Laser-Processed PEN with Au Nanowires Array: A Biocompatibility Assessment
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-05506S
Czech Science Foundation
PubMed
36142868
PubMed Central
PMC9502133
DOI
10.3390/ijms231810953
PII: ijms231810953
Knihovny.cz E-zdroje
- Klíčová slova
- biocompatibility, gold nanowires, laser-treatment, nanocomposites, periodic structures,
- MeSH
- antibakteriální látky farmakologie MeSH
- Escherichia coli MeSH
- lasery MeSH
- lidé MeSH
- naftaleny MeSH
- nanodráty * chemie MeSH
- polyethyleny MeSH
- zlato chemie farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- naftaleny MeSH
- poly(ethylene naphthalate) MeSH Prohlížeč
- polyethyleny MeSH
- zlato MeSH
Although many noble metals are known for their antibacterial properties against the most common pathogens, such as Escherichia coli and Staphylococcus epidermidis, their effect on healthy cells can be toxic. For this reason, the choice of metals that preserve the antibacterial effect while being biocompatible with health cells is very important. This work aims to validate the effect of gold on the biocompatibility of Au/Ag nanowires, as assessed in our previous study. Polyethylene naphthalate (PEN) was treated with a KrF excimer laser to provide specific laser-induced periodic structures. Then, Au was deposited onto the modified PEN via a vacuum evaporation method. Atomic force microscopy and scanning electron microscopy revealed the dependence of the surface morphology on the incidence angle of the laser beam. A resazurin assay cytotoxicity test confirmed safety against healthy human cells and even cell proliferation was observed after 72 h of incubation. We have obtained satisfactory results, demonstrating that monometallic Au nanowires can be applied in biomedical applications and provide the biocompatibility of bimetallic Au/AgNWs.
Zobrazit více v PubMed
Daniel M.-C., Astruc D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004;104:293–346. doi: 10.1021/cr030698+. PubMed DOI
Shaw C.F. Gold-Based Therapeutic Agents. Chem. Rev. 1999;99:2589–2600. doi: 10.1021/cr980431o. PubMed DOI
Felson D.T., Anderson J.J., Meenan R.F. The comparative efficacy and toxicity of second-line drugs in rheumatoid arthritis. Results of two metaanalyses. Arthritis Rheumatol. 1990;33:1449–1461. doi: 10.1002/art.1780331001. PubMed DOI
Vollath D. Nanoparticles-Nanocomposites-Nanomaterials. WILEY-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2013. Optical properties; pp. 181–228.
Visaria R.K., Griffin R.J., Williams B.W., Ebbini E.S., Paciotti G.F., Song C.W., Bischof J.C. Enhancement of tumor thermal therapy using gold nanoparticle–assisted tumor necrosis factor-α delivery. Mol. Cancer Ther. 2006;5:1014–1020. doi: 10.1158/1535-7163.MCT-05-0381. PubMed DOI
El-Sayed I.H., Huang X., El-Sayed M.A. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 2006;239:129–135. doi: 10.1016/j.canlet.2005.07.035. PubMed DOI
Park J.-A., Kim H.-K., Kim J.-H., Jeong S.-W., Jung J.-C., Lee G.-H., Lee J., Chang Y., Kim T.-J. Gold nanoparticles functionalized by gadolinium–DTPA conjugate of cysteine as a multimodal bioimaging agent. Bioorg. Med. Chem. Lett. 2010;20:2287–2291. doi: 10.1016/j.bmcl.2010.02.002. PubMed DOI
Chuang Y.-C., Li J.-C., Chen S.-H., Liu T.-Y., Kuo C.-H., Huang W.-T., Lin C.-S. An optical biosensing platform for proteinase activity using gold nanoparticles. Biomaterials. 2010;31:6087–6095. doi: 10.1016/j.biomaterials.2010.04.026. PubMed DOI
Chen J., Wang D., Xi J., Au L., Siekkinen A., Warsen A., Li Z.Y., Zhang H., Xia Y., Li X. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett. 2007;7:1318–1322. doi: 10.1021/nl070345g. PubMed DOI PMC
Zharov V.P., Mercer K.E., Galitovskaya E.N., Smeltzer M.S. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys. J. 2006;90:619–627. doi: 10.1529/biophysj.105.061895. PubMed DOI PMC
Kim C.-k., Ghosh P., Rotello V.M. Multimodal drug delivery using gold nