Surface Texturing of Polyethylene Terephthalate Induced by Excimer Laser in Silver Nanoparticle Colloids

. 2021 Jun 12 ; 14 (12) : . [epub] 20210612

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34204802

Grantová podpora
21-05506S Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/18_069/0010045 OP VVV Project NANOTECH ITI II

We report on a novel technique of surface texturing of polyethylene terephthalate (PET) foil in the presence of silver nanoparticles (AgNPs). This approach provides a variable surface morphology of PET evenly decorated with AgNPs. Surface texturing occurred in silver nanoparticle colloids of different concentrations under the action of pulse excimer laser. Surface morphology of PET immobilized with AgNPs was observed by AFM and FEGSEM. Atomic concentration of silver was determined by XPS. A presented concentration-controlled procedure of surface texturing of PET in the presence of silver colloids leads to a highly nanoparticle-enriched polymer surface with a variable morphology and uniform nanoparticle distribution.

Zobrazit více v PubMed

Pryjmakova J., Kaimlova M., Hubacek T., Svorcik V., Siegel J. Nanostructured Materials for Artificial Tissue Replacements. Int. J. Mol. Sci. 2020;21:2521. doi: 10.3390/ijms21072521. PubMed DOI PMC

Slepicka P., Siegel J., Lyutakov O., Kasalkova N.S., Kolska Z., Bacakova L., Svorcik V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. doi: 10.1016/j.biotechadv.2017.12.011. PubMed DOI

Polivkova M., Strublova V., Hubacek T., Rimpelova S., Svorcik V., Siegel J. Surface characterization and antibacterial response of silver nanowire arrays supported on laser-treated polyethylene naphthalate. Mater. Sci. Eng. C Mater. Biol. Appl. 2017;72:512–518. doi: 10.1016/j.msec.2016.11.072. PubMed DOI

Teo A.J.T., Mishra A., Park I., Kim Y.-J., Park W.-T., Yoon Y.-J. Polymeric Biomaterials for Medical Implants and Devices. ACS Biomater. Sci. Eng. 2016;2:454–472. doi: 10.1021/acsbiomaterials.5b00429. PubMed DOI

Mora-Huertas C.E., Fessi H., Elaissari A. Polymer-based nanocapsules for drug delivery. Int. J. Pharm. 2010;385:113–142. doi: 10.1016/j.ijpharm.2009.10.018. PubMed DOI

Yu J., Rong Y., Kuo C.-T., Zhou X.-H., Chiu D.T. Recent Advances in the Development of Highly Luminescent Semiconducting Polymer Dots and Nanoparticles for Biological Imaging and Medicine. Anal. Chem. 2017;89:42–56. doi: 10.1021/acs.analchem.6b04672. PubMed DOI PMC

Skarzynska M., Zajac M., Wasyl D. Antibiotics and bacteria: Mechanisms of action and resistance strategieS. Adv. Microbiol. 2020;59:49–62.

Mahase E. More countries report on antibiotic resistance but results are "worrying," says WHO. BMJ Brit. Med. J. 2020;369:m2217. doi: 10.1136/bmj.m2217. PubMed DOI

Eleraky N.E., Allam A., Hassan S.B., Omar M.M. Nanomedicine Fight against Antibacterial Resistance: An Overview of the Recent Pharmaceutical Innovations. Pharmaceutics. 2020;12:142. doi: 10.3390/pharmaceutics12020142. PubMed DOI PMC

Abdalla S.S.I., Katas H., Azmi F., Busra M.F.M. Antibacterial and Anti-Biofilm Biosynthesised Silver and Gold Nanoparticles for Medical Applications: Mechanism of Action, Toxicity and Current Status. Curr. Drug Del. 2020;17:88–100. doi: 10.2174/1567201817666191227094334. PubMed DOI

Polivkova M., Hubacek T., Staszek M., Svorcik V., Siegel J. Antimicrobial Treatment of Polymeric Medical Devices by Silver Nanomaterials and Related Technology. Int. J. Mol. Sci. 2017;18:419. doi: 10.3390/ijms18020419. PubMed DOI PMC

Lansdown A.B.G. Silver in health care: Antimicrobial effects and safety in use. Curr. Probl. Dermatol. 2006;33:17–34. PubMed

Yang G., Xie J., Hong F., Cao Z., Yang X. Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: Effect of fermentation carbon sources of bacterial cellulose. Carbohydr. Polym. 2012;87:839–845. doi: 10.1016/j.carbpol.2011.08.079. PubMed DOI

Siegel J., Kaimlová M., Vyhnálková B., Trelin A., Lyutakov O., Slepička P., Švorčík V., Veselý M., Vokatá B., Malinský P., et al. Optomechanical Processing of Silver Colloids: New Generation of Nanoparticle–Polymer Composites with Bactericidal Effect. Int. J. Mol. Sci. 2021;22:312. doi: 10.3390/ijms22010312. PubMed DOI PMC

Amendola V., Bakr O.M., Stellacci F. A Study of the Surface Plasmon Resonance of Silver Nanoparticles by the Discrete Dipole Approximation Method: Effect of Shape, Size, Structure, and Assembly. Plasmonics. 2010;5:85–97. doi: 10.1007/s11468-009-9120-4. DOI

Agnihotri S., Mukherji S., Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2014;4:3974–3983. doi: 10.1039/C3RA44507K. DOI

Popov A.K., Brummer J., Tanke R.S., Taft G., Loth M., Langlois R., Wruck A., Schmitz R. Synthesis of isolated silver nanoparticles and their aggregates manipulated by light. Laser Phys. Lett. 2006;3:546–552. doi: 10.1002/lapl.200610055. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace