Surface Texturing of Polyethylene Terephthalate Induced by Excimer Laser in Silver Nanoparticle Colloids
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-05506S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/18_069/0010045
OP VVV Project NANOTECH ITI II
PubMed
34204802
PubMed Central
PMC8231638
DOI
10.3390/ma14123263
PII: ma14123263
Knihovny.cz E-zdroje
- Klíčová slova
- laser, polymer, silver nanoparticles, surface morphology, surface texturing,
- Publikační typ
- časopisecké články MeSH
We report on a novel technique of surface texturing of polyethylene terephthalate (PET) foil in the presence of silver nanoparticles (AgNPs). This approach provides a variable surface morphology of PET evenly decorated with AgNPs. Surface texturing occurred in silver nanoparticle colloids of different concentrations under the action of pulse excimer laser. Surface morphology of PET immobilized with AgNPs was observed by AFM and FEGSEM. Atomic concentration of silver was determined by XPS. A presented concentration-controlled procedure of surface texturing of PET in the presence of silver colloids leads to a highly nanoparticle-enriched polymer surface with a variable morphology and uniform nanoparticle distribution.
Zobrazit více v PubMed
Pryjmakova J., Kaimlova M., Hubacek T., Svorcik V., Siegel J. Nanostructured Materials for Artificial Tissue Replacements. Int. J. Mol. Sci. 2020;21:2521. doi: 10.3390/ijms21072521. PubMed DOI PMC
Slepicka P., Siegel J., Lyutakov O., Kasalkova N.S., Kolska Z., Bacakova L., Svorcik V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. doi: 10.1016/j.biotechadv.2017.12.011. PubMed DOI
Polivkova M., Strublova V., Hubacek T., Rimpelova S., Svorcik V., Siegel J. Surface characterization and antibacterial response of silver nanowire arrays supported on laser-treated polyethylene naphthalate. Mater. Sci. Eng. C Mater. Biol. Appl. 2017;72:512–518. doi: 10.1016/j.msec.2016.11.072. PubMed DOI
Teo A.J.T., Mishra A., Park I., Kim Y.-J., Park W.-T., Yoon Y.-J. Polymeric Biomaterials for Medical Implants and Devices. ACS Biomater. Sci. Eng. 2016;2:454–472. doi: 10.1021/acsbiomaterials.5b00429. PubMed DOI
Mora-Huertas C.E., Fessi H., Elaissari A. Polymer-based nanocapsules for drug delivery. Int. J. Pharm. 2010;385:113–142. doi: 10.1016/j.ijpharm.2009.10.018. PubMed DOI
Yu J., Rong Y., Kuo C.-T., Zhou X.-H., Chiu D.T. Recent Advances in the Development of Highly Luminescent Semiconducting Polymer Dots and Nanoparticles for Biological Imaging and Medicine. Anal. Chem. 2017;89:42–56. doi: 10.1021/acs.analchem.6b04672. PubMed DOI PMC
Skarzynska M., Zajac M., Wasyl D. Antibiotics and bacteria: Mechanisms of action and resistance strategieS. Adv. Microbiol. 2020;59:49–62.
Mahase E. More countries report on antibiotic resistance but results are "worrying," says WHO. BMJ Brit. Med. J. 2020;369:m2217. doi: 10.1136/bmj.m2217. PubMed DOI
Eleraky N.E., Allam A., Hassan S.B., Omar M.M. Nanomedicine Fight against Antibacterial Resistance: An Overview of the Recent Pharmaceutical Innovations. Pharmaceutics. 2020;12:142. doi: 10.3390/pharmaceutics12020142. PubMed DOI PMC
Abdalla S.S.I., Katas H., Azmi F., Busra M.F.M. Antibacterial and Anti-Biofilm Biosynthesised Silver and Gold Nanoparticles for Medical Applications: Mechanism of Action, Toxicity and Current Status. Curr. Drug Del. 2020;17:88–100. doi: 10.2174/1567201817666191227094334. PubMed DOI
Polivkova M., Hubacek T., Staszek M., Svorcik V., Siegel J. Antimicrobial Treatment of Polymeric Medical Devices by Silver Nanomaterials and Related Technology. Int. J. Mol. Sci. 2017;18:419. doi: 10.3390/ijms18020419. PubMed DOI PMC
Lansdown A.B.G. Silver in health care: Antimicrobial effects and safety in use. Curr. Probl. Dermatol. 2006;33:17–34. PubMed
Yang G., Xie J., Hong F., Cao Z., Yang X. Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: Effect of fermentation carbon sources of bacterial cellulose. Carbohydr. Polym. 2012;87:839–845. doi: 10.1016/j.carbpol.2011.08.079. PubMed DOI
Siegel J., Kaimlová M., Vyhnálková B., Trelin A., Lyutakov O., Slepička P., Švorčík V., Veselý M., Vokatá B., Malinský P., et al. Optomechanical Processing of Silver Colloids: New Generation of Nanoparticle–Polymer Composites with Bactericidal Effect. Int. J. Mol. Sci. 2021;22:312. doi: 10.3390/ijms22010312. PubMed DOI PMC
Amendola V., Bakr O.M., Stellacci F. A Study of the Surface Plasmon Resonance of Silver Nanoparticles by the Discrete Dipole Approximation Method: Effect of Shape, Size, Structure, and Assembly. Plasmonics. 2010;5:85–97. doi: 10.1007/s11468-009-9120-4. DOI
Agnihotri S., Mukherji S., Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2014;4:3974–3983. doi: 10.1039/C3RA44507K. DOI
Popov A.K., Brummer J., Tanke R.S., Taft G., Loth M., Langlois R., Wruck A., Schmitz R. Synthesis of isolated silver nanoparticles and their aggregates manipulated by light. Laser Phys. Lett. 2006;3:546–552. doi: 10.1002/lapl.200610055. DOI
The Functionalization of a Honeycomb Polystyrene Pattern by Excimer Treatment in Liquid