Optomechanical Processing of Silver Colloids: New Generation of Nanoparticle-Polymer Composites with Bactericidal Effect
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-07619S
Grantová Agentura České Republiky
PubMed
33396769
PubMed Central
PMC7794995
DOI
10.3390/ijms22010312
PII: ijms22010312
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial activity, excimer laser, immobilization, polymer, silver nanoparticles, surface characterization,
- MeSH
- antibakteriální látky chemie farmakologie MeSH
- elektrochemie MeSH
- kovové nanočástice chemie ultrastruktura MeSH
- mikrobiální testy citlivosti MeSH
- polymery chemie MeSH
- povrchové vlastnosti MeSH
- stříbro chemie MeSH
- světlo MeSH
- teoretické modely MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- colloidal silver MeSH Prohlížeč
- polymery MeSH
- stříbro MeSH
The properties of materials at the nanoscale open up new methodologies for engineering prospective materials usable in high-end applications. The preparation of composite materials with a high content of an active component on their surface is one of the current challenges of materials engineering. This concept significantly increases the efficiency of heterogeneous processes moderated by the active component, typically in biological applications, catalysis, or drug delivery. Here we introduce a general approach, based on laser-induced optomechanical processing of silver colloids, for the preparation of polymer surfaces highly enriched with silver nanoparticles (AgNPs). As a result, the AgNPs are firmly immobilized in a thin surface layer without the use of any other chemical mediators. We have shown that our approach is applicable to a broad spectrum of polymer foils, regardless of whether they absorb laser light or not. However, if the laser radiation is absorbed, it is possible to transform smooth surface morphology of the polymer into a roughened one with a higher specific surface area. Analyses of the release of silver from the polymer surface together with antibacterial tests suggested that these materials could be suitable candidates in the fight against nosocomial infections and could inhibit the formation of biofilms with a long-term effect.
Zobrazit více v PubMed
Jiang Z.J., Liu C.Y., Sun L.W. Catalytic properties of silver nanoparticles supported on silica spheres. J. Phys. Chem. B. 2005;109:1730–1735. doi: 10.1021/jp046032g. PubMed DOI
Eisa W.H., Zayed M.F., Anis B., Abbas L.M., Ali S.S.M., Mostafa A.M. Clean production of powdery silver nanoparticles using zingiber officinale: The structural and catalytic properties. J. Clean Prod. 2019;241:118398. doi: 10.1016/j.jclepro.2019.118398. DOI
Shimoga G., Shin E.-J., Kim S.-Y. Silver nanoparticles incorporated pvc films: Evaluation of structural, thermal, dielectric and catalytic properties. Polimeros. 2019;29:29. doi: 10.1590/0104-1428.08218. DOI
Huy T.Q., Huyen P.T.M., Le A.-T., Tonezzer M. Recent advances of silver nanoparticles in cancer diagnosis and treatment. Anti-Cancer Agents Med. Chem. 2019;20:1276–1287. doi: 10.2174/1871520619666190710121727. PubMed DOI
Polivkova M., Hubacek T., Staszek M., Svorcik V., Siegel J. Antimicrobial treatment of polymeric medical devices by silver nanomaterials and related technology. Int. J. Mol. Sci. 2017;18:419. doi: 10.3390/ijms18020419. PubMed DOI PMC
Marassi V., Di Cristo L., Smith S.G.J., Ortelli S., Blosi M., Costa A.L., Reschiglian P., Volkov Y., Prina-Mello A. Silver nanoparticles as a medical device in healthcare settings: A five-step approach for candidate screening of coating agents. R. Soc. Open Sci. 2018;5:171113. doi: 10.1098/rsos.171113. PubMed DOI PMC
Liu Y., Zhang D., Alocilja E.C., Chakrabartty S. Biomolecules detection using a silver-enhanced gold nanoparticle-based biochip. Nanoscale Res. Lett. 2010;5:533–538. doi: 10.1007/s11671-010-9542-0. PubMed DOI PMC
Ling D., Li H., Xi W., Wang Z., Bednarkiewicz A., Dibaba S.T., Shi L., Sun L. Heterodimers made of metal-organic frameworks and upconversion nanoparticles for bioimaging and ph-responsive dual-drug delivery. J. Mater. Chem. B. 2020;8:1316–1325. doi: 10.1039/C9TB02753J. PubMed DOI
Sunita P., Palaniswamy M. A bio-inspired approach of formulation and evaluation of aegle marmelos fruit extract mediated silver nanoparticle gel and comparison of its antibacterial activity with antiseptic cream. Eur. J. Integr. Med. 2020;33:101025.
