi M. Low Temperature Plasma-Based Sterilization: Overview and State-of-the-Art. Plasma Process. Polym. 2005;2:391–400. doi: 10.1002/ppap.200400078. DOI
Rossi F., Kylián O., Hasiwa M. Decontamination of surfaces by low pressure plasma discharges. Plasma Process. Polym. 2006;3:431–442. doi: 10.1002/ppap.200600011. DOI
Von Keudell A., Awakowicz P., Benedikt J., Raballand V., Yanguas-Gil A., Opretzka J., Flötgen C., Reuter R., Byelykh L., Halfmann H., et al. Inactivation of bacteria and biomolecules by low-pressure plasma discharges. Plasma Process. Polym. 2010;7:327–352. doi: 10.1002/ppap.200900121. DOI
Rossi F., Kylián O., Rauscher H., Hasiwa M., Gilliland D. Low pressure plasma discharges for the sterilization and decontamination of surfaces. New J. Phys. 2009;11 doi: 10.1088/1367-2630/11/11/115017. DOI
De Geyter N., Morent R. nonthermal plasma sterilization of living and nonliving surfaces. Annu. Rev. Biomed. Eng. 2012;14:255–274. doi: 10.1146/annurev-bioeng-071811-150110. PubMed DOI
Fridman G., Friedman G., Gutsol A., Shekhter A.B., Vasilets V.N., Fridman A. Applied plasma medicine. Plasma Process. Polym. 2008;5:503–533. doi: 10.1002/ppap.200700154. DOI
Kong M.G., Kroesen G., Morfill G., Nosenko T., Shimizu T., van Dijk J., Zimmermann J.L. Plasma medicine: An introductory review. New J. Phys. 2009;11 doi: 10.1088/1367-2630/11/11/115012. DOI
Laroussi M. Low-temperature plasmas for medicine? IEEE Trans. Plasma Sci. 2009;37:714–725. doi: 10.1109/TPS.2009.2017267. DOI
Von Woedtke T., Metelmann H.-R., Weltmann K.-D. Clinical plasma medicine: state and perspectives of in vivo application of cold atmospheric plasma. Contrib. Plasma Phys. 2014;54:104–117. doi: 10.1002/ctpp.201310068. DOI
Ito M., Ohta T., Hori M. Plasma agriculture. J. Korean Phys. Soc. 2012;60:937–943. doi: 10.3938/jkps.60.937. DOI
Ambrico P.F., Šimek M., Morano M., De Miccolis Angelini R.M., Minafra A., Trotti P., Ambrico M., Prukner V., Faretra F. Reduction of microbial contamination and improvement of germination of sweet basil (Ocimum basilicum L.) seeds via surface dielectric barrier discharge. J. Phys. D. Appl. Phys. 2017;50 doi: 10.1088/1361-6463/aa77c8. DOI
Ito M., Oh J.-S., Ohta T., Shiratani M., Hori M. Current status and future prospects of agricultural applications using atmospheric-pressure plasma technologies. Plasma Process. Polym. 2018;15 doi: 10.1002/ppap.201700073. DOI
Šerá B., Šerý M. Non-thermal plasma treatment as a new biotechnology in relation to seeds, dry fruits, and grains. Plasma Sci. Technol. 2018;20 doi: 10.1088/2058-6272/aaacc6. DOI
Puač N., Gherardi M., Shiratani M. Plasma agriculture: A rapidly emerging field. Plasma Process. Polym. 2018;15 doi: 10.1002/ppap.201700174. DOI
Vasilev K., Griesser S.S., Griesser H.J. Antibacterial surfaces and coatings produced by plasma techniques. Plasma Process. Polym. 2011;8:1010–1023. doi: 10.1002/ppap.201100097. DOI
Sardella E., Palumbo F., Camporeale G., Favia P. Non-equilibrium plasma processing for the preparation of antibacterial surfaces. Materials. 2016;9:515. doi: 10.3390/ma9070515. PubMed DOI PMC
Nikiforov A., Deng X., Xiong Q., Cvelbar U., DeGeyter N., Morent R., Leys C. Non-thermal plasma technology for the development of antimicrobial surfaces: a review. J. Phys. D. Appl. Phys. 2016;49 doi: 10.1088/0022-3727/49/20/204002. DOI
Zille A., Almeida L., Amorim T., Carneiro N., Esteves M.F., Silva C.J., Souto A.P. Application of nanotechnology in antimicrobial finishing of biomedical textiles. Mater. Res. Express. 2014;1 doi: 10.1088/2053-1591/1/3/032003. DOI
Zille A., Oliveira F.R., Souto A.P. Plasma treatment in textile industry. Plasma Process. Polym. 2015;12:98–131. doi: 10.1002/ppap.201400052. DOI
Balagna C., Perero S., Ferraris S., Miola M., Fucale G., Manfredotti C., Battiato A., Santella D., Vernè E., Vittone E., Ferraris M. Antibacterial coating on polymer for space application. Mater. Chem. Phys. 2012;135:714–722. doi: 10.1016/j.matchemphys.2012.05.049. DOI
Appendini P., Hotchkiss J.H. Review of antimicrobial food packaging. Innov. Food Sci. Emerg. Technol. 2002;3:113–126. doi: 10.1016/S1466-8564(02)00012-7. DOI
