Antibacterial Properties of Silver Nanoclusters with Carbon Support on Flexible Polymer
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35957089
PubMed Central
PMC9370165
DOI
10.3390/nano12152658
PII: nano12152658
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial properties, carbon, excimer laser, nanostructure, plasmon resonance, silver nanoclusters,
- Publikační typ
- časopisecké články MeSH
Here, we aimed at the preparation of an antibacterial surface on a flexible polydimethylsiloxane substrate. The polydimethylsiloxane surface was sputtered with silver, deposited with carbon, heat treated and exposed to excimer laser, and the combinations of these steps were studied. Our main aim was to find the combination of techniques applicable both against Gram-positive and Gram-negative bacteria. The surface morphology of the structures was determined by atomic force microscopy and scanning electron microscopy. Changes in surface chemistry were conducted by application of X-ray photoelectron spectroscopy and energy dispersive spectroscopy. The changes in surface wettability were characterized by surface free energy determination. The heat treatment was also applied to selected samples to study the influence of the process on layer stability and formation of PDMS-Ag or PDMS-C-Ag composite layer. Plasmon resonance effect was determined for as-sputtered and heat-treated Ag on polydimethylsiloxane. The heating of such structures may induce formation of a pattern with a surface plasmon resonance effect, which may also significantly affect the antibacterial activity. We have implemented sputtering of the carbon base layer in combination with excimer laser exposure of PDMS/C/Ag to modify its properties. We have confirmed that deposition of primary carbon layer on PDMS, followed by sputtering of silver combined with subsequent heat treatment and activation of such surface with excimer laser, led to the formation of a surface with strong antibacterial properties against two bacterial strains of S. epidermidis and E. coli.
Zobrazit více v PubMed
Olayil R., Arumugaprabu V., Das O., Lenin Anselm W.A. A Brief Review on Effect of Nano fillers on Performance of Composites. IOP Conf. Ser. Mater. Sci. Eng. 2021;1059:012006. doi: 10.1088/1757-899X/1059/1/012006. DOI
Kvítek O., Kopáček V., Řezníčková A., Švorčík V. Detection of organic vapors on sputtered and annealed thin Au film. J. Phys. Conf. Ser. 2018;985:012005. doi: 10.1088/1742-6596/987/1/012005. DOI
Crosby A.J., Lee J.Y. Polymer Nanocomposites: The “Nano” Effect on Mechanical Properties. Polym. Rev. 2007;47:217–229. doi: 10.1080/15583720701271278. DOI
Alexandre M., Dubois P. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R Rep. 2000;28:1–63. doi: 10.1016/S0927-796X(00)00012-7. DOI
Mousavi S.R., Estaji S., Kiaei H., Mansourian-Tabaei M., Nouranian S., Jafari S.H., Ruckdaschel H., Arjmand M., Khonakda H.A. A review of electrical and thermal conductivities of epoxy resin systems reinforced with carbon nanotubes and graphene-based nanoparticles. Polym. Test. 2022;112:107645. doi: 10.1016/j.polymertesting.2022.107645. DOI
Geim A.K., Novoselov K.S. The rise of graphene. Nat. Mater. 2007;6:183–191. doi: 10.1038/nmat1849. PubMed DOI
Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004;306:666. doi: 10.1126/science.1102896. PubMed DOI