Bu Y., Zhang S., Cai Y., Yang Y., Ma S., Huang J., Yang H., Ye D., Zhou Y., Xu W., et al. Fabrication of durable antibacterial and superhydrophobic textiles via in situ synthesis of silver nanoparticle on tannic acid-coated viscose textiles. Cellulose. 2019;26:2109–2122. doi: 10.1007/s10570-018-2183-7. DOI
Sharma P., Pant S., Rai S., Yadav R.B., Dave V. Green synthesis of silver nanoparticle capped with allium cepa and their catalytic reduction of textile dyes: An ecofriendly approach. J. Polym. Environ. 2018;26:1795–1803. doi: 10.1007/s10924-017-1081-7. DOI
Svorcik V., Kolska Z., Siegel J., Slepicka P. “Short” dithiol and au nanoparticles grafting on plasma treated polyethyleneterephthalate. J. Nano Res. 2013;25:40–48. doi: 10.4028/www.scientific.net/JNanoR.25.40. PubMed DOI PMC
Svorcik V., Kolska Z., Kvitek O., Siegel J., Reznickova A., Rezanka P., Zaruba K. “Soft and rigid” dithiols and au nanoparticles grafting on plasma-treated polyethyleneterephthalate. Nanoscale Res. Lett. 2011;6:607. doi: 10.1186/1556-276X-6-607. PubMed DOI PMC
Svatora R., Darveau S., Exstrom C. Stability of gold nanoparticle-based films deposited on plasma-etched borosilicate glass via a layer-by-layer physisorption technique. Abstr. Pap. Am. Chem. S. 2015;249:1155.
Yu J., Liao F., Liu F., Gu F., Zeng H. Surface-enhanced fluorescence in metal nanoparticle-doped polymer nanofibers via waveguiding excitation. Appl. Phys. Lett. 2017;110:163101. doi: 10.1063/1.4981249. DOI
Firestein K.L., Kvashnin D.G., Sheveyko A.N., Sukhorukova I.V., Kovalskii A.M., Matveev A.T., Lebedev O.I., Sorokin P.B., Golberg D., Shtansky D.V. Structural analysis and atomic simulation of ag/bn nanoparticle hybrids obtained by ag ion implantation. Mater. Des. 2016;98:167–173. doi: 10.1016/j.matdes.2016.02.108. DOI
Nguyenova H.Y., Vokata B., Zaruba K., Siegel J., Kolska Z., Svorcik V., Slepicka P., Reznickova A. Silver nanoparticles grafted onto pet: Effect of preparation method on antibacterial activity. React. Funct. Polym. 2019;145:104376. doi: 10.1016/j.reactfunctpolym.2019.104376. DOI
Baei P., Jalili-Firoozinezhad S., Rajabi-Zeleti S., Tafazzoli-Shadpour M., Baharvand H., Aghdami N. Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering. Mater. Sci. Eng. C. 2016;63:131–141. doi: 10.1016/j.msec.2016.02.056. PubMed DOI
Siegel J., Lyutakov O., Polívková M., Staszek M., Hubáček T., Švorčík V. Laser-assisted immobilization of colloid silver nanoparticles on polyethyleneterephthalate. Appl. Surf. Sci. 2017;420:661–668. doi: 10.1016/j.apsusc.2017.05.151. DOI
Dienerowitz M., Mazilu M., Dholakia K. Optical manipulation of nanoparticles: A review. J. Nanophotonics. 2008;2:021875. doi: 10.1117/1.2992045. DOI
Du J., Yuen C.-H., Li X., Ding K., Du G., Lin Z., Chan C.T., Ng J. Tailoring optical gradient force and optical scattering and absorption force. Sci. Rep. 2017;7:18042. doi: 10.1038/s41598-017-17874-1. PubMed DOI PMC
Lehmuskero A., Johansson P., Rubinsztein-Dunlop H., Tong L.M., Kall M. Laser trapping of colloidal metal nanoparticles. ACS Nano. 2015;9:3453–3469. doi: 10.1021/acsnano.5b00286. PubMed DOI
Jose Saenz J. Optical forces laser tractor beams. Nat. Photonics. 2011;5:514–515. doi: 10.1038/nphoton.2011.201. DOI
Gao D., Shi R., Huang Y., Gao L. Fano-enhanced pulling and pushing optical force on active plasmonic nanoparticles. Phys. Rev. A. 2017;96:96. doi: 10.1103/PhysRevA.96.043826. DOI
Sukhov S., Dogariu A. Negative nonconservative forces: Optical “tractor beams” for arbitrary objects. Phys. Rev. Lett. 2011;107:203602. doi: 10.1103/PhysRevLett.107.203602. PubMed DOI
Huang H., Sivayoganathan M., Duley W.W., Zhou Y. Efficient localized heating of silver nanoparticles by low-fluence femtosecond laser pulses. Appl. Surf. Sci. 2015;331:392–398. doi: 10.1016/j.apsusc.2015.01.086. DOI
Bastus N.G., Piella J., Puntes V. Quantifying the sensitivity of multipolar (dipolar, quadrupolar, and octapolar) surface plasmon resonances in silver nanoparticles: The effect of size, composition, and surface coating. Langmuir. 2016;32:290–300. doi: 10.1021/acs.langmuir.5b03859. PubMed DOI
Bruzzone S., Malvaldi M. Local field effects on laser-induced heating of metal nanoparticles. J. Phys. Chem. C. 2009;113:15805–15810. doi: 10.1021/jp9003517. DOI
Govorov A.O., Richardson H.H. Generating heat with metal nanoparticles. Nano Today. 2007;2:30–38. doi: 10.1016/S1748-0132(07)70017-8. DOI
Liu X., Shan G., Yu J., Yang W., Ren Z., Wang X., Xie X., Chen H.-J., Chen X. Laser heating of metallic nanoparticles for photothermal ablation applications. AIP Adv. 2017;7:025308. doi: 10.1063/1.4977554. DOI
Qiu J., Wei W.D. Surface plasmon-mediated photothermal chemistry. J. Phys. Chem. C. 2014;118:20735–20749. doi: 10.1021/jp5042553. DOI
Liu L., Peng P., Hu A., Zou G., Duley W.W., Zhou Y.N. Highly localized heat generation by femtosecond laser induced plasmon excitation in ag nanowires. Appl. Phys. Lett. 2013;102:073107. doi: 10.1063/1.4790189. DOI
Popov A.K., Brummer J., Tanke R.S., Taft G., Loth M., Langlois R., Wruck A., Schmitz R. Synthesis of isolated silver nanoparticles and their aggregates manipulated by light. Laser Phys. Lett. 2006;3:546–552. doi: 10.1002/lapl.200610055. DOI
Siegel J., Sulakova P., Kaimlova M., Svorcik V., Hubacek T. Underwater laser treatment of pet: Effect of processing parameters on surface morphology and chemistry. Appl. Sci. Basel. 2018;8:2389. doi: 10.3390/app8122389. DOI
Malinsky P., Siegel J., Hnatowicz V., Mackova A., Svorcik V. Simulation of rbs spectra with known 3d sample surface roughness. Nucl. Phys. B. 2017;406:99–103. doi: 10.1016/j.nimb.2017.02.020. DOI
Herigstad B., Hamilton M., Heersink J. How to optimize the drop plate method for enumerating bacteria. J. Microbiol. Methods. 2001;44:121–129. doi: 10.1016/S0167-7012(00)00241-4. PubMed DOI
Polívková M., Štrublová V., Hubáček T., Rimpelová S., Švorčík V., Siegel J. Surface characterization and antibacterial response of silver nanowire arrays supported on laser-treated polyethylene naphthalate. Mater. Sci. Eng. C. 2017;72:512–518. doi: 10.1016/j.msec.2016.11.072. PubMed DOI
Elashnikov R., Radocha M., Panov I., Rimpelova S., Ulbrich P., Michalcova A., Svorcik V., Lyutakov O. Porphyrin-silver nanoparticles hybrids: Synthesis, characterization and antibacterial activity. Mater. Sci. Eng. C. 2019;102:192–199. doi: 10.1016/j.msec.2019.04.029. PubMed DOI
Pišlová M., Kolářová K., Vokatá B., Brož A., Ulbrich P., Bačáková L., Kolská Z., Švorčík V. A new way to prepare gold nanoparticles by sputtering—sterilization, stability and other properties. Mater. Sci. Eng. C. 2020;115:111087. doi: 10.1016/j.msec.2020.111087. PubMed DOI
Siegel J., Polivkova M., Staszek M., Kolarova K., Rimpelova S., Svorcik V. Nanostructured silver coatings on polyimide and their antibacterial response. Mater. Lett. 2015;145:87–90. doi: 10.1016/j.matlet.2015.01.050. DOI
Staszek M., Siegel J., Kolarova K., Rimpelova S., Svorcik V. Formation and antibacterial action of pt and pd nanoparticles sputtered into liquid. Micro Nano Lett. 2014;9:778–781. doi: 10.1049/mnl.2014.0345. DOI
Chernousova S., Epple M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem. Int. Ed. 2013;52:1636–1653. doi: 10.1002/anie.201205923. PubMed DOI
Zhang T., Wang L., Chen Q., Chen C. Cytotoxic potential of silver nanoparticles. Yonsei Med. J. 2014;55:283–291. doi: 10.3349/ymj.2014.55.2.283. PubMed DOI PMC