Ferraris S., Perero S., Miola M., Vernè E., Rosiello A., Ferrazzo V., Valletta G., Sanchez J., Ohrlander M., Tjörnhammar S., et al. Chemical, mechanical and antibacterial properties of silver nanocluster/silica composite coated textiles for safety systems and aerospace applications. Appl. Surf. Sci. 2014;317:131–139. doi: 10.1016/j.apsusc.2014.07.196. DOI
Cloutier M., Mantovani D., Rosei F. Antibacterial coatings: Challenges, perspectives, and opportunities. Trends Biotechnol. 2015;33:637–652. doi: 10.1016/j.tibtech.2015.09.002. PubMed DOI
Kingshott P., Griesser H.J. Surfaces that resist bioadhesion. Curr. Opin. Solid State Mater. Sci. 1999;4:403–412. doi: 10.1016/S1359-0286(99)00018-2. DOI
Li G., Cheng G., Xue H., Chen S., Zhang F., Jiang S. Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. Biomaterials. 2008;29:4592–4597. doi: 10.1016/j.biomaterials.2008.08.021. PubMed DOI
Cheng G., Li G., Xue H., Chen S., Bryers J.D., Jiang S. Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials. 2009;30:5234–5240. doi: 10.1016/j.biomaterials.2009.05.058. PubMed DOI PMC
Choukourov A., Gordeev I., Arzhakov D., Artemenko A., Kousal J., Kylián O., Slavínská D., Biederman H. Does cross-link density of PEO-like plasma polymers influence their resistance to adsorption of fibrinogen? Plasma Process. Polym. 2012;9:48–58. doi: 10.1002/ppap.201100122. DOI
Buxadera-Palomero J., Calvo C., Torrent-Camarero S., Gil F.J., Mas-Moruno C., Canal C., Rodríguez D. Biofunctional polyethylene glycol coatings on titanium: An in vitro -based comparison of functionalization methods. Colloids Surf. B Biointerfaces. 2017;152:367–375. doi: 10.1016/j.colsurfb.2017.01.042. PubMed DOI
Green J.-B.D., Fulghum T., Nordhaus M.A. A review of immobilized antimicrobial agents and methods for testing. Biointerphases. 2011;6 doi: 10.1116/1.3645195. PubMed DOI
Kaur R., Liu S. Antibacterial surface design—Contact kill. Prog. Surf. Sci. 2016;91:136–153. doi: 10.1016/j.progsurf.2016.09.001. DOI
Elbourne A., Crawford R.J., Ivanova E.P. Nano-structured antimicrobial surfaces: From nature to synthetic analogues. J. Colloid Interface Sci. 2017;508:603–616. doi: 10.1016/j.jcis.2017.07.021. PubMed DOI
Tripathy A., Sen P., Su B., Briscoe W.H. Natural and bioinspired nanostructured bactericidal surfaces. Adv. Colloid Interface Sci. 2017;248:85–104. doi: 10.1016/j.cis.2017.07.030. PubMed DOI PMC
Campoccia D., Montanaro L., Arciola C.R. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials. 2013;34:8533–8554. doi: 10.1016/j.biomaterials.2013.07.089. PubMed DOI
Palumbo F., Camporeale G., Yang Y.-W., Wu J.-S., Sardella E., Dilecce G., Calvano C.D., Quintieri L., Caputo L., Baruzzi F., Favia P. Direct plasma deposition of lysozyme-embedded bio-composite thin films. Plasma Process. Polym. 2015;12:1302–1310. doi: 10.1002/ppap.201500039. DOI
Kratochvíl J., Kahoun D., Štěrba J., Langhansová H., Lieskovská J., Fojtíková P., Hanuš J., Kousal J., Kylián O., Straňák V. Plasma polymerized C:H:N:O thin films for controlled release of antibiotic substances. Plasma Process. Polym. 2018;15 doi: 10.1002/ppap.201700160. DOI
Daschner F., Langmaack H., Wiedemann B. Antibiotic resistance in intensive care unit areas. Infect. Control. 1983;4:382–387. doi: 10.1017/S0195941700059798. PubMed DOI
Neu H.C. The crisis in antibiotic resistance. Science. 1992;257:1064–1073. doi: 10.1126/science.257.5073.1064. PubMed DOI
Albrich W.C., Angstwurm M., Bader L., Gärtner R. Drug resistance in intensive care units. Infection. 1999;27:S19–S23. doi: 10.1007/BF02561665. PubMed DOI
Hanberger H., Diekema D., Fluit A., Jones R., Struelens M., Spencer R., Wolff M. Surveillance of antibiotic resistance in European ICUs. J. Hosp. Infect. 2001;48:161–176. doi: 10.1053/jhin.2001.0987. PubMed DOI
Loeffler J.M., Garbino J., Lew D., Harbarth S., Rohner P. Antibiotic consumption, bacterial resistance and their correlation in a swiss university hospital and its adult intensive care units. Scand. J. Infect. Dis. 2003;35:843–850. doi: 10.1080/00365540310016646. PubMed DOI
Levy S.B., Marshall B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med. 2004;10:S122–S129. doi: 10.1038/nm1145. PubMed DOI
Hsueh P.-R., Chen W.-H., Luh K.-T. Relationships between antimicrobial use and antimicrobial resistance in Gram-negative bacteria causing nosocomial infections from 1991–2003 at a university hospital in Taiwan. Int. J. Antimicrob. Agents. 2005;26:463–472. doi: 10.1016/j.ijantimicag.2005.08.016. PubMed DOI PMC
Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol. Rev. 2003;27:341–353. doi: 10.1016/S0168-6445(03)00047-0. PubMed DOI
Mijnendonckx K., Leys N., Mahillon J., Silver S., Van Houdt R. Antimicrobial silver: Uses, toxicity and potential for resistance. BioMetals. 2013;26:609–621. doi: 10.1007/s10534-013-9645-z. PubMed DOI
Chernousova S., Epple M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem. Int. Ed. 2013;52:1636–1653. doi: 10.1002/anie.201205923. PubMed DOI
Durán N., Durán M., de Jesus M.B., Seabra A.B., Fávaro W.J., Nakazato G. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine. 2016;12:789–799. doi: 10.1016/j.nano.2015.11.016. PubMed DOI
Wei L., Lu J., Xu H., Patel A., Chen Z.-S., Chen G. Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov. Today. 2015;20:595–601. doi: 10.1016/j.drudis.2014.11.014. PubMed DOI PMC
Lansdown A.B.G. A Pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices. Adv. Pharmacol. Sci. 2010;2010:1–16. doi: 10.1155/2010/910686. PubMed DOI PMC
Scholz J., Nocke G., Hollstein F., Weissbach A. Investigations on fabrics coated with precious metals using the magnetron sputter technique with regard to their anti-microbial properties. Surf. Coatings Technol. 2005;192:252–256. doi: 10.1016/j.surfcoat.2004.05.036. DOI
Sant S.B., Gill K.S., Burrell R.E. Nanostructure, dissolution and morphology characteristics of microcidal silver films deposited by magnetron sputtering. Acta Biomater. 2007;3:341–350. doi: 10.1016/j.actbio.2006.10.008. PubMed DOI
Mejía M.I., Restrepo G., Marín J.M., Sanjines R., Pulgarín C., Mielczarski E., Mielczarski J., Kiwi J. Magnetron-sputtered ag surfaces. New evidence for the nature of the Ag ions intervening in bacterial inactivation. ACS Appl. Mater. Interfaces. 2010;2:230–235. doi: 10.1021/am900662q. PubMed DOI
Jiang S.X., Qin W.F., Guo R.H., Zhang L. Surface functionalization of nanostructured silver-coated polyester fabric by magnetron sputtering. Surf. Coat. Technol. 2010;204:3662–3667. doi: 10.1016/j.surfcoat.2010.04.042. DOI
Baghriche O., Ruales C., Sanjines R., Pulgarin C., Zertal A., Stolitchnov I., Kiwi J. Ag-surfaces sputtered by DC and pulsed DC-magnetron sputtering effective in bacterial inactivation: Testing and characterization. Surf. Coat. Technol. 2012;206:2410–2416. doi: 10.1016/j.surfcoat.2011.10.041. DOI
Baghriche O., Zertal A., Ehiasarian A.P., Sanjines R., Pulgarin C., Kusiak-Nejman E., Morawski A.W., Kiwi J. Advantages of highly ionized pulse plasma magnetron sputtering (HIPIMS) of silver for improved E. coli inactivation. Thin Solid Films. 2012;520:3567–3573. doi: 10.1016/j.tsf.2011.12.060. DOI
Radetić M., Ilić V., Vodnik V., Dimitrijević S., Jovančić P., Šaponjić Z., Nedeljković J.M. Antibacterial effect of silver nanoparticles deposited on corona-treated polyester and polyamide fabrics. Polym. Adv. Technol. 2008;19:1816–1821. doi: 10.1002/pat.1205. DOI
Kostić M., Radić N., Obradović B.M., Dimitrijević S., Kuraica M.M., Škundrić P. Silver-loaded cotton/polyester fabric modified by dielectric barrier discharge treatment. Plasma Process. Polym. 2009;6:58–67. doi: 10.1002/ppap.200800087. DOI
Jiang H.Q., Manolache S., Wong A.C.L., Denes F.S. Plasma-enhanced deposition of silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics. J. Appl. Polym. Sci. 2004;93:1411–1422. doi: 10.1002/app.20561. DOI
Kramar A., Prysiazhnyi V., Dojčinović B., Mihajlovski K., Obradović B.M., Kuraica M.M., Kostić M. Antimicrobial viscose fabric prepared by treatment in DBD and subsequent deposition of silver and copper ions-Investigation of plasma aging effect. Surf. Coat. Technol. 2013;234:92–99. doi: 10.1016/j.surfcoat.2013.03.030. DOI
Shen T., Liu Y., Zhu Y., Yang D.-Q., Sacher E. Improved adhesion of Ag NPs to the polyethylene terephthalate surface via atmospheric plasma treatment and surface functionalization. Appl. Surf. Sci. 2017;411:411–418. doi: 10.1016/j.apsusc.2017.03.149. DOI
Ibrahim N.A., Eid B.M., Abdel-Aziz M.S. Effect of plasma superficial treatments on antibacterial functionalization and coloration of cellulosic fabrics. Appl. Surf. Sci. 2017;392:1126–1133. doi: 10.1016/j.apsusc.2016.09.141. DOI
Yasuda H. Plasma Polymerization. Academic Press; New York, NY, USA: 1985.
