Optomechanical Processing of Silver Colloids: New Generation of Nanoparticle-Polymer Composites with Bactericidal Effect

. 2020 Dec 30 ; 22 (1) : . [epub] 20201230

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33396769

Grantová podpora
18-07619S Grantová Agentura České Republiky

The properties of materials at the nanoscale open up new methodologies for engineering prospective materials usable in high-end applications. The preparation of composite materials with a high content of an active component on their surface is one of the current challenges of materials engineering. This concept significantly increases the efficiency of heterogeneous processes moderated by the active component, typically in biological applications, catalysis, or drug delivery. Here we introduce a general approach, based on laser-induced optomechanical processing of silver colloids, for the preparation of polymer surfaces highly enriched with silver nanoparticles (AgNPs). As a result, the AgNPs are firmly immobilized in a thin surface layer without the use of any other chemical mediators. We have shown that our approach is applicable to a broad spectrum of polymer foils, regardless of whether they absorb laser light or not. However, if the laser radiation is absorbed, it is possible to transform smooth surface morphology of the polymer into a roughened one with a higher specific surface area. Analyses of the release of silver from the polymer surface together with antibacterial tests suggested that these materials could be suitable candidates in the fight against nosocomial infections and could inhibit the formation of biofilms with a long-term effect.

Zobrazit více v PubMed

Jiang Z.J., Liu C.Y., Sun L.W. Catalytic properties of silver nanoparticles supported on silica spheres. J. Phys. Chem. B. 2005;109:1730–1735. doi: 10.1021/jp046032g. PubMed DOI

Eisa W.H., Zayed M.F., Anis B., Abbas L.M., Ali S.S.M., Mostafa A.M. Clean production of powdery silver nanoparticles using zingiber officinale: The structural and catalytic properties. J. Clean Prod. 2019;241:118398. doi: 10.1016/j.jclepro.2019.118398. DOI

Shimoga G., Shin E.-J., Kim S.-Y. Silver nanoparticles incorporated pvc films: Evaluation of structural, thermal, dielectric and catalytic properties. Polimeros. 2019;29:29. doi: 10.1590/0104-1428.08218. DOI

Huy T.Q., Huyen P.T.M., Le A.-T., Tonezzer M. Recent advances of silver nanoparticles in cancer diagnosis and treatment. Anti-Cancer Agents Med. Chem. 2019;20:1276–1287. doi: 10.2174/1871520619666190710121727. PubMed DOI

Polivkova M., Hubacek T., Staszek M., Svorcik V., Siegel J. Antimicrobial treatment of polymeric medical devices by silver nanomaterials and related technology. Int. J. Mol. Sci. 2017;18:419. doi: 10.3390/ijms18020419. PubMed DOI PMC

Marassi V., Di Cristo L., Smith S.G.J., Ortelli S., Blosi M., Costa A.L., Reschiglian P., Volkov Y., Prina-Mello A. Silver nanoparticles as a medical device in healthcare settings: A five-step approach for candidate screening of coating agents. R. Soc. Open Sci. 2018;5:171113. doi: 10.1098/rsos.171113. PubMed DOI PMC

Liu Y., Zhang D., Alocilja E.C., Chakrabartty S. Biomolecules detection using a silver-enhanced gold nanoparticle-based biochip. Nanoscale Res. Lett. 2010;5:533–538. doi: 10.1007/s11671-010-9542-0. PubMed DOI PMC

Ling D., Li H., Xi W., Wang Z., Bednarkiewicz A., Dibaba S.T., Shi L., Sun L. Heterodimers made of metal-organic frameworks and upconversion nanoparticles for bioimaging and ph-responsive dual-drug delivery. J. Mater. Chem. B. 2020;8:1316–1325. doi: 10.1039/C9TB02753J. PubMed DOI

Sunita P., Palaniswamy M. A bio-inspired approach of formulation and evaluation of aegle marmelos fruit extract mediated silver nanoparticle gel and comparison of its antibacterial activity with antiseptic cream. Eur. J. Integr. Med. 2020;33:101025.

