Antibacterial Properties of Silver Nanoclusters with Carbon Support on Flexible Polymer

. 2022 Aug 03 ; 12 (15) : . [epub] 20220803

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35957089

Here, we aimed at the preparation of an antibacterial surface on a flexible polydimethylsiloxane substrate. The polydimethylsiloxane surface was sputtered with silver, deposited with carbon, heat treated and exposed to excimer laser, and the combinations of these steps were studied. Our main aim was to find the combination of techniques applicable both against Gram-positive and Gram-negative bacteria. The surface morphology of the structures was determined by atomic force microscopy and scanning electron microscopy. Changes in surface chemistry were conducted by application of X-ray photoelectron spectroscopy and energy dispersive spectroscopy. The changes in surface wettability were characterized by surface free energy determination. The heat treatment was also applied to selected samples to study the influence of the process on layer stability and formation of PDMS-Ag or PDMS-C-Ag composite layer. Plasmon resonance effect was determined for as-sputtered and heat-treated Ag on polydimethylsiloxane. The heating of such structures may induce formation of a pattern with a surface plasmon resonance effect, which may also significantly affect the antibacterial activity. We have implemented sputtering of the carbon base layer in combination with excimer laser exposure of PDMS/C/Ag to modify its properties. We have confirmed that deposition of primary carbon layer on PDMS, followed by sputtering of silver combined with subsequent heat treatment and activation of such surface with excimer laser, led to the formation of a surface with strong antibacterial properties against two bacterial strains of S. epidermidis and E. coli.

Zobrazit více v PubMed

Olayil R., Arumugaprabu V., Das O., Lenin Anselm W.A. A Brief Review on Effect of Nano fillers on Performance of Composites. IOP Conf. Ser. Mater. Sci. Eng. 2021;1059:012006. doi: 10.1088/1757-899X/1059/1/012006. DOI

Kvítek O., Kopáček V., Řezníčková A., Švorčík V. Detection of organic vapors on sputtered and annealed thin Au film. J. Phys. Conf. Ser. 2018;985:012005. doi: 10.1088/1742-6596/987/1/012005. DOI

Crosby A.J., Lee J.Y. Polymer Nanocomposites: The “Nano” Effect on Mechanical Properties. Polym. Rev. 2007;47:217–229. doi: 10.1080/15583720701271278. DOI

Alexandre M., Dubois P. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R Rep. 2000;28:1–63. doi: 10.1016/S0927-796X(00)00012-7. DOI

Mousavi S.R., Estaji S., Kiaei H., Mansourian-Tabaei M., Nouranian S., Jafari S.H., Ruckdaschel H., Arjmand M., Khonakda H.A. A review of electrical and thermal conductivities of epoxy resin systems reinforced with carbon nanotubes and graphene-based nanoparticles. Polym. Test. 2022;112:107645. doi: 10.1016/j.polymertesting.2022.107645. DOI

Geim A.K., Novoselov K.S. The rise of graphene. Nat. Mater. 2007;6:183–191. doi: 10.1038/nmat1849. PubMed DOI

Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004;306:666. doi: 10.1126/science.1102896. PubMed DOI

Al Sheheri S.Z., Al-Amshany Z.M., Al Sulami Q.A., Tashkandi N.Y., Hussein M.A., El-Shishtawy R.M. The preparation of carbon nanofillers and their role on the performance of variable polymer nanocomposites. Des. Monomers Polym. 2019;22:8–53. doi: 10.1080/15685551.2019.1565664. PubMed DOI PMC

Zhang F., Yang K., Liu G., Chen Y., Wang M., Li S., Li R. Recent advances on graphene: Synthesis, properties and applications. Compos. Part A. 2022;160:107051. doi: 10.1016/j.compositesa.2022.107051. DOI

Wei J., Atif R., Vo T., Inam F. Graphene Nanoplatelets in Epoxy System: Dispersion, Reaggregation, and Mechanical Properties of Nanocomposites. J. Nanomater. 2015;2015:561742. doi: 10.1155/2015/561742. DOI