Goodman J. The formation of thin polymer films in the gas discharge. J. Polym. Sci. 1960;44:551–552. doi: 10.1002/pol.1960.1204414428. DOI
D'Agostino R. Plasma Deposition, Treatment, and Etching of Polymers. Academic Press; Orlando, FL, USA: 1990.
Biederman H., Osada Y. Plasma Polymerization Processes. Elsevier; New York, NY, USA: 1992.
Shi F.F. Recent advances in polymer thin films prepared by plasma polymerization synthesis, structural characterization, properties and applications. Surf. Coat. Technol. 1996;82:1–15. doi: 10.1016/0257-8972(95)02621-5. DOI
Friedrich J. Mechanisms of plasma polymerization—Reviewed from a chemical point of view. Plasma Process. Polym. 2011;8:783–802. doi: 10.1002/ppap.201100038. DOI
Zille A., Fernandes M.M., Francesko A., Tzanov T., Fernandes M., Oliveira F.R., Almeida L., Amorim T., Carneiro N., Esteves M.F., Souto A.P. Size and aging effects on antimicrobial efficiency of silver nanoparticles coated on polyamide fabrics activated by atmospheric DBD plasma. ACS Appl. Mater. Interfaces. 2015;7:13731–13744. doi: 10.1021/acsami.5b04340. PubMed DOI
Vasilev K., Sah V., Anselme K., Ndi C., Mateescu M., Dollmann B., Martinek P., Ys H., Ploux L., Griesser H.J. Tunable antibacterial coatings that support mammalian cell growth. Nano. Lett. 2010;10:202–207. doi: 10.1021/nl903274q. PubMed DOI
Ploux L., Mateescu M., Anselme K., Vasilev K. antibacterial properties of silver-loaded plasma polymer coatings. J. Nanomater. 2012;2012:1–9. doi: 10.1155/2012/674145. DOI
Kumar V., Jolivalt C., Pulpytel J., Jafari R., Arefi-Khonsari F. Development of silver nanoparticle loaded antibacterial polymer mesh using plasma polymerization process. J. Biomed. Mater. Res. A. 2013;101A:1121–1132. doi: 10.1002/jbm.a.34419. PubMed DOI
Fahmy A., Friedrich J., Poncin-Epaillard F., Debarnot D. Plasma polymerized allyl alcohol/O2 thin films embedded with silver nanoparticles. Thin Solid Films. 2016;616:339–347. doi: 10.1016/j.tsf.2016.08.045. DOI
Maréchal N., Quesnel E., Pauleau Y. Silver thin films deposited by magnetron sputtering. Thin Solid Films. 1994;241:34–38. doi: 10.1016/0040-6090(94)90391-3. DOI
Charton C., Fahland M. Growth of Ag films on PET deposited by magnetron sputtering. Vacuum. 2002;68:65–73. doi: 10.1016/S0042-207X(02)00289-0. DOI
Asanithi P., Chaiyakun S., Limsuwan P. Growth of silver nanoparticles by DC magnetron sputtering. J. Nanomater. 2012;2012:1–8. doi: 10.1155/2012/963609. DOI
Siegel J., Polívková M., Kasálková N., Kolská Z., Švorčík V. Properties of silver nanostructure-coated PTFE and its biocompatibility. Nanoscale Res. Lett. 2013;8 doi: 10.1186/1556-276X-8-388. PubMed DOI PMC
Šubr M., Kuzminova A., Kylián O., Procházka M. Surface-enhanced Raman scattering (SERS) of riboflavin on nanostructured Ag surfaces: The role of excitation wavelength, plasmon resonance and molecular resonance. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018;197:202–207. doi: 10.1016/j.saa.2018.01.055. PubMed DOI
Shahidi S., Ghoranneviss M. Plasma sputtering for fabrication of antibacterial and ultraviolet protective fabric. Cloth. Text. Res. J. 2016;34:37–47. doi: 10.1177/0887302X15594455. DOI
Hanuš J., Libenská H., Khalakhan I., Kuzminova A., Kylián O., Biederman H. Localized surface plasmon resonance tuning via nanostructured gradient Ag surfaces. Mater. Lett. 2017;192:119–122. doi: 10.1016/j.matlet.2016.12.044. DOI
Wang L., Li L., Chen W.-D. Investigation of the properties of silver thin films deposited by DC magnetron sputtering. Surf. Rev. Lett. 2017;24 doi: 10.1142/S0218625X17500536. DOI
Haberland H., Karrais M., Mall M., Thurner Y. Thin films from energetic cluster impact: A feasibility study. J. Vac. Sci. Technol. A Vacuum Surfaces Film. 1992;10:3266–3271. doi: 10.1116/1.577853. DOI
Huttel Y. Gas-Phase Synthesis of Nanoparticles. Wiley-VCH; Weinheim, Germany: 2017.
