Silver nanoparticles with plasma-polymerized hexamethyldisiloxane coating on 3D printed substrates are non-cytotoxic and effective against respiratory pathogens
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37637122
PubMed Central
PMC10450633
DOI
10.3389/fmicb.2023.1217617
Knihovny.cz E-zdroje
- Klíčová slova
- Pseudomonas aeruginosa, antimicrobial activity, antiviral activity, cold atmospheric plasma, magnetron sputtering, metallic coating, polylactic acid, rhinovirus,
- Publikační typ
- časopisecké články MeSH
Due to the emerging resistance of microorganisms and viruses to conventional treatments, the importance of self-disinfecting materials is highly increasing. Such materials could be silver or its nanoparticles (AgNPs), both of which have been studied for their antimicrobial effect. In this study, we compared the biological effects of AgNP coatings with and without a plasma-polymerized hexamethyldisiloxane (ppHMDSO) protective film to smooth silver or copper coatings under three ambient conditions that mimic their potential medical use (dry or wet environments and an environment simulating the human body). The coatings were deposited on 3D printed polylactic acid substrates by DC magnetron sputtering, and their surface morphology was visualized using scanning electron microscopy. Cytotoxicity of the samples was evaluated using human lung epithelial cells A549. Furthermore, antibacterial activity was determined against the Gram-negative pathogenic bacterium Pseudomonas aeruginosa PAO1 and antiviral activity was assessed using human rhinovirus species A/type 2. The obtained results showed that overcoating of AgNPs with ppHMDSO creates the material with antibacterial and antiviral activity and at the same time without a cytotoxic effect for the surrounding tissue cells. These findings suggest that the production of 3D printed substrates coated with a layer of AgNPs-ppHMDSO could have potential applications in the medical field as functional materials.
Zobrazit více v PubMed
Ahadi A. M., Libenská H., Košutová T., Cieslar M., Červenková V., Prokop D., et al. . (2022). Core@shell nanoparticles by inflight controlled coating. J. Phys. D. Appl. Phys. 55:215201. doi: 10.1088/1361-6463/ac5559 DOI
Allehyani E. S., Almulaiky Y. Q., Al-Harbi S. A., El-Shishtawy R. M. (2022). In situ coating of Polydopamine-AgNPs on polyester fabrics producing antibacterial and antioxidant properties. Polymers 14:3794. doi: 10.3390/polym14183794, PMID: PubMed DOI PMC
Anselmo A. C., Mitragotri S. (2016). Nanoparticles in the clinic. Bioeng. Transl. Med. 1, 10–29. doi: 10.1002/btm2.10003, PMID: PubMed DOI PMC
Anu Mary Ealia S., Saravanakumar M. P. (2017). A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf. Ser.: Mater. Sci. Eng. 263:032019. doi: 10.1088/1757-899X/263/3/032019 DOI
Ashmore D. A., Chaudhari A., Barlow B., Barlow B., Harper T., Vig K., et al. . (2018). Evaluation of E. coli inhibition by plain and polymer-coated silver nanoparticles. Rev. Inst. Med. Trop. 60:e18. doi: 10.1590/s1678-9946201860018, PMID: PubMed DOI PMC
Balalakshmi C., Alharbi N. S., Kadaikunnan S., Khaled J. M., Alanzi K. F., Gopinath K., et al. . (2020). Development of chitosan/agar-silver nanoparticles-coated paper for antibacterial application. Green Process. Synth. 9, 751–759. doi: 10.1515/gps-2020-0070 DOI