Esfandiari M., Lalbakhsh A., Shehni P.N., Jarchi S., Ghaffari-Miab M., Mahtaj H.N., Reisenfeld S., Alibakhshikenari M., Koziel S., Szczepanski S. Recent and emerging applications of Graphene-based metamaterials in electromagnetics. Mater. Des. 2022;221:110920. doi: 10.1016/j.matdes.2022.110920. DOI

Yavari F., Koratkar N. Graphene-Based Chemical Sensors. J. Phys. Chem. Lett. 2012;3:1746–1753. doi: 10.1021/jz300358t. PubMed DOI

Šupová M., Martynková G.S., Barabaszová K. Effect of nanofillers dispersion in polymer matrices: A review. Sci. Adv. Mater. 2011;3:1–25. doi: 10.1166/sam.2011.1136. DOI

Rajak D.K., Pagar D.D., Menezes P.L., Linul E. Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers. 2019;11:1667. doi: 10.3390/polym11101667. PubMed DOI PMC

Szeluga U., Kumanek B., Trzebicka B. Synergy in hybrid polymer/nanocarbon composites. A review. Compos. Part A Appl. Sci. Manuf. 2015;73:204–231. doi: 10.1016/j.compositesa.2015.02.021. DOI

Merino C.A.I., Ledezma Sillas J.E., Mezaa J.M., Herrera Ramirez J.M. Metal matrix composites reinforced with carbon nanotubes by an alternative technique. J. Alloys Compd. 2017;707:257–263. doi: 10.1016/j.jallcom.2016.11.348. DOI

Shit S.C., Shah P. A Review on Silicone Rubber. Natl. Acad. Sci. Lett. 2013;36:355–365. doi: 10.1007/s40009-013-0150-2. DOI

Eduok U., Faye O., Szpunar J. Recent developments and applications of protective silicone coatings: A review of PDMS functional materials. Prog. Org. Coat. 2017;111:124–163. doi: 10.1016/j.porgcoat.2017.05.012. DOI

Li X., Gao Z., Li B., Zhang X., Li Y., Sun J. Self-healing superhydrophobic conductive coatings for self-cleaning and humidity-insensitive hydrogen sensors. Chem. Eng. J. 2021;410:128353. doi: 10.1016/j.cej.2020.128353. DOI

Razavi M., Primavera R., Vykunta A., Thakor A.S. Silicone-based bioscaffolds for cellular therapies. Mater. Sci. Eng. C. 2021;119:111615. doi: 10.1016/j.msec.2020.111615. PubMed DOI

Pino C.J., Haselton F.R., Chang M.S. Seeding of Corneal Wounds by Epithelial Cell Transfer from Micropatterned PDMS Contact Lenses. Cell Transplant. 2005;14:565–571. doi: 10.3727/000000005783982783. PubMed DOI

Rus D., Tolley M.T. Design, fabrication and control of soft robots. Nature. 2015;521:467–475. doi: 10.1038/nature14543. PubMed DOI

Burda C., Chen X., Narayanan R., El-Sayed M.A. Chemistry and Properties of Nanocrystals of Different Shapes. Chem. Rev. 2005;105:1025–1102. doi: 10.1021/cr030063a. PubMed DOI

El-Sayed M.A. Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes. Acc. Chem. Res. 2001;34:257–264. doi: 10.1021/ar960016n. PubMed DOI

Sershen S.R., Westcott S.L., Halas N.J., West J.L. Temperature-sensitive polymer–nanoshell composites for photothermally modulated drug delivery. J. Biomed. Mater. Res. 2000;51:293–298. doi: 10.1002/1097-4636(20000905)51:3<293::AID-JBM1>3.0.CO;2-T. PubMed DOI

Cobley C.M., Chen J., Cho E.C., Wang L.V., Xia Y. Gold nanostructures: A class of multifunctional materials for biomedical applications. Chem. Soc. Rev. 2011;40:44–56. doi: 10.1039/B821763G. PubMed DOI

Qureshia D., Nayak S.K., Maji S., Anis A., Kim D., Pal K. Environment sensitive hydrogels for drug delivery applications. Eur. Polym. J. 2019;120:109220. doi: 10.1016/j.eurpolymj.2019.109220. DOI