Al Sheheri S.Z., Al-Amshany Z.M., Al Sulami Q.A., Tashkandi N.Y., Hussein M.A., El-Shishtawy R.M. The preparation of carbon nanofillers and their role on the performance of variable polymer nanocomposites. Des. Monomers Polym. 2019;22:8–53. doi: 10.1080/15685551.2019.1565664. PubMed DOI PMC
Zhang F., Yang K., Liu G., Chen Y., Wang M., Li S., Li R. Recent advances on graphene: Synthesis, properties and applications. Compos. Part A. 2022;160:107051. doi: 10.1016/j.compositesa.2022.107051. DOI
Wei J., Atif R., Vo T., Inam F. Graphene Nanoplatelets in Epoxy System: Dispersion, Reaggregation, and Mechanical Properties of Nanocomposites. J. Nanomater. 2015;2015:561742. doi: 10.1155/2015/561742. DOI
Esfandiari M., Lalbakhsh A., Shehni P.N., Jarchi S., Ghaffari-Miab M., Mahtaj H.N., Reisenfeld S., Alibakhshikenari M., Koziel S., Szczepanski S. Recent and emerging applications of Graphene-based metamaterials in electromagnetics. Mater. Des. 2022;221:110920. doi: 10.1016/j.matdes.2022.110920. DOI
Yavari F., Koratkar N. Graphene-Based Chemical Sensors. J. Phys. Chem. Lett. 2012;3:1746–1753. doi: 10.1021/jz300358t. PubMed DOI
Šupová M., Martynková G.S., Barabaszová K. Effect of nanofillers dispersion in polymer matrices: A review. Sci. Adv. Mater. 2011;3:1–25. doi: 10.1166/sam.2011.1136. DOI
Rajak D.K., Pagar D.D., Menezes P.L., Linul E. Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers. 2019;11:1667. doi: 10.3390/polym11101667. PubMed DOI PMC
Szeluga U., Kumanek B., Trzebicka B. Synergy in hybrid polymer/nanocarbon composites. A review. Compos. Part A Appl. Sci. Manuf. 2015;73:204–231. doi: 10.1016/j.compositesa.2015.02.021. DOI
Merino C.A.I., Ledezma Sillas J.E., Mezaa J.M., Herrera Ramirez J.M. Metal matrix composites reinforced with carbon nanotubes by an alternative technique. J. Alloys Compd. 2017;707:257–263. doi: 10.1016/j.jallcom.2016.11.348. DOI
Shit S.C., Shah P. A Review on Silicone Rubber. Natl. Acad. Sci. Lett. 2013;36:355–365. doi: 10.1007/s40009-013-0150-2. DOI
Eduok U., Faye O., Szpunar J. Recent developments and applications of protective silicone coatings: A review of PDMS functional materials. Prog. Org. Coat. 2017;111:124–163. doi: 10.1016/j.porgcoat.2017.05.012. DOI
Li X., Gao Z., Li B., Zhang X., Li Y., Sun J. Self-healing superhydrophobic conductive coatings for self-cleaning and humidity-insensitive hydrogen sensors. Chem. Eng. J. 2021;410:128353. doi: 10.1016/j.cej.2020.128353. DOI
Razavi M., Primavera R., Vykunta A., Thakor A.S. Silicone-based bioscaffolds for cellular therapies. Mater. Sci. Eng. C. 2021;119:111615. doi: 10.1016/j.msec.2020.111615. PubMed DOI
Pino C.J., Haselton F.R., Chang M.S. Seeding of Corneal Wounds by Epithelial Cell Transfer from Micropatterned PDMS Contact Lenses. Cell Transplant. 2005;14:565–571. doi: 10.3727/000000005783982783. PubMed DOI
Rus D., Tolley M.T. Design, fabrication and control of soft robots. Nature. 2015;521:467–475. doi: 10.1038/nature14543. PubMed DOI
Burda C., Chen X., Narayanan R., El-Sayed M.A. Chemistry and Properties of Nanocrystals of Different Shapes. Chem. Rev. 2005;105:1025–1102. doi: 10.1021/cr030063a. PubMed DOI
El-Sayed M.A. Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes. Acc. Chem. Res. 2001;34:257–264. doi: 10.1021/ar960016n. PubMed DOI
Sershen S.R., Westcott S.L., Halas N.J., West J.L. Temperature-sensitive polymer–nanoshell composites for photothermally modulated drug delivery. J. Biomed. Mater. Res. 2000;51:293–298. doi: 10.1002/1097-4636(20000905)51:3<293::AID-JBM1>3.0.CO;2-T. PubMed DOI