Baselga M., Uranga-Murillo I., De Miguel D., Arias M., Sebastián V., Pardo J., et al. . (2022). Silver nanoparticles-Polyethyleneimine-based coatings with antiviral activity against SARS-CoV-2: a new method to functionalize filtration media. Mater. 15:4742. doi: 10.3390/ma15144742, PMID: PubMed DOI PMC
Bruna T., Maldonado-Bravo F., Jara P., Caro N. (2021). Silver nanoparticles and their antibacterial applications. Int. J. Mol. Sci. 22:7202. doi: 10.3390/ijms22137202, PMID: PubMed DOI PMC
Burd A., Kwok C. H., Hung S. C., Chan H. S., Gu H., Lam W. K., et al. . (2007). A comparative study of the cytotoxicity of silver-based dressings in monolayer cell, tissue explant, and animal models. Wound Repair Regen. 15, 94–104. doi: 10.1111/j.1524-475X.2006.00190.x, PMID: PubMed DOI
Casalini T., Rossi F., Castrovinci A., Perale G. (2019). A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front. Bioeng. Biotechnol. 7:259. doi: 10.3389/fbioe.2019.00259, PMID: PubMed DOI PMC
Cheng W., Liu W., Wang Q., Wang P., Zhou M., Yu Y. (2022). Durable hydrophobic and antibacterial textile coating via PDA/AgNPs/ODA in situ assembly. Cellulose 29, 1175–1187. doi: 10.1007/s10570-021-04339-y DOI
Čolić M., Rudolf R., Stamenković D., Anžel I., Vučević D., Jenko M., et al. . (2010). Relationship between microstructure, cytotoxicity and corrosion properties of a cu–Al–Ni shape memory alloy. Acta Biomater. 6, 308–317. doi: 10.1016/j.actbio.2009.06.027, PMID: PubMed DOI
Craig R. G., Hanks C. T. (1990). Cytotoxicity of experimental casting alloys evaluated by cell culture tests. J. Dent. Res. 69, 1539–1542. doi: 10.1177/00220345900690081801 PubMed DOI
Da Silva D., Ferreira G., Duran A., Fonseca F., Freitas Bueno R., Rosa D. (2023). Super-effective antimicrobial silver sputtered coatings on poly (lactic acid) against bacteria and omicron SARS-CoV-2. Mater. Today Chem. 30:101481. doi: 10.1016/j.mtchem.2023.101481 DOI
Dantas K. N., Andrade L. R., Lisboa E., Santana V. L., Santos A. L., Mello T. P., et al. . (2021). Antimycotic nail polish based on humic acid-coated silver nanoparticles for onychomycosis. J. Chem. Technol. Biotechnol. 96, 2208–2218. doi: 10.1002/jctb.6676 DOI
Deffernez C., Wunderli W., Thomas Y., Yerly S., Perrin L., Kaiser L. (2004). Amplicon sequencing and improved detection of human rhinovirus in respiratory samples. J. Clin. Microbiol. 42, 3212–3218. doi: 10.1128/JCM.42.7.3212-3218.2004, PMID: PubMed DOI PMC
Elmowafy E. M., Tiboni M., Soliman M. E. (2019). Biocompatibility, biodegradation and biomedical applications of poly (lactic acid)/poly (lactic-co-glycolic acid) micro and nanoparticles. J. Pharm. Investig. 49, 347–380. doi: 10.1007/s40005-019-00439-x DOI
Fahmy H. M., Mosleh A. M., Abd Elghany A., Shams-Eldin E., Serea E. S. A., Ali S. A., et al. . (2019). Coated silver nanoparticles: synthesis, cytotoxicity, and optical properties. RSC Adv. 9, 20118–20136. doi: 10.1039/C9RA02907A, PMID: PubMed DOI PMC
Furqon I. A., Hikmawati D., Abdullah C., Azurahanim C. (2021). Antibacterial properties of silver nanoparticle (AgNPs) on stainless steel 316L. Nanomed. Res. J. 6, 117–127. doi: 10.22034/NMRJ.2021.02.004 DOI
Gliga A. R., Skoglund S., Odnevall Wallinder I., Fadeel B., Karlsson H. L. (2014). Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and ag release. Part. Fibre Toxicol. 11:11. doi: 10.1186/1743-8977-11-11, PMID: PubMed DOI PMC
