A New Promising Material for Biological Applications: Multilevel Physical Modification of AgNP-Decorated PEEK
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
38132977
PubMed Central
PMC10745567
DOI
10.3390/nano13243079
PII: nano13243079
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial properties, biocompatibility, immobilisation, nanostructures, physical modification, polyetheretherketone,
- Publikační typ
- časopisecké články MeSH
In the case of polymer medical devices, the surface design plays a crucial role in the contact with human tissue. The use of AgNPs as antibacterial agents is well known; however, there is still more to be investigated about their anchoring into the polymer surface. This study describes the changes in the surface morphology and behaviour in the biological environment of polyetheretherketone (PEEK) with immobilised AgNPs after different surface modifications. The initial composites were prepared by immobilising silver nanoparticles from a colloid solution in the upper surface layers of polyetheretherketone (PEEK). The prepared samples (Ag/PEEK) had a planar morphology and were further modified with a KrF laser, a GaN laser, and an Ar plasma. The samples were studied using the AFM method to visualise changes in surface morphology and obtain information on the height of the structures and other surface parameters. A comparative analysis of the nanoparticles and polymers was performed using FEG-SEM. The chemical composition of the surface of the samples and optical activity were studied using XPS and UV-Vis spectroscopy. Finally, drop plate antibacterial and cytotoxicity tests were performed to determine the role of Ag nanoparticles after modification and suitability of the surface, which are important for the use of the resulting composite in biomedical applications.
Zobrazit více v PubMed
Verma S., Sharma N., Kango S., Sharma S. Developments of PEEK (Polyetheretherketone) as a biomedical material: A focused review. Eur. Polym. J. 2021;147:110295. doi: 10.1016/j.eurpolymj.2021.110295. DOI
Najeeb S., Zafar M.S., Khurshid Z., Siddiqui F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J. Prosthodont. Res. 2016;60:12–19. doi: 10.1016/j.jpor.2015.10.001. PubMed DOI
Skirbutis G., Dzingutė A., Masiliūnaitė V., Šulcaitė G., Žilinskas J. A review of PEEK polymer’s properties and its use in prosthodontics. Stomatologija. 2017;19:19–23. PubMed
Cruz-Pacheco A.F., Muñoz-Castiblanco D.T., Cuaspud J.A.G., Paredes-Madrid L., Vargas C.A.P., Zambrano J.J.M., Gómez C.A.P. Coating of Polyetheretherketone Films with Silver Nanoparticles by a Simple Chemical Reduction Method and Their Antibacterial Activity. Coatings. 2019;9:91. doi: 10.3390/coatings9020091. DOI
Patrascu J.M., Nedelcu I.A., Sonmez M., Ficai D., Ficai A., Vasile B.S., Ungureanu C., Albu M.G., Andor B., Andronescu E., et al. Composite Scaffolds Based on Silver Nanoparticles for Biomedical Applications. J. Nanomater. 2015;2015:587989. doi: 10.1155/2015/587989. DOI
Hensel R.C., Braunger M.L., Oliveira B., Shimizu F.M., Oliveira O.N., Hillenkamp M., Riul A., Rodrigues V. Controlled Incorporation of Silver Nanoparticles into Layer-by-Layer Polymer Films for Reusable Electronic Tongues. ACS Appl. Nano Mater. 2021;4:14231–14240. doi: 10.1021/acsanm.1c03797. DOI
Cheng Y.-J., Zeiger D.N., Howarter J.A., Zhang X., Lin N.J., Antonucci J.M., Lin-Gibson S. In situ formation of silver nanoparticles in photocrosslinking polymers. J. Biomed. Mater. Res. Part B Appl. Biomater. 2011;97B:124–131. doi: 10.1002/jbm.b.31793. PubMed DOI
Siegel J., Vyhnálková B., Savenkova T., Pryjmaková J., Slepička P., Šlouf M., Hubáček T. Surface Engineering of AgNPs-Decorated Polyetheretherketone. Int. J. Mol. Sci. 2023;24:1432. doi: 10.3390/ijms24021432. PubMed DOI PMC
Novotna Z., Reznickova A., Rimpelova S., Vesely M., Kolska Z., Svorcik V. Tailoring of PEEK bioactivity for improved cell interaction: Plasma treatment in action. RSC Adv. 2015;5:41428–41436. doi: 10.1039/C5RA03861H. DOI
Csete M., Bor Z. Laser-induced periodic surface structure formation on polyethylene-terephthalate. Appl. Surf. Sci. 1998;133:5–16. doi: 10.1016/S0169-4332(98)00192-5. DOI
Al-Sharqi A., Apun K., Vincent M., Kanakaraju D., Bilung L.M. Enhancement of the Antibacterial Efficiency of Silver Nanoparticles against Gram-Positive and Gram-Negative Bacteria Using Blue Laser Light. Int. J. Photoenergy. 2019;2019:2528490. doi: 10.1155/2019/2528490. DOI
Al-Ogaidi M.A., Rasheed B.G. Rasheed, Enhancement of Antimicrobial Activity of Silver Nanoparticles Using Lasers. Lasers Manuf. Mater. Process. 2022;9:610–621. doi: 10.1007/s40516-022-00192-4. DOI
Al-Ogaidi M., Al-Ogaidi I. Investigation of the antibacterial activity of Gram positive and Gram negative bacteria by 405 nm laser and nanoparticles. Plant Arch. 2020;20:1136–1140.