Bu Y., Zhang S., Cai Y., Yang Y., Ma S., Huang J., Yang H., Ye D., Zhou Y., Xu W., et al. Fabrication of durable antibacterial and superhydrophobic textiles via in situ synthesis of silver nanoparticle on tannic acid-coated viscose textiles. Cellulose. 2019;26:2109–2122. doi: 10.1007/s10570-018-2183-7. DOI

Sharma P., Pant S., Rai S., Yadav R.B., Dave V. Green synthesis of silver nanoparticle capped with allium cepa and their catalytic reduction of textile dyes: An ecofriendly approach. J. Polym. Environ. 2018;26:1795–1803. doi: 10.1007/s10924-017-1081-7. DOI

Svorcik V., Kolska Z., Siegel J., Slepicka P. “Short” dithiol and au nanoparticles grafting on plasma treated polyethyleneterephthalate. J. Nano Res. 2013;25:40–48. doi: 10.4028/www.scientific.net/JNanoR.25.40. PubMed DOI PMC

Svorcik V., Kolska Z., Kvitek O., Siegel J., Reznickova A., Rezanka P., Zaruba K. “Soft and rigid” dithiols and au nanoparticles grafting on plasma-treated polyethyleneterephthalate. Nanoscale Res. Lett. 2011;6:607. doi: 10.1186/1556-276X-6-607. PubMed DOI PMC

Svatora R., Darveau S., Exstrom C. Stability of gold nanoparticle-based films deposited on plasma-etched borosilicate glass via a layer-by-layer physisorption technique. Abstr. Pap. Am. Chem. S. 2015;249:1155.

Yu J., Liao F., Liu F., Gu F., Zeng H. Surface-enhanced fluorescence in metal nanoparticle-doped polymer nanofibers via waveguiding excitation. Appl. Phys. Lett. 2017;110:163101. doi: 10.1063/1.4981249. DOI

Firestein K.L., Kvashnin D.G., Sheveyko A.N., Sukhorukova I.V., Kovalskii A.M., Matveev A.T., Lebedev O.I., Sorokin P.B., Golberg D., Shtansky D.V. Structural analysis and atomic simulation of ag/bn nanoparticle hybrids obtained by ag ion implantation. Mater. Des. 2016;98:167–173. doi: 10.1016/j.matdes.2016.02.108. DOI

Nguyenova H.Y., Vokata B., Zaruba K., Siegel J., Kolska Z., Svorcik V., Slepicka P., Reznickova A. Silver nanoparticles grafted onto pet: Effect of preparation method on antibacterial activity. React. Funct. Polym. 2019;145:104376. doi: 10.1016/j.reactfunctpolym.2019.104376. DOI

Baei P., Jalili-Firoozinezhad S., Rajabi-Zeleti S., Tafazzoli-Shadpour M., Baharvand H., Aghdami N. Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering. Mater. Sci. Eng. C. 2016;63:131–141. doi: 10.1016/j.msec.2016.02.056. PubMed DOI

Siegel J., Lyutakov O., Polívková M., Staszek M., Hubáček T., Švorčík V. Laser-assisted immobilization of colloid silver nanoparticles on polyethyleneterephthalate. Appl. Surf. Sci. 2017;420:661–668. doi: 10.1016/j.apsusc.2017.05.151. DOI

Dienerowitz M., Mazilu M., Dholakia K. Optical manipulation of nanoparticles: A review. J. Nanophotonics. 2008;2:021875. doi: 10.1117/1.2992045. DOI

Du J., Yuen C.-H., Li X., Ding K., Du G., Lin Z., Chan C.T., Ng J. Tailoring optical gradient force and optical scattering and absorption force. Sci. Rep. 2017;7:18042. doi: 10.1038/s41598-017-17874-1. PubMed DOI PMC