Govind V., Bharadwaj S., Sai Ganesh M. R., Vishnu J., Shankar K. V., Shankar B., et al. . (2021). Antiviral properties of copper and its alloys to inactivate covid-19 virus: a review. Bio Metals 34, 1217–1235. doi: 10.1007/s10534-021-00339-4, PMID: PubMed DOI PMC
Grigora M.-E., Terzopoulou Z., Baciu D., Steriotis T., Charalambopoulou G., Gounari E., et al. . (2023). 3D printed poly (lactic acid)-based nanocomposite scaffolds with bioactive coatings for tissue engineering applications. J. Mater. Sci. 58, 2740–2763. doi: 10.1007/s10853-023-08149-4 DOI
Haase A., Tentschert J., Jungnickel H., Graf P., Mantion A., Draude F., et al. . (2011). Toxicity of silver nanoparticles in human macrophages: uptake, intracellular distribution and cellular responses. J. Phys. Conf. Ser. 2011:12030. doi: 10.22034/NMRJ.2021.02.004 DOI
He Y., Li H., Fei X., Peng L. (2021). Carboxymethyl cellulose/cellulose nanocrystals immobilized silver nanoparticles as an effective coating to improve barrier and antibacterial properties of paper for food packaging applications. Carbohydr. Polym. 252:117156. doi: 10.1016/j.carbpol.2020.117156, PMID: PubMed DOI
Hmmam I., Zaid N. M., Mamdouh B., Abdallatif A., Abd-Elfattah M., Ali M. (2021). Storage behavior of “Seddik” mango fruit coated with CMC and guar gum-based silver nanoparticles. Horticulturae 7:44. doi: 10.3390/horticulturae7030044 DOI
Hwan S., Lee H.-S., Ryu D.-S., Choi S.-J., Lee D.-S. (2010). Antibacterial activity of silver-nanoparticles against staphylococcus aureus and Escherichia coli. Korean J. Microbiol. Biotechnol. 39, 77–85.
Jedrzejowski P., Klemberg-Sapieha J. E., Martinu L. (2004). Quaternary hard nanocomposite TiCxNy/SiCN coatings prepared by plasma enhanced chemical vapor deposition. Thin Solid Films 466, 189–196. doi: 10.1016/j.tsf.2004.03.043 DOI
Kalwar K., Shan D. (2018). Antimicrobial effect of silver nanoparticles (AgNPs) and their mechanism–a mini review. Micro Nano Lett. 13, 277–280. doi: 10.1049/mnl.2017.0648 DOI
Kärber G. (1931). Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Naunyn Schmiedebergs Arch. Exp. Pathol. Pharmakol. 162, 480–483. doi: 10.1007/BF01863914 DOI
Keller M. A., Fortunato G., Körner E., Hegemann D. (2007). Continuous coating of synthetic fibers using Hexamethyldisiloxane. Plasma Process. Polym. 4, S1063–S1067. doi: 10.1002/ppap.200732406 DOI
Knetsch M. L. W., Koole L. H. (2011). New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers 3, 340–366. doi: 10.3390/polym3010340 DOI
Kratochvíl J., Kuzminova A., Kylián O. (2018a). State-of-the-art, and perspectives of, silver/plasma polymer antibacterial nanocomposites. Antibiotics 7:78. doi: 10.3390/antibiotics7030078, PMID: PubMed DOI PMC
Kratochvíl J., Kuzminova A., Kylián O., Biederman H. (2015). Comparison of magnetron sputtering and gas aggregation nanoparticle source used for fabrication of silver nanoparticle films. Surf. Coat. Technol. 275, 296–302. doi: 10.1016/j.surfcoat.2015.05.003 DOI
Kratochvíl J., Štěrba J., Lieskovská J., Langhansová H., Kuzminova A., Khalakhan I., et al. . (2018b). Antibacterial effect of cu/C:F nanocomposites deposited on PEEK substrates. Mater. Lett. 230, 96–99. doi: 10.1016/j.matlet.2018.07.082 DOI
Kumar S., Kratochvíl J., Al-Muhkhrabi Y., Kratochvílová E., Kahoun D., Kaftan D., et al. . (2022). Surface anchored ag nanoparticles prepared by gas aggregation source: antibacterial effect and the role of surface free energy. Surf. Interfaces 30:101818. doi: 10.1016/j.surfin.2022.101818 DOI