Zendehnam A., Ghasemi J., Zendehnam A. Zendehnam, Employing cold atmospheric plasma (Ar, He) on Ag thin film and their influences on surface morphology and anti-bacterial activity of silver films for water treatment. Int. Nano Lett. 2018;8:157–164. doi: 10.1007/s40089-018-0240-8. DOI
Hosseini S., Madaeni S., Khodabakhshi A., Zendehnam A. Preparation and surface modification of PVC/SBR heterogeneous cation exchange membrane with silver nanoparticles by plasma treatment. J. Membr. Sci. 2010;365:438–446. doi: 10.1016/j.memsci.2010.09.043. DOI
Katouah H., El-Metwaly N.M. Plasma treatment toward electrically conductive and superhydrophobic cotton fibers by in situ preparation of polypyrrole and silver nanoparticles. React. Funct. Polym. 2021;159:104810. doi: 10.1016/j.reactfunctpolym.2021.104810. DOI
Zheng Z., Liu P., Zhang X., Xin J., Wang Y., Zou X., Mei X., Zhang S., Zhang S. Strategies to improve bioactive and antibacterial properties of polyetheretherketone (PEEK) for use as orthopedic implants. Mater. Today Bio. 2022;16:100402. doi: 10.1016/j.mtbio.2022.100402. PubMed DOI PMC
Ha S.-W., Hauert R., Ernst K.-H., Wintermantel E. Surface analysis of chemically-etched and plasma-treated polyetheretherketone (PEEK) for biomedical applications. Surf. Coatings Technol. 1997;96:293–299. doi: 10.1016/S0257-8972(97)00179-5. DOI
Jiang J., You D., Wang Q., Gao G. Novel fabrication and biological characterizations of AgNPs-decorated PEEK with gelatin functional nanocomposite to improve superior biomedical applications. J. Biomater. Sci. Polym. Ed. 2022;33:590–604. doi: 10.1080/09205063.2021.2004632. PubMed DOI
Deng L., Deng Y., Xie K. AgNPs-decorated 3D printed PEEK implant for infection control and bone repair. Colloids Surf. B Biointerfaces. 2017;160:483–492. doi: 10.1016/j.colsurfb.2017.09.061. PubMed DOI
Omrani M.M., Kumar H., Mohamed M.G.A., Golovin K., Milani A.S., Hadjizadeh A., Kim K. Polyether ether ketone surface modification with plasma and gelatin for enhancing cell attachment. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021;109:622–629. doi: 10.1002/jbm.b.34726. PubMed DOI
Siegel J., Kaimlová M., Vyhnálková B., Trelin A., Lyutakov O., Slepička P., Švorčík V., Veselý M., Vokatá B., Malinský P., et al. Optomechanical Processing of Silver Colloids: New Generation of Nanoparticle–Polymer Composites with Bactericidal Effect. Int. J. Mol. Sci. 2021;22:312. doi: 10.3390/ijms22010312. PubMed DOI PMC
Herigstad B., Hamilton M., Heersink J. How to optimize the drop plate method for enumerating bacteria. J. Microbiol. Methods. 2001;44:121–129. doi: 10.1016/S0167-7012(00)00241-4. PubMed DOI
Markossian S., Grossman A., Brimacombe K. Assay Guidance Manual. [(accessed on 9 August 2022)];2004 Available online: https://www.ncbi.nlm.nih.gov/books/NBK53196/
Pryjmaková J., Vokatá B., Slepička P., Siegel J. Laser-Processed PEN with Au Nanowires Array: A Biocompatibility Assessment. Int. J. Mol. Sci. 2022;23:10953. doi: 10.3390/ijms231810953. PubMed DOI PMC
Allen N.S. A study of the light absorption properties of polymer films using UV-visible derivative spectroscopy. Polym. Photochem. 1981;1:43–55. doi: 10.1016/0144-2880(81)90014-2. DOI
Fajstavr D., Slepička P., Švorčík V. LIPSS with gold nanoclusters prepared by combination of heat treatment and KrF exposure. Appl. Surf. Sci. 2019;465:919–928. doi: 10.1016/j.apsusc.2018.09.167. DOI
Bonse J., Gräf S. Maxwell Meets Marangoni—A Review of Theories on Laser-Induced Periodic Surface Structures. Laser Photon-Rev. 2020;14:2000215. doi: 10.1002/lpor.202000215. DOI
Elashnikov R., Lyutakov O., Ulbrich P., Svorcik V. Light-activated polymethylmethacrylate nanofibers with antibacterial activity. Mater. Sci. Eng. C. 2016;64:229–235. doi: 10.1016/j.msec.2016.03.047. PubMed DOI