Cobley C.M., Chen J., Cho E.C., Wang L.V., Xia Y. Gold nanostructures: A class of multifunctional materials for biomedical applications. Chem. Soc. Rev. 2011;40:44–56. doi: 10.1039/B821763G. PubMed DOI
Qureshia D., Nayak S.K., Maji S., Anis A., Kim D., Pal K. Environment sensitive hydrogels for drug delivery applications. Eur. Polym. J. 2019;120:109220. doi: 10.1016/j.eurpolymj.2019.109220. DOI
McGillicuddy E., Murray I., Kavanagh S., Morrison L., Fogarty A., Cormican M., Dockery P., Prendergast M., Rowan N., Morris D. Silver nanoparticles in the environment: Sources, detection and ecotoxicology. Sci. Total Environ. 2017;575:231–246. doi: 10.1016/j.scitotenv.2016.10.041. PubMed DOI
Gherasim O., Puiu R.A., Bîrcă A.C., Burdușel A.-C., Grumezescu A.M. An Updated Review on Silver Nanoparticles in Biomedicine. Nanomaterials. 2020;10:2318. doi: 10.3390/nano10112318. PubMed DOI PMC
Alonso J.C., Diamant R., Castillo P., Acosta–García M.C., Batina N., Haro-Poniatowski E. Thin films of silver nanoparticles deposited in vacuum by pulsed laser ablation using a YAG:Nd laser. Appl. Surf. Sci. 2009;255:4933–4937. doi: 10.1016/j.apsusc.2008.12.040. DOI
Cao C., Zhang T., Yang N., Niu X., Zhou Z., Wang J., Yang D., Chen P., Zhong L., Dong X., et al. POD Nanozyme optimized by charge separation engineering for light/pH activated bacteria catalytic/photodynamic therapy. Signal Transduct. Target. Ther. 2022;7:86. doi: 10.1038/s41392-022-00900-8. PubMed DOI PMC
Kelly P.J., Arnell R.D. Magnetron sputtering: A review of recent developments and applications. Vacuum. 2000;56:159–172. doi: 10.1016/S0042-207X(99)00189-X. DOI
Chu C., Hu X., Yan H., Sun Y. Surface functionalization of nanostructured Cu/Ag-deposited polypropylene fiber by magnetron sputtering. e-Polymers. 2021;21:140–150. doi: 10.1515/epoly-2021-0020. DOI
Garrett T.R., Bhakoo M., Zhang Z. Bacterial adhesion and biofilms on surfaces. Prog. Nat. Sci. 2008;18:1049–1056. doi: 10.1016/j.pnsc.2008.04.001. DOI
Song F., Koo H., Ren D. Effects of Material Properties on Bacterial Adhesion and Biofilm Formation. J. Dent. Res. 2015;94:1027–1034. doi: 10.1177/0022034515587690. PubMed DOI
Hu H., Burrow M.F., Leung W.K. Evaluation of 12-hour in situ bacterial colonization on smooth restorative material surfaces. J. Dent. 2022;119:104071. doi: 10.1016/j.jdent.2022.104071. PubMed DOI
Mather R.R. Surface Modification of Textiles. 1st ed. Woodhead Publishing Limited; Shaston, UK: 2009. Surface modification of textiles by plasma treatments; pp. 269–317. Chapter 13. DOI
Hurtuková K., Fajstavrová K., Rimpelová S., Vokatá B., Fajstavr D., Slepičková Kasálková N., Siegel J., Švorčík V., Slepička P. Antibacterial Properties of a Honeycomb-like Pattern with Cellulose Acetate and Silver Nanoparticles. Materials. 2021;14:4051–4065. doi: 10.3390/ma14144051. PubMed DOI PMC
Mafuné F., Kohno J.-Y., Takeda Y., Kondow T., Sawabe H. Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution. J. Phys. Chem. B. 2000;104:9111–9117. doi: 10.1021/jp001336y. DOI
Philip P., Jose T., Philip K.C., Manoj P., Sajini T. Studies on the hypsochromic shifted optical properties of gold nanoparticles embedded electrospun poly(methyl methacrylate) (PMMA) nanofibers. Mater. Today Proc. 2020;33:2174–2179. doi: 10.1016/j.matpr.2020.03.681. DOI
Liu X., Li D., Sun X., Li Z., Song H., Jiang H., Chen Y. Tunable Dipole Surface Plasmon Resonances of Silver Nanoparticles by Cladding Dielectric Layers. Sci. Rep. 2015;5:12555. doi: 10.1038/srep12555. PubMed DOI PMC