McGillicuddy E., Murray I., Kavanagh S., Morrison L., Fogarty A., Cormican M., Dockery P., Prendergast M., Rowan N., Morris D. Silver nanoparticles in the environment: Sources, detection and ecotoxicology. Sci. Total Environ. 2017;575:231–246. doi: 10.1016/j.scitotenv.2016.10.041. PubMed DOI

Gherasim O., Puiu R.A., Bîrcă A.C., Burdușel A.-C., Grumezescu A.M. An Updated Review on Silver Nanoparticles in Biomedicine. Nanomaterials. 2020;10:2318. doi: 10.3390/nano10112318. PubMed DOI PMC

Alonso J.C., Diamant R., Castillo P., Acosta–García M.C., Batina N., Haro-Poniatowski E. Thin films of silver nanoparticles deposited in vacuum by pulsed laser ablation using a YAG:Nd laser. Appl. Surf. Sci. 2009;255:4933–4937. doi: 10.1016/j.apsusc.2008.12.040. DOI

Cao C., Zhang T., Yang N., Niu X., Zhou Z., Wang J., Yang D., Chen P., Zhong L., Dong X., et al. POD Nanozyme optimized by charge separation engineering for light/pH activated bacteria catalytic/photodynamic therapy. Signal Transduct. Target. Ther. 2022;7:86. doi: 10.1038/s41392-022-00900-8. PubMed DOI PMC

Kelly P.J., Arnell R.D. Magnetron sputtering: A review of recent developments and applications. Vacuum. 2000;56:159–172. doi: 10.1016/S0042-207X(99)00189-X. DOI

Chu C., Hu X., Yan H., Sun Y. Surface functionalization of nanostructured Cu/Ag-deposited polypropylene fiber by magnetron sputtering. e-Polymers. 2021;21:140–150. doi: 10.1515/epoly-2021-0020. DOI

Garrett T.R., Bhakoo M., Zhang Z. Bacterial adhesion and biofilms on surfaces. Prog. Nat. Sci. 2008;18:1049–1056. doi: 10.1016/j.pnsc.2008.04.001. DOI

Song F., Koo H., Ren D. Effects of Material Properties on Bacterial Adhesion and Biofilm Formation. J. Dent. Res. 2015;94:1027–1034. doi: 10.1177/0022034515587690. PubMed DOI

Hu H., Burrow M.F., Leung W.K. Evaluation of 12-hour in situ bacterial colonization on smooth restorative material surfaces. J. Dent. 2022;119:104071. doi: 10.1016/j.jdent.2022.104071. PubMed DOI

Mather R.R. Surface Modification of Textiles. 1st ed. Woodhead Publishing Limited; Shaston, UK: 2009. Surface modification of textiles by plasma treatments; pp. 269–317. Chapter 13. DOI

Hurtuková K., Fajstavrová K., Rimpelová S., Vokatá B., Fajstavr D., Slepičková Kasálková N., Siegel J., Švorčík V., Slepička P. Antibacterial Properties of a Honeycomb-like Pattern with Cellulose Acetate and Silver Nanoparticles. Materials. 2021;14:4051–4065. doi: 10.3390/ma14144051. PubMed DOI PMC

Mafuné F., Kohno J.-Y., Takeda Y., Kondow T., Sawabe H. Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution. J. Phys. Chem. B. 2000;104:9111–9117. doi: 10.1021/jp001336y. DOI

Philip P., Jose T., Philip K.C., Manoj P., Sajini T. Studies on the hypsochromic shifted optical properties of gold nanoparticles embedded electrospun poly(methyl methacrylate) (PMMA) nanofibers. Mater. Today Proc. 2020;33:2174–2179. doi: 10.1016/j.matpr.2020.03.681. DOI

Liu X., Li D., Sun X., Li Z., Song H., Jiang H., Chen Y. Tunable Dipole Surface Plasmon Resonances of Silver Nanoparticles by Cladding Dielectric Layers. Sci. Rep. 2015;5:12555. doi: 10.1038/srep12555. PubMed DOI PMC

Shivashankar H., Kevin A.M., Manohar S.B.S., Kulkarni S.M. Investigation on dielectric properties of PDMS based nanocomposites. Phys. B Condens. Matter. 2021;602:412357. doi: 10.1016/j.physb.2020.412357. DOI