Kuzminova A., Shelemin A., Kylián O., Petr M., Kratochvíl J., Solař P., et al. . (2014). From super-hydrophilic to super-hydrophobic surfaces using plasma polymerization combined with gas aggregation source of nanoparticles. Vacuum 110, 58–61. doi: 10.1016/j.vacuum.2014.08.014 DOI
Kylián O., Kratochvíl J., Petr M., Kuzminova A., Slavínská D., Biederman H., et al. . (2017). Ag/C:F antibacterial and hydrophobic nanocomposite coatings. Funct. Mater. Lett. 10:1750029. doi: 10.1142/S1793604717500291 DOI
Lasprilla A. J., Martinez G. A., Lunelli B. H., Jardini A. L., Maciel Filho R. (2012). Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnol. Adv. 30, 321–328. doi: 10.1016/j.biotechadv.2011.06.019, PMID: PubMed DOI
Lee W. M., Chen Y., Wang W., Mosser A. (2015). Infectivity assays of human rhinovirus-a and-B serotypes. Methods Mol. Biol. 1221, 71–81. doi: 10.1007/978-1-4939-1571-2_7, PMID: PubMed DOI
Liu Y., Zheng Y., Chen X.-H., Yang J.-A., Pan H., Chen D., et al. . (2019). Fundamental theory of biodegradable metals—definition, criteria, and design. Adv. Funct. Mater. 29:1805402. doi: 10.1002/adfm.201805402 DOI
Marambio-Jones C., Hoek E. M. V. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 12, 1531–1551. doi: 10.1007/s11051-010-9900-y DOI
Minoshima M., Lu Y., Kimura T., Nakano R., Ishiguro H., Kubota Y., et al. . (2016). Comparison of the antiviral effect of solid-state copper and silver compounds. J. Hazard. Mater. 312, 1–7. doi: 10.1016/j.jhazmat.2016.03.023, PMID: PubMed DOI PMC
Nagarajan V., Mohanty A. K., Misra M. (2016). Perspective on Polylactic acid (PLA) based sustainable materials for durable applications: focus on toughness and heat resistance. ACS Sustain. Chem. Eng. 4, 2899–2916. doi: 10.1021/acssuschemeng.6b00321 DOI
Noyce J. O., Michels H., Keevil C. W. (2007). Inactivation of influenza a virus on copper versus stainless steel surfaces. Appl. Environ. Microbiol. 73, 2748–2750. doi: 10.1128/AEM.01139-06, PMID: PubMed DOI PMC
Pajarito B. B., Cayabyab C. A. L., Costales P. A. C., Francisco J. R. (2019). Exfoliated graphite/acrylic composite film as hydrophobic coating of 3D-printed polylactic acid surfaces. J. Coat. Technol. Res. 16, 1133–1140. doi: 10.1007/s11998-019-00188-4 DOI
Palai B., Sarangi S. K., Mohapatra S. S. (2022). Characterization of silver Nano-particle coated Eichhornia crassipes Fiber for antibacterial applications. J. Nat. Fibers 19, 1828–1836. doi: 10.1080/15440478.2020.1788492 DOI
Prabhakar P. K., Raj S., Anuradha P. R., Sawant S. N., Doble M. (2011). Biocompatibility studies on polyaniline and polyaniline–silver nanoparticle coated polyurethane composite. Colloids Surf. B. Biointerfaces 86, 146–153. doi: 10.1016/j.colsurfb.2011.03.033, PMID: PubMed DOI
Prasher P., Singh M., Mudila H. (2018). Oligodynamic effect of silver nanoparticles: a review. BioNanoScience 8, 951–962. doi: 10.22034/NMRJ.2021.02.004 DOI
Quinteros M. A., Cano Aristizábal V., Dalmasso P. R., Paraje M. G., Páez P. L. (2016). Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity. Toxicol. In Vitro 36, 216–223. doi: 10.1016/j.tiv.2016.08.007, PMID: PubMed DOI
Roopavath U. K., Kalaskar D. M.. (2017). Introduction to 3D printing in medicine. 3D printing in medicine. Amsterdam, Netherlands: Elsevier.