Park E.-J., Yi J., Kim Y., Choi K., Park K. Silver nanoparticles induce cytotoxicity by a trojan-horse type mechanism. Toxicol. Vitr. 2010;24:872–878. doi: 10.1016/j.tiv.2009.12.001. PubMed DOI
Peterbauer T., Yakunin S., Siegel J., Hering S., Fahrner M., Romanin C., Heitz J. Dynamics of spreading and alignment of cells cultured in vitro on a grooved polymer surface. J. Nanomater. 2011;2011 doi: 10.1155/2011/413079. DOI
Estevez M.B., Raffaelli S., Mitchell S.G., Faccio R., Alborés S. Biofilm eradication using biogenic silver nanoparticles. Molecules. 2020;25:2023. doi: 10.3390/molecules25092023. PubMed DOI PMC
Liu Y., Shi L., Su L., van der Mei H.C., Jutte P.C., Ren Y., Busscher H.J. Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chem. Soc. Rev. 2019;48:428–446. doi: 10.1039/C7CS00807D. PubMed DOI
Fujii M. Fundamental correction of mie’s scattering theory for the analysis of the plasmonic resonance of a metal nanosphere. Phys. Rev. A. 2014;89:033805. doi: 10.1103/PhysRevA.89.033805. DOI
van de Hulst H.C. Light Scattering by Small Particles. 2nd ed. Dover Publications; New York, NY, USA: 1981. pp. 18–68.
Sumlin B.J., Heinson W.R., Chakrabarty R.K. Retrieving the aerosol complex refractive index using pymiescatt: A mie computational package with visualization capabilities. J. Quant. Spectros. Radiat. Transf. 2018;205:127–134. doi: 10.1016/j.jqsrt.2017.10.012. DOI
Stahrenberg K., Herrmann T., Wilmers K., Esser N., Richter W., Lee M.J.G. Optical properties of copper and silver in the energy range 2.5-9.0 ev. Phys. Rev. B. 2001;64:115111. doi: 10.1103/PhysRevB.64.115111. DOI
Zensen C., Villadsen N., Winterer F., Keiding S.R., Lohmueller T. Pushing nanoparticles with light—A femtonewton resolved measurement of optical scattering forces. Appl. Photonics. 2016;1:026102. doi: 10.1063/1.4945351. DOI
Marago O.M., Jones P.H., Gucciardi P.G., Volpe G., Ferrari A.C. Optical trapping and manipulation of nanostructures. Nat. Nanotechnol. 2013;8:807–819. doi: 10.1038/nnano.2013.208. PubMed DOI
Rajabpour A., Seif R., Arabha S., Heyhat M.M., Merabia S., Hassanali A. Thermal transport at a nanoparticle-water interface: A molecular dynamics and continuum modeling study. J. Chem. Phys. 2019;150:114701. doi: 10.1063/1.5084234. PubMed DOI
Merabia S., Shenogin S., Joly L., Keblinski P., Barrat J.-L. Heat transfer from nanoparticles: A corresponding state analysis. Proc. Natl. Acad. Sci. USA. 2009;106:15113–15118. doi: 10.1073/pnas.0901372106. PubMed DOI PMC
Hu M., Keblinski P., Schelling P.K. Kapitza conductance of silicon-amorphous polyethylene interfaces by molecular dynamics simulations. Phys. Rev. B. 2009;79:104305. doi: 10.1103/PhysRevB.79.104305. DOI
Ziade E., Goni M., Sato T., Czubarow P., Schmidt A.J. Thermal conductance of nanoscale langmuir-blodgett films. Appl. Phys. Lett. 2015;107:221603. doi: 10.1063/1.4937010. DOI
Putnam S.A., Cahill D.G., Ash B.J., Schadler L.S. High-precision thermal conductivity measurements as a probe of polymer/nanoparticle interfaces. J. Appl. Phys. 2003;94:6785–6788. doi: 10.1063/1.1619202. DOI
Sandell S., Maire J., Chavez-Angel E., Sotomayor Torres C.M., Kristiansen H., Zhang Z., He J. Enhancement of thermal boundary conductance of metal-polymer system. Nanomaterials. 2020;10:670. doi: 10.3390/nano10040670. PubMed DOI PMC
Kosky P., Balmer R., Keat W., Wise G. Mechanical Engineering. In: Kosky P., Balmer R., Keat W., Wise G., editors. Exploring Engineering. 3rd ed. Academic Press; Boston, FL, USA: 2013. pp. 259–281.
Surface Engineering of AgNPs-Decorated Polyetheretherketone
Bimetallic Nanowires on Laser-Patterned PEN as Promising Biomaterials