Ferreira T.P.M., Nepomuceno N.C., Medeiros E.L.G., Medeiros E.S., Sampaio F.C., Oliveira J.E., Oliveira M.P., Galvão L.S., Bulhões E.O., Santos A.S.F. Antimicrobial coatings based on poly(dimethyl siloxane) and silver nanoparticles by solution blow spraying. Prog. Org. Coat. 2019;133:19–26. doi: 10.1016/j.porgcoat.2019.04.032. DOI

Slepička P., Hurtuková K., Fajstavr D., Slepičková Kasálková N., Lyutakov O., Švorčík V. Carbon-gold nanocomposite induced by unique high energy laser single-shot annealing. Mater. Lett. 2021;301:130256. doi: 10.1016/j.matlet.2021.130256. DOI

Jing Y., Wang R., Wang. Q., Xiang Z., Li Z., Gu H., Wang X. An overview of surface-enhanced Raman scattering substrates by pulsed laser deposition technique: Fundamentals and applications. Adv. Compos. Hybrid Mater. 2021;4:885–905. doi: 10.1007/s42114-021-00330-0. PubMed DOI PMC

Kima J.H., Twaddle K.M., Cermak L.M., Jang W., Yun J., Byun H. Photothermal heating property of gold nanoparticle loaded substratesand their SERS response. Colloids Surf. A Physicochem. Eng. Asp. 2016;498:20–29. doi: 10.1016/j.colsurfa.2016.03.025. DOI

Slepičková Kasálková N., Slepička P., Švorčík V. Carbon Nanostructures, Nanolayers, and Their Composites. Nanomaterials. 2021;11:2368–2391. doi: 10.3390/nano11092368. PubMed DOI PMC

Lišková J., Slepičková Kasálková N., Slepička P., Švorčík V., Bačáková L. Heat-treated carbon coatings on poly (L-lactide) foils for tissue engineering. Mater. Sci. Eng. C. 2019;100:117–128. doi: 10.1016/j.msec.2019.02.105. PubMed DOI

Slepicka P., Siegel J., Lyutakov O., Slepickova Kasalkova N., Kolska Z., Bacakova L., Svorcik V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. doi: 10.1016/j.biotechadv.2017.12.011. PubMed DOI

Deeksha B., Sadanand V., Hariram N., Rajulu A.V. Preparation and properties of cellulose nanocomposite fabrics with in situ generated silver nanoparticles by bioreduction method. J. Bioresour. Bioprod. 2021;6:75–81. doi: 10.1016/j.jobab.2021.01.003. DOI

Yorseng K., Siengchin S., Ashok B., Rajulu A.V. Nanocomposite egg shell powder with in situ generated silver nanoparticles using inherent collagen as reducing agent. J. Bioresour. Bioprod. 2020;5:101–107. doi: 10.1016/j.jobab.2020.04.003. DOI

Polívková M., Hubáček T., Staszek M., Švorčík V., Siegel J. Antimicrobial Treatment of Polymeric Medical Devices by Silver Nanomaterials and Related Technology. Int. J. Mol. Sci. 2017;18:419. doi: 10.3390/ijms18020419. PubMed DOI PMC

Chaloupka K., Malam Y., Seifalian A.M. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010;28:580–588. doi: 10.1016/j.tibtech.2010.07.006. PubMed DOI

Kittler S., Greulich C., Diendorf J., Koöller M., Epple M. Toxicity of Silver Nanoparticles Increases during Storage Because of Slow Dissolution under Release of Silver Ions. Chem. Mater. 2010;22:4548–4554. doi: 10.1021/cm100023p. DOI

Domínguez A., Algaba R.A., Canturri A.M., Villodres Á.R., Smani Y. Antibacterial Activity of Colloidal Silver against Gram-Negative and Gram-Positive Bacteria. Antibiotics. 2020;9:36. doi: 10.3390/antibiotics9010036. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Nanostructures on Fluoropolymer Nanotextile Prepared Using a High-Energy Excimer Laser

. 2023 Jun 09 ; 16 (12) : . [epub] 20230609

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...