Salleh A., Naomi R., Utami N. D., Mohammad A. W., Mahmoudi E., Mustafa N., et al. . (2020). The potential of silver nanoparticles for antiviral and antibacterial applications: a mechanism of action. Nanomaterials 10:1566. doi: 10.3390/nano10081566, PMID: PubMed DOI PMC
Sánchez-López E., Gomes D., Esteruelas G., Bonilla L., Lopez-Machado A. L., Galindo R., et al. . (2020). Metal-based nanoparticles as antimicrobial agents: an overview. Nano 10:292. doi: 10.3390/nano10020292, PMID: PubMed DOI PMC
Saravanakumar K., Hu X., Chelliah R., Oh D.-H., Kathiresan K., Wang M.-H. (2020). Biogenic silver nanoparticles-polyvinylpyrrolidone based glycerosomes coating to expand the shelf life of fresh-cut bell pepper (Capsicum annuum L. var. grossum (L.) Sendt). Postharvest Biol. Technol. 160:111039. doi: 10.1016/j.postharvbio.2019.111039 DOI
Singh R. P., Ramarao P. (2012). Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol. Lett. 213, 249–259. doi: 10.1016/j.toxlet.2012.07.009, PMID: PubMed DOI
Singhvi M., Zinjarde S., Gokhale D. (2019). Polylactic acid: synthesis and biomedical applications. J. Appl. Microbiol. 127, 1612–1626. doi: 10.1111/jam.14290, PMID: PubMed DOI
Sotiriou G. A., Pratsinis S. E. (2010). Antibacterial activity of Nanosilver ions and particles. Environ. Sci. Technol. 44, 5649–5654. doi: 10.1021/es101072s, PMID: PubMed DOI
Srikhao N., Ounkaew A., Srichiangsa N., Phanthanawiboon S., Boonmars T., Artchayasawat A., et al. . (2022). Green-synthesized silver nanoparticle coating on paper for antibacterial and antiviral applications. Polym. Bull. 2022, 1–18. doi: 10.1007/s00289-022-04530-6, PMID: PubMed DOI PMC
Stark W. J., Stoessel P. R., Wohlleben W., Hafner A. (2015). Industrial applications of nanoparticles. Chem. Soc. Rev. 44, 5793–5805. doi: 10.1039/C4CS00362D PubMed DOI
Suska F., Gretzer C., Esposito M., Tengvall P., Thomsen P. (2005). Monocyte viability on titanium and copper coated titanium. Biomaterials 26, 5942–5950. doi: 10.1016/j.biomaterials.2005.03.017, PMID: PubMed DOI
Syukri D. M., Nwabor O. F., Singh S., Ontong J. C., Wunnoo S., Paosen S., et al. . (2020). Antibacterial-coated silk surgical sutures by ex situ deposition of silver nanoparticles synthesized with Eucalyptus camaldulensis eradicates infections. J. Microbiol. Methods 174:105955. doi: 10.1016/j.mimet.2020.105955, PMID: PubMed DOI
Tack P., Victor J., Gemmel P., Annemans L. (2016). 3D-printing techniques in a medical setting: a systematic literature review. Biomed. Eng. Online 15, 1–21. doi: 10.1186/s12938-016-0236-4, PMID: PubMed DOI PMC
Thukkaram M., Vaidulych M., Kylián O. E., Hanuš J., Rigole P., Aliakbarshirazi S., et al. . (2020). Investigation of ag/aC: H nanocomposite coatings on titanium for orthopedic applications. ACS Appl. Mater. Interfaces 12, 23655–23666. doi: 10.1021/acsami.9b23237, PMID: PubMed DOI