Lehmuskero A., Johansson P., Rubinsztein-Dunlop H., Tong L.M., Kall M. Laser trapping of colloidal metal nanoparticles. ACS Nano. 2015;9:3453–3469. doi: 10.1021/acsnano.5b00286. PubMed DOI

Jose Saenz J. Optical forces laser tractor beams. Nat. Photonics. 2011;5:514–515. doi: 10.1038/nphoton.2011.201. DOI

Gao D., Shi R., Huang Y., Gao L. Fano-enhanced pulling and pushing optical force on active plasmonic nanoparticles. Phys. Rev. A. 2017;96:96. doi: 10.1103/PhysRevA.96.043826. DOI

Sukhov S., Dogariu A. Negative nonconservative forces: Optical “tractor beams” for arbitrary objects. Phys. Rev. Lett. 2011;107:203602. doi: 10.1103/PhysRevLett.107.203602. PubMed DOI

Huang H., Sivayoganathan M., Duley W.W., Zhou Y. Efficient localized heating of silver nanoparticles by low-fluence femtosecond laser pulses. Appl. Surf. Sci. 2015;331:392–398. doi: 10.1016/j.apsusc.2015.01.086. DOI

Bastus N.G., Piella J., Puntes V. Quantifying the sensitivity of multipolar (dipolar, quadrupolar, and octapolar) surface plasmon resonances in silver nanoparticles: The effect of size, composition, and surface coating. Langmuir. 2016;32:290–300. doi: 10.1021/acs.langmuir.5b03859. PubMed DOI

Bruzzone S., Malvaldi M. Local field effects on laser-induced heating of metal nanoparticles. J. Phys. Chem. C. 2009;113:15805–15810. doi: 10.1021/jp9003517. DOI

Govorov A.O., Richardson H.H. Generating heat with metal nanoparticles. Nano Today. 2007;2:30–38. doi: 10.1016/S1748-0132(07)70017-8. DOI

Liu X., Shan G., Yu J., Yang W., Ren Z., Wang X., Xie X., Chen H.-J., Chen X. Laser heating of metallic nanoparticles for photothermal ablation applications. AIP Adv. 2017;7:025308. doi: 10.1063/1.4977554. DOI

Qiu J., Wei W.D. Surface plasmon-mediated photothermal chemistry. J. Phys. Chem. C. 2014;118:20735–20749. doi: 10.1021/jp5042553. DOI

Liu L., Peng P., Hu A., Zou G., Duley W.W., Zhou Y.N. Highly localized heat generation by femtosecond laser induced plasmon excitation in ag nanowires. Appl. Phys. Lett. 2013;102:073107. doi: 10.1063/1.4790189. DOI

Popov A.K., Brummer J., Tanke R.S., Taft G., Loth M., Langlois R., Wruck A., Schmitz R. Synthesis of isolated silver nanoparticles and their aggregates manipulated by light. Laser Phys. Lett. 2006;3:546–552. doi: 10.1002/lapl.200610055. DOI

Siegel J., Sulakova P., Kaimlova M., Svorcik V., Hubacek T. Underwater laser treatment of pet: Effect of processing parameters on surface morphology and chemistry. Appl. Sci. Basel. 2018;8:2389. doi: 10.3390/app8122389. DOI

Malinsky P., Siegel J., Hnatowicz V., Mackova A., Svorcik V. Simulation of rbs spectra with known 3d sample surface roughness. Nucl. Phys. B. 2017;406:99–103. doi: 10.1016/j.nimb.2017.02.020. DOI

Herigstad B., Hamilton M., Heersink J. How to optimize the drop plate method for enumerating bacteria. J. Microbiol. Methods. 2001;44:121–129. doi: 10.1016/S0167-7012(00)00241-4. PubMed DOI