Binns C. Nanoclusters deposited on surfaces. Surf. Sci. Rep. 2001;44:1–49. doi: 10.1016/S0167-5729(01)00015-2. DOI
Wegner K., Piseri P., Tafreshi H.V., Milani P. Cluster beam deposition: a tool for nanoscale science and technology. J. Phys. D. Appl. Phys. 2006;39 doi: 10.1088/0022-3727/39/22/R02. DOI
Popok V.N., Barke I., Campbell E.E.B., Meiwes-Broer K.-H. Cluster–surface interaction: From soft landing to implantation. Surf. Sci. Rep. 2011;66:347–377. doi: 10.1016/j.surfrep.2011.05.002. DOI
Grammatikopoulos P., Steinhauer S., Vernieres J., Singh V., Sowwan M. Nanoparticle design by gas-phase synthesis. Adv. Phys. X. 2016;1:81–100. doi: 10.1080/23746149.2016.1142829. DOI
Kratochvíl J., Kuzminova A., Kylián O., Biederman H. Comparison of magnetron sputtering and gas aggregation nanoparticle source used for fabrication of silver nanoparticle films. Surf. Coat. Technol. 2015;275:296–302. doi: 10.1016/j.surfcoat.2015.05.003. DOI
Petr M., Kylián O., Hanuš J., Kuzminova A., Vaidulych M., Khalakhan I., Choukourov A., Slavínská D., Biederman H. Surfaces with roughness gradient and invariant surface chemistry produced by means of gas aggregation source and magnetron sputtering. Plasma Process. Polym. 2016;13:663–671. doi: 10.1002/ppap.201500202. DOI
Alissawi N., Zaporojtchenko V., Strunskus T., Hrkac T., Kocabas I., Erkartal B., Chakravadhanula V.S.K., Kienle L., Grundmeier G., Garbe-Schönberg D., et al. Tuning of the ion release properties of silver nanoparticles buried under a hydrophobic polymer barrier. J. Nanopart. Res. 2012;14:928. doi: 10.1007/s11051-012-0928-z. DOI
Alissawi N., Peter T., Strunskus T., Ebbert C., Grundmeier G., Faupel F. Plasma-polymerized HMDSO coatings to adjust the silver ion release properties of Ag/polymer nanocomposites. J. Nanopart. Res. 2013;15:2080. doi: 10.1007/s11051-013-2080-9. DOI
Kuzminova A., Beranová J., Polonskyi O., Shelemin A., Kylián O., Choukourov A., Slavínská D., Biederman H. Antibacterial nanocomposite coatings produced by means of gas aggregation source of silver nanoparticles. Surf. Coat. Technol. 2016;294:225–230. doi: 10.1016/j.surfcoat.2016.03.097. DOI
Blanchard N.E., Naik V.V., Geue T., Kahle O., Hegemann D., Heuberger M. Response of plasma-polymerized hexamethyldisiloxane films to aqueous environments. Langmuir. 2015;31:12944–12953. doi: 10.1021/acs.langmuir.5b03010. PubMed DOI
Kylián O., Kratochvíl J., Petr M., Kuzminova A., Slavínská D., Biederman H., Beranová J. Ag/C:F Antibacterial and hydrophobic nanocomposite coatings. Funct. Mater. Lett. 2017;10 doi: 10.1142/S1793604717500291. DOI
Deng X., Yu Nikiforov A., Coenye T., Cools P., Aziz G., Morent R., De Geyter N., Leys C. Antimicrobial nano-silver non-woven polyethylene terephthalate fabric via an atmospheric pressure plasma deposition process. Sci. Rep. 2015;5 doi: 10.1038/srep10138. PubMed DOI PMC
Deng X., Nikiforov A., Vujosevic D., Vuksanovic V., Mugoša B., Cvelbar U., De Geyter N., Morent R., Leys C. Antibacterial activity of nano-silver non-woven fabric prepared by atmospheric pressure plasma deposition. Mater. Lett. 2015;149:95–99. doi: 10.1016/j.matlet.2015.02.112. DOI
Morrison D.T., Robertson T.R.F. sputtering of plastics. Thin Solid Films. 1973;15:87–101. doi: 10.1016/0040-6090(73)90207-1. DOI
Holland L., Biederman H., Ojha S. Sputtered and plasma polymerized fluorocarbon films. Thin Solid Films. 1976;35:19–21. doi: 10.1016/0040-6090(76)90267-4. DOI
Biederman H., Ojha S.M., Holland L. The properties of fluorocarbon films prepared by RF sputtering and plasma polymerization in inert and active gas. Thin Solid Films. 1977;41:329–339. doi: 10.1016/0040-6090(77)90319-4. DOI