Tripathi N., Goshisht M. K. (2022). Recent advances and mechanistic insights into antibacterial activity, Antibiofilm activity, and cytotoxicity of silver nanoparticles. ACS Appl. Bio Mater. 5, 1391–1463. doi: 10.1021/acsabm.2c00014, PMID: PubMed DOI
Vaňková E., Kašparová P., Khun J., Machková A., Julák J., Sláma M., et al. . (2020). Polylactic acid as a suitable material for 3D printing of protective masks in times of COVID-19 pandemic. Peer J 8:e10259. doi: 10.7717/peerj.10259, PMID: PubMed DOI PMC
Vicente C., Fernandes J., Deus A., Vaz M., Leite M., Reis L. (2019). Effect of protective coatings on the water absorption and mechanical properties of 3D printed PLA. Frat. Integr. Strutt. 13, 748–756. doi: 10.3221/IGF-ESIS.48.68 DOI
Vieira A. C. F., De Matos Fonseca J., Menezes N. M. C., Monteiro A. R., Valencia G. A. (2020). Active coatings based on hydroxypropyl methylcellulose and silver nanoparticles to extend the papaya (Carica papaya L.) shelf life. Int. J. Biol. Macromol. 164, 489–498. doi: 10.1016/j.ijbiomac.2020.07.130, PMID: PubMed DOI
Vincent M., Hartemann P., Engels-Deutsch M. (2016). Antimicrobial applications of copper. Int. J. Hyg. Environ. Health 219, 585–591. doi: 10.1016/j.ijheh.2016.06.003, PMID: PubMed DOI
Wang B.-B., Quan Y.-H., Xu Z.-M., Zhao Q. (2020). Preparation of highly effective antibacterial coating with polydopamine/chitosan/silver nanoparticles via simple immersion. Prog. Org. Coat. 149:105967. doi: 10.1016/j.porgcoat.2020.105967 DOI
Wegner K., Piseri P., Tafreshi H. V., Milani P. (2006). Cluster beam deposition: a tool for nanoscale science and technology. J. Phys. D. Appl. Phys. 39, R439–R459. doi: 10.1088/0022-3727/39/22/R02 DOI
Wei Z., Li K., Wang S., Wen L., Xu L., Wang Y., et al. . (2022). Controllable AgNPs encapsulation to construct biocompatible and antibacterial titanium implant. Front. Bioeng. Biotechnol. 10:1056419. doi: 10.3389/fbioe.2022.1056419, PMID: PubMed DOI PMC
Wigle R. L. (1992). The reaction of copper and other projectile metals in body tissues. J. Trauma Acute Care Surg. 33, 14–18. doi: 10.1097/00005373-199207000-00004, PMID: PubMed DOI
Yassin M. A., Elkhooly T. A., Elsherbiny S. M., Reicha F. M., Shokeir A. A. (2019). Facile coating of urinary catheter with bio–inspired antibacterial coating. Heliyon 5:e02986. doi: 10.1016/j.heliyon.2019.e02986, PMID: PubMed DOI PMC
Yin I. X., Zhang J., Zhao I. S., Mei M. L., Li Q., Chu C. H. (2020). The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomedicine 15, 2555–2562. doi: 10.2147/IJN.S246764, PMID: PubMed DOI PMC
Zhang F., King M. W. (2020). Biodegradable polymers as the pivotal player in the Design of Tissue Engineering Scaffolds. Adv. Healthc. Mater. 9:1901358. doi: 10.1002/adhm.201901358, PMID: PubMed DOI