Polívková M., Štrublová V., Hubáček T., Rimpelová S., Švorčík V., Siegel J. Surface characterization and antibacterial response of silver nanowire arrays supported on laser-treated polyethylene naphthalate. Mater. Sci. Eng. C. 2017;72:512–518. doi: 10.1016/j.msec.2016.11.072. PubMed DOI

Elashnikov R., Radocha M., Panov I., Rimpelova S., Ulbrich P., Michalcova A., Svorcik V., Lyutakov O. Porphyrin-silver nanoparticles hybrids: Synthesis, characterization and antibacterial activity. Mater. Sci. Eng. C. 2019;102:192–199. doi: 10.1016/j.msec.2019.04.029. PubMed DOI

Pišlová M., Kolářová K., Vokatá B., Brož A., Ulbrich P., Bačáková L., Kolská Z., Švorčík V. A new way to prepare gold nanoparticles by sputtering—sterilization, stability and other properties. Mater. Sci. Eng. C. 2020;115:111087. doi: 10.1016/j.msec.2020.111087. PubMed DOI

Siegel J., Polivkova M., Staszek M., Kolarova K., Rimpelova S., Svorcik V. Nanostructured silver coatings on polyimide and their antibacterial response. Mater. Lett. 2015;145:87–90. doi: 10.1016/j.matlet.2015.01.050. DOI

Staszek M., Siegel J., Kolarova K., Rimpelova S., Svorcik V. Formation and antibacterial action of pt and pd nanoparticles sputtered into liquid. Micro Nano Lett. 2014;9:778–781. doi: 10.1049/mnl.2014.0345. DOI

Chernousova S., Epple M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem. Int. Ed. 2013;52:1636–1653. doi: 10.1002/anie.201205923. PubMed DOI

Zhang T., Wang L., Chen Q., Chen C. Cytotoxic potential of silver nanoparticles. Yonsei Med. J. 2014;55:283–291. doi: 10.3349/ymj.2014.55.2.283. PubMed DOI PMC

Park E.-J., Yi J., Kim Y., Choi K., Park K. Silver nanoparticles induce cytotoxicity by a trojan-horse type mechanism. Toxicol. Vitr. 2010;24:872–878. doi: 10.1016/j.tiv.2009.12.001. PubMed DOI

Peterbauer T., Yakunin S., Siegel J., Hering S., Fahrner M., Romanin C., Heitz J. Dynamics of spreading and alignment of cells cultured in vitro on a grooved polymer surface. J. Nanomater. 2011;2011 doi: 10.1155/2011/413079. DOI

Estevez M.B., Raffaelli S., Mitchell S.G., Faccio R., Alborés S. Biofilm eradication using biogenic silver nanoparticles. Molecules. 2020;25:2023. doi: 10.3390/molecules25092023. PubMed DOI PMC

Liu Y., Shi L., Su L., van der Mei H.C., Jutte P.C., Ren Y., Busscher H.J. Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chem. Soc. Rev. 2019;48:428–446. doi: 10.1039/C7CS00807D. PubMed DOI

Fujii M. Fundamental correction of mie’s scattering theory for the analysis of the plasmonic resonance of a metal nanosphere. Phys. Rev. A. 2014;89:033805. doi: 10.1103/PhysRevA.89.033805. DOI

van de Hulst H.C. Light Scattering by Small Particles. 2nd ed. Dover Publications; New York, NY, USA: 1981. pp. 18–68.