Shivashankar H., Kevin A.M., Manohar S.B.S., Kulkarni S.M. Investigation on dielectric properties of PDMS based nanocomposites. Phys. B Condens. Matter. 2021;602:412357. doi: 10.1016/j.physb.2020.412357. DOI
Ferreira T.P.M., Nepomuceno N.C., Medeiros E.L.G., Medeiros E.S., Sampaio F.C., Oliveira J.E., Oliveira M.P., Galvão L.S., Bulhões E.O., Santos A.S.F. Antimicrobial coatings based on poly(dimethyl siloxane) and silver nanoparticles by solution blow spraying. Prog. Org. Coat. 2019;133:19–26. doi: 10.1016/j.porgcoat.2019.04.032. DOI
Slepička P., Hurtuková K., Fajstavr D., Slepičková Kasálková N., Lyutakov O., Švorčík V. Carbon-gold nanocomposite induced by unique high energy laser single-shot annealing. Mater. Lett. 2021;301:130256. doi: 10.1016/j.matlet.2021.130256. DOI
Jing Y., Wang R., Wang. Q., Xiang Z., Li Z., Gu H., Wang X. An overview of surface-enhanced Raman scattering substrates by pulsed laser deposition technique: Fundamentals and applications. Adv. Compos. Hybrid Mater. 2021;4:885–905. doi: 10.1007/s42114-021-00330-0. PubMed DOI PMC
Kima J.H., Twaddle K.M., Cermak L.M., Jang W., Yun J., Byun H. Photothermal heating property of gold nanoparticle loaded substratesand their SERS response. Colloids Surf. A Physicochem. Eng. Asp. 2016;498:20–29. doi: 10.1016/j.colsurfa.2016.03.025. DOI
Slepičková Kasálková N., Slepička P., Švorčík V. Carbon Nanostructures, Nanolayers, and Their Composites. Nanomaterials. 2021;11:2368–2391. doi: 10.3390/nano11092368. PubMed DOI PMC
Lišková J., Slepičková Kasálková N., Slepička P., Švorčík V., Bačáková L. Heat-treated carbon coatings on poly (L-lactide) foils for tissue engineering. Mater. Sci. Eng. C. 2019;100:117–128. doi: 10.1016/j.msec.2019.02.105. PubMed DOI
Slepicka P., Siegel J., Lyutakov O., Slepickova Kasalkova N., Kolska Z., Bacakova L., Svorcik V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. doi: 10.1016/j.biotechadv.2017.12.011. PubMed DOI
Deeksha B., Sadanand V., Hariram N., Rajulu A.V. Preparation and properties of cellulose nanocomposite fabrics with in situ generated silver nanoparticles by bioreduction method. J. Bioresour. Bioprod. 2021;6:75–81. doi: 10.1016/j.jobab.2021.01.003. DOI
Yorseng K., Siengchin S., Ashok B., Rajulu A.V. Nanocomposite egg shell powder with in situ generated silver nanoparticles using inherent collagen as reducing agent. J. Bioresour. Bioprod. 2020;5:101–107. doi: 10.1016/j.jobab.2020.04.003. DOI
Polívková M., Hubáček T., Staszek M., Švorčík V., Siegel J. Antimicrobial Treatment of Polymeric Medical Devices by Silver Nanomaterials and Related Technology. Int. J. Mol. Sci. 2017;18:419. doi: 10.3390/ijms18020419. PubMed DOI PMC
Chaloupka K., Malam Y., Seifalian A.M. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010;28:580–588. doi: 10.1016/j.tibtech.2010.07.006. PubMed DOI
Kittler S., Greulich C., Diendorf J., Koöller M., Epple M. Toxicity of Silver Nanoparticles Increases during Storage Because of Slow Dissolution under Release of Silver Ions. Chem. Mater. 2010;22:4548–4554. doi: 10.1021/cm100023p. DOI
Domínguez A., Algaba R.A., Canturri A.M., Villodres Á.R., Smani Y. Antibacterial Activity of Colloidal Silver against Gram-Negative and Gram-Positive Bacteria. Antibiotics. 2020;9:36. doi: 10.3390/antibiotics9010036. PubMed DOI PMC
Nanostructures on Fluoropolymer Nanotextile Prepared Using a High-Energy Excimer Laser