Martínez-Hernández M.E., Sandúa X., Rivero P.J., Goicoechea J., Arregui F.J. Self-Referenced Optical Fiber Sensor Based on LSPR Generated by Gold and Silver Nanoparticles Embedded in Layer-by-Layer Nanostructured Coatings. Chemosensors. 2022;10:77. doi: 10.3390/chemosensors10020077. DOI
Cebe P., Chung S.Y., Hong S.-D. Effect of thermal history on mechanical properties of polyetheretherketone below the glass transition temperature. J. Appl. Polym. Sci. 1987;33:487–503. doi: 10.1002/app.1987.070330217. DOI
Ghods P., Isgor O., Brown J., Bensebaa F., Kingston D. XPS depth profiling study on the passive oxide film of carbon steel in saturated calcium hydroxide solution and the effect of chloride on the film properties. Appl. Surf. Sci. 2011;257:4669–4677. doi: 10.1016/j.apsusc.2010.12.120. DOI
Řezníčková A., Chaloupka A., Heitz J., Kolská Z., Švorčík V. Surface properties of polymers treated with F2 laser. Surf. Interface Anal. 2012;44:296–300. doi: 10.1002/sia.3801. DOI
Novotná Z., Rimpelová S., Juřík P., Veselý M., Kolská Z., Hubáček T., Borovec J., Švorčík V. Tuning Surface Chemistry of Polyetheretherketone by Gold Coating and Plasma Treatment. Nanoscale Res. Lett. 2017;12:424. doi: 10.1186/s11671-017-2182-x. PubMed DOI PMC
Zeng R., Rong M.Z., Zhang M.Q., Liang H.C., Zeng H.M. Laser ablation of polymer-based silver nanocomposites. Appl. Surf. Sci. 2002;187:239–247. doi: 10.1016/S0169-4332(01)00991-6. DOI
Kozioł R., Łapiński M., Syty P., Koszelow D., Sadowski W., Sienkiewicz J.E., Kościelska B. Evolution of Ag nanostructures created from thin films: UV–vis absorption and its theoretical predictions. Beilstein J. Nanotechnol. 2020;11:494–507. doi: 10.3762/bjnano.11.40. PubMed DOI PMC
Meškinis Š., Čiegis A., Vasiliauskas A., Šlapikas K., Gudaitis R., Yaremchuk I., Fitio V., Bobitski Y., Tamulevičius S. Annealing Effects on Structure and Optical Properties of Diamond-like Carbon Films Containing Silver. Nanoscale Res. Lett. 2016;11:146. doi: 10.1186/s11671-016-1362-4. PubMed DOI PMC
Nicolle L.E. Catheter associated urinary tract infections. Antimicrob. Resist. Infect. Control. 2014;3:23. doi: 10.1186/2047-2994-3-23. PubMed DOI PMC
Dadi N.C.T., Radochová B., Vargová J., Bujdáková H. Impact of Healthcare-Associated Infections Connected to Medical Devices—An Update. Microorganisms. 2021;9:2332. doi: 10.3390/microorganisms9112332. PubMed DOI PMC
Götz F. Staphylococcus and biofilms. Mol. Microbiol. 2002;43:1367–1378. doi: 10.1046/j.1365-2958.2002.02827.x. PubMed DOI
Kaimlová M., Nemogová I., Kolářová K., Slepička P., Švorčík V., Siegel J. Optimization of silver nanowire formation on laser processed PEN: Surface properties and antibacterial effects. Appl. Surf. Sci. 2019;473:516–526. doi: 10.1016/j.apsusc.2018.12.185. DOI
Cheung G.Y.C., Bae J.S., Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence. 2021;12:547–569. doi: 10.1080/21505594.2021.1878688. PubMed DOI PMC
Ning C., Wang X., Li L., Zhu Y., Li M., Yu P., Zhou L., Zhou Z., Chen J., Tan G., et al. Concentration Ranges of Antibacterial Cations for Showing the Highest Antibacterial Efficacy but the Least Cytotoxicity against Mammalian Cells: Implications for a New Antibacterial Mechanism. Chem. Res. Toxicol. 2015;28:1815–1822. doi: 10.1021/acs.chemrestox.5b00258. PubMed DOI PMC
Ross A.M., Jiang Z., Bastmeyer M., Lahann J. Physical Aspects of Cell Culture Substrates: Topography, Roughness, and Elasticity. Small. 2012;8:336–355. doi: 10.1002/smll.201100934. PubMed DOI
Polívková M., Štrublová V., Hubáček T., Rimpelová S., Švorčík V., Siegel J. Surface characterization and antibacterial response of silver nanowire arrays supported on laser-treated polyethylene naphthalate. Mater. Sci. Eng. C. 2017;72:512–518. doi: 10.1016/j.msec.2016.11.072. PubMed DOI