Sumlin B.J., Heinson W.R., Chakrabarty R.K. Retrieving the aerosol complex refractive index using pymiescatt: A mie computational package with visualization capabilities. J. Quant. Spectros. Radiat. Transf. 2018;205:127–134. doi: 10.1016/j.jqsrt.2017.10.012. DOI

Stahrenberg K., Herrmann T., Wilmers K., Esser N., Richter W., Lee M.J.G. Optical properties of copper and silver in the energy range 2.5-9.0 ev. Phys. Rev. B. 2001;64:115111. doi: 10.1103/PhysRevB.64.115111. DOI

Zensen C., Villadsen N., Winterer F., Keiding S.R., Lohmueller T. Pushing nanoparticles with light—A femtonewton resolved measurement of optical scattering forces. Appl. Photonics. 2016;1:026102. doi: 10.1063/1.4945351. DOI

Marago O.M., Jones P.H., Gucciardi P.G., Volpe G., Ferrari A.C. Optical trapping and manipulation of nanostructures. Nat. Nanotechnol. 2013;8:807–819. doi: 10.1038/nnano.2013.208. PubMed DOI

Rajabpour A., Seif R., Arabha S., Heyhat M.M., Merabia S., Hassanali A. Thermal transport at a nanoparticle-water interface: A molecular dynamics and continuum modeling study. J. Chem. Phys. 2019;150:114701. doi: 10.1063/1.5084234. PubMed DOI

Merabia S., Shenogin S., Joly L., Keblinski P., Barrat J.-L. Heat transfer from nanoparticles: A corresponding state analysis. Proc. Natl. Acad. Sci. USA. 2009;106:15113–15118. doi: 10.1073/pnas.0901372106. PubMed DOI PMC

Hu M., Keblinski P., Schelling P.K. Kapitza conductance of silicon-amorphous polyethylene interfaces by molecular dynamics simulations. Phys. Rev. B. 2009;79:104305. doi: 10.1103/PhysRevB.79.104305. DOI

Ziade E., Goni M., Sato T., Czubarow P., Schmidt A.J. Thermal conductance of nanoscale langmuir-blodgett films. Appl. Phys. Lett. 2015;107:221603. doi: 10.1063/1.4937010. DOI

Putnam S.A., Cahill D.G., Ash B.J., Schadler L.S. High-precision thermal conductivity measurements as a probe of polymer/nanoparticle interfaces. J. Appl. Phys. 2003;94:6785–6788. doi: 10.1063/1.1619202. DOI

Sandell S., Maire J., Chavez-Angel E., Sotomayor Torres C.M., Kristiansen H., Zhang Z., He J. Enhancement of thermal boundary conductance of metal-polymer system. Nanomaterials. 2020;10:670. doi: 10.3390/nano10040670. PubMed DOI PMC

Kosky P., Balmer R., Keat W., Wise G. Mechanical Engineering. In: Kosky P., Balmer R., Keat W., Wise G., editors. Exploring Engineering. 3rd ed. Academic Press; Boston, FL, USA: 2013. pp. 259–281.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Modification of AgNP-Decorated PET: A Promising Strategy for Preparation of AgNP-Filled Nuclear Pores in Polymer Membranes

. 2024 Jan 05 ; 25 (2) : . [epub] 20240105

A New Promising Material for Biological Applications: Multilevel Physical Modification of AgNP-Decorated PEEK

. 2023 Dec 05 ; 13 (24) : . [epub] 20231205

Surface Engineering of AgNPs-Decorated Polyetheretherketone

. 2023 Jan 11 ; 24 (2) : . [epub] 20230111

Decoration of Ultramicrotome-Cut Polymers with Silver Nanoparticles: Effect of Post-Deposition Laser Treatment

. 2022 Dec 14 ; 15 (24) : . [epub] 20221214

Bimetallic Nanowires on Laser-Patterned PEN as Promising Biomaterials

. 2021 Sep 02 ; 11 (9) : . [epub] 20210902

Genomic Damage Induced in Nicotiana tabacum L. Plants by Colloidal Solution with Silver and Gold Nanoparticles

. 2021 Jun 21 ; 10 (6) : . [epub] 20210621

Surface Texturing of Polyethylene Terephthalate Induced by Excimer Laser in Silver Nanoparticle Colloids

. 2021 Jun 12 ; 14 (12) : . [epub] 20210612

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...