Biederman H. RF sputtering of polymers and its potential application. Vacuum. 2000;59:594–599. doi: 10.1016/S0042-207X(00)00321-3. DOI
Wang W.-C. Ultrathin fluoropolymer films deposited on a polyimide (kapton®) surface by RF magnetron sputtering of poly(tetrafluoroethylene) Plasma Process. Polym. 2007;4:88–97. doi: 10.1002/ppap.200600075. DOI
Kylián O., Hanuš J., Choukourov A., Kousal J., Slavínská D., Biederman H. Deposition of amino-rich thin films by RF magnetron sputtering of nylon. J. Phys. D. Appl. Phys. 2009;42 doi: 10.1088/0022-3727/42/14/142001. DOI
Drábik M., Polonskyi O., Kylián O., Čechvala J., Artemenko A., Gordeev I., Choukourov A., Slavínská D., Matolínová I., Biederman H. Super-hydrophobic coatings prepared by RF magnetron sputtering of PTFE. Plasma Process. Polym. 2010;7:544–551. doi: 10.1002/ppap.200900164. DOI
Schäfer J., Foest R., Quade A., Ohl A., Weltmann K.-D. Local deposition of SiO x plasma polymer films by a miniaturized atmospheric pressure plasma jet (APPJ) J. Phys. D. Appl. Phys. 2008;41 doi: 10.1088/0022-3727/41/19/194010. DOI
Lommatzsch U., Ihde J. Plasma polymerization of HMDSO with an atmospheric pressure plasma jet for corrosion protection of aluminum and low-adhesion surfaces. Plasma Process. Polym. 2009;6:642–648. doi: 10.1002/ppap.200900032. DOI
Vogelsang A., Ohl A., Foest R., Schröder K., Weltmann K.-D. Hydrophobic coatings deposited with an atmospheric pressure microplasma jet. J. Phys. D. Appl. Phys. 2010;43 doi: 10.1088/0022-3727/43/48/485201. DOI
Chen G., Zhou M., Zhang Z., Lv G., Massey S., Smith W., Tatoulian M. Acrylic acid polymer coatings on silk fibers by room-temperature APGD plasma jets. Plasma Process. Polym. 2011;8:701–708. doi: 10.1002/ppap.201100008. DOI
Belmonte T., Henrion G., Gries T. Nonequilibrium atmospheric plasma deposition. J. Therm. Spray Technol. 2011;20:744–759. doi: 10.1007/s11666-011-9642-0. DOI
Yim J.H., Rodriguez-Santiago V., Williams A.A., Gougousi T., Pappas D.D., Hirvonen J.K. Atmospheric pressure plasma enhanced chemical vapor deposition of hydrophobic coatings using fluorine-based liquid precursors. Surf. Coat. Technol. 2013;234:21–32. doi: 10.1016/j.surfcoat.2013.03.028. DOI
Gordeev I., Šimek M., Prukner V., Artemenko A., Kousal J., Nikitin D., Choukourov A., Biederman H. Deposition of poly (ethylene oxide)-like plasma polymers on inner surfaces of cavities by means of atmospheric-pressure SDBD-based jet. Plasma Process. Polym. 2016;13:823–833. doi: 10.1002/ppap.201500214. DOI
Stallard C.P., Solar P., Biederman H., Dowling D.P. Deposition of non-fouling PEO-like coatings using a low temperature atmospheric pressure plasma jet. Plasma Process. Polym. 2016;13:241–252. doi: 10.1002/ppap.201500034. DOI
Ricci Castro A.H., Kodaira F.V.P., Prysiazhnyi V., Mota R.P., Kostov K.G. Deposition of thin films using argon/acetylene atmospheric pressure plasma jet. Surf. Coat. Technol. 2017;312:13–18. doi: 10.1016/j.surfcoat.2016.07.036. DOI
Favia P., Vulpio M., Marino R., D’Agostino R., Mota R.P., Catalano M. Plasma-deposition of ag-containing polyethyleneoxide-like coatings. Plasmas Polym. 2000;5:1–14. doi: 10.1023/A:1009517408368. DOI
Sardella E., Favia P., Gristina R., Nardulli M., D’Agostino R. Plasma-Aided Micro-and Nanopatterning Processes for Biomedical Applications. Plasma Process. Polym. 2006;3:456–469. doi: 10.1002/ppap.200600041. DOI
Guillemot G., Despax B., Raynaud P., Zanna S., Marcus P., Schmitz P., Mercier-Bonin M. Plasma deposition of silver nanoparticles onto stainless steel for the prevention of fungal biofilms: A case study on saccharomyces cerevisiae. Plasma Process. Polym. 2008;5:228–238. doi: 10.1002/ppap.200700088. DOI
Saulou C., Despax B., Raynaud P., Zanna S., Marcus P., Mercier-Bonin M. Plasma deposition of organosilicon polymer thin films with embedded nanosilver for prevention of microbial adhesion. Appl. Surf. Sci. 2009;256:S35–S39. doi: 10.1016/j.apsusc.2009.04.118. DOI
Ferraris M., Perero S., Miola M., Ferraris S., Verné E., Morgiel J. Silver nanocluster-silica composite coatings with antibacterial properties. Mater. Chem. Phys. 2010;120:123–126. doi: 10.1016/j.matchemphys.2009.10.034. DOI
Chen W., Liu Y., Courtney H.S., Bettenga M., Agrawal C.M., Bumgardner J.D., Ong J.L. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials. 2006;27:5512–5517. doi: 10.1016/j.biomaterials.2006.07.003. PubMed DOI
Xiong J., Ghori M.Z., Henkel B., Strunskus T., Schürmann U., Deng M., Kienle L., Faupel F. Tuning silver ion release properties in reactively sputtered Ag/TiOx nanocomposites. Appl. Phys. A. 2017;123:470. doi: 10.1007/s00339-017-1088-x. DOI
Zaporojtchenko V., Podschun R., Schürmann U., Kulkarni A., Faupel F. Physico-chemical and antimicrobial properties of co-sputtered Ag-Au/PTFE nanocomposite coatings. Nanotechnology. 2006;17:4904–4908. doi: 10.1088/0957-4484/17/19/020. DOI
Lischer S., Korner E., Balazs D.J., Shen D., Wick P., Grieder K., Haas D., Heuberger M., Hegemann D. Antibacterial burst-release from minimal Ag-containing plasma polymer coatings. J. R. Soc. Interface. 2011;8:1019–1030. doi: 10.1098/rsif.2010.0596. PubMed DOI PMC
Körner E., Hanselmann B., Cierniak P., Hegemann D. Tailor-made silver release properties of silver-containing functional plasma polymer coatings adjusted through a macroscopic kinetics approach. Plasma Chem. Plasma Process. 2012;32:619–627. doi: 10.1007/s11090-012-9362-3. DOI
Allion-Maurer A., Saulou-Bérion C., Briandet R., Zanna S., Lebleu N., Marcus P., Raynaud P., Despax B., Mercier-Bonin M. Plasma-deposited nanocomposite polymer-silver coating against Escherichia coli and Staphylococcus aureus: Antibacterial properties and ageing. Surf. Coat. Technol. 2015;281:1–10. doi: 10.1016/j.surfcoat.2015.09.025. DOI
Saulou C., Despax B., Raynaud P., Zanna S., Seyeux A., Marcus P., Audinot J.N., Mercier-Bonin M. Plasma-mediated nanosilver-organosilicon composite films deposited on stainless steel: Synthesis, surface characterization, and evaluation of anti-adhesive and anti-microbial properties on the model yeast saccharomyces cerevisiae. Plasma Process. Polym. 2012;9:324–338. doi: 10.1002/ppap.201100033. DOI
Agarwala M., Barman T., Gogoi D., Choudhury B., Pal A.R., Yadav R.N.S. Highly effective antibiofilm coating of silver-polymer nanocomposite on polymeric medical devices deposited by one step plasma process. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014;102:1223–1235. doi: 10.1002/jbm.b.33106. PubMed DOI
Juknius T., Ružauskas M., Tamulevičius T., Šiugždinienė R., Juknienė I., Vasiliauskas A., Jurkevičiūtė A., Tamulevičius S. Antimicrobial properties of diamond-like carbon/silver nanocomposite thin films deposited on textiles: Towards smart bandages. Materials. 2016;9:371. doi: 10.3390/ma9050371. PubMed DOI PMC
Vaidulych M., Hanuš J., Steinhartová T., Kylián O., Choukourov A., Beranová J., Khalakhan I., Biederman H. Deposition of Ag/a-C:H nanocomposite films with Ag surface enrichment. Plasma Process. Polym. 2017;14 doi: 10.1002/ppap.201600256. DOI
Polonskyi O., Solař P., Kylián O., Drábik M., Artemenko A., Kousal J., Hanuš J., Pešička J., Matolínová I., Kolíbalová E., et al. Nanocomposite metal/plasma polymer films prepared by means of gas aggregation cluster source. Thin Solid Films. 2012;520:4155–4162. doi: 10.1016/j.tsf.2011.04.100. DOI
Peter T., Rehders S., Schürmann U., Strunskus T., Zaporojtchenko V., Faupel F. High rate deposition system for metal-cluster/SiOxCyHz –polymer nanocomposite thin films. J. Nanopart. Res. 2013;15 doi: 10.1007/s11051-013-1710-6. DOI
Hanuš J., Steinhartová T., Kylián O., Kousal J., Malinský P., Choukourov A., Macková A., Biederman H. Deposition of Cu/a-C:H Nanocomposite Films. Plasma Process. Polym. 2016;13:879–887. doi: 10.1002/ppap.201500208. DOI
Zimmermann R., Pfuch A., Horn K., Weisser J., Heft A., Röder M., Linke R., Schnabelrauch M., Schimanski A. An approach to create silver containing antibacterial coatings by use of atmospheric pressure plasma chemical vapour deposition (APCVD) and combustion chemical vapour deposition (CCVD) in an economic way. Plasma Process. Polym. 2011;8:295–304. doi: 10.1002/ppap.201000113. DOI
Beier O., Pfuch A., Horn K., Weisser J., Schnabelrauch M., Schimanski A. Low temperature deposition of antibacterially active silicon oxide layers containing silver nanoparticles, prepared by atmospheric pressure plasma chemical vapor deposition. Plasma Process. Polym. 2013;10:77–87. doi: 10.1002/ppap.201200059. DOI
Gerullis S., Pfuch A., Spange S., Kettner F., Plaschkies K., Küzün B., Kosmachev P.V., Volokitin G.G., Grünler B. Thin antimicrobial silver, copper or zinc containing SiOx films on wood polymer composites (WPC) applied by atmospheric pressure plasma chemical vapour deposition (APCVD) and sol–gel technology. Eur. J. Wood Wood Prod. 2018;76:229–241. doi: 10.1007/s00107-017-1220-9. DOI
Deng X., Leys C., Vujosevic D., Vuksanovic V., Cvelbar U., De Geyter N., Morent R., Nikiforov A. Engineering of Composite Organosilicon Thin Films with Embedded Silver Nanoparticles via Atmospheric Pressure Plasma Process for Antibacterial Activity. Plasma Process. Polym. 2014;11:921–930. doi: 10.1002/ppap.201400042. DOI
Liguori A., Traldi E., Toccaceli E., Laurita R., Pollicino A., Focarete M.L., Colombo V., Gherardi M. Co-deposition of plasma-polymerized polyacrylic acid and silver nanoparticles for the production of nanocomposite coatings using a non-equilibrium atmospheric pressure plasma jet. Plasma Process. Polym. 2016;13:623–632. doi: 10.1002/ppap.201500143. DOI
Kulaga E., Ploux L., Balan L., Schrodj G., Roucoules V. Mechanically responsive antibacterial plasma polymer coatings for textile biomaterials. Plasma Process. Polym. 2014;11:63–79. doi: 10.1002/ppap.201300091. DOI
Pan Y.V., Wesley R.A., Luginbuhl R., Denton D.D., Ratner B.D. Plasma polymerized N-Isopropylacrylamide: Synthesis and characterization of a smart thermally responsive coating. Biomacromolecules. 2001;2:32–36. doi: 10.1021/bm0000642. PubMed DOI
Spridon D., Curecheriu L., Dobromir M., Dumitrascu N. Synthesis of poly (N-isopropylacrylamide) under atmospheric pressure plasma conditions. J. Appl. Polym. Sci. 2012;124:2377–2382. doi: 10.1002/app.35280. DOI
Chen Y., Tang X.L., Chen B.T., Qiu G. Low temperature plasma vapor treatment of thermo-sensitive poly(N-isopropylacrylamide) and its application. Appl. Surf. Sci. 2013;268:332–336. doi: 10.1016/j.apsusc.2012.12.089. DOI
Moreno-Couranjou M., Palumbo F., Sardella E., Frache G., Favia P., Choquet P. Plasma deposition of thermo-responsive thin films from n-vinylcaprolactam. Plasma Process. Polym. 2014;11:816–821. doi: 10.1002/ppap.201400019. DOI
Muzammil I., Li Y., Lei M. Tunable wettability and pH-responsiveness of plasma copolymers of acrylic acid and octafluorocyclobutane. Plasma Process. Polym. 2017;14 doi: 10.1002/ppap.201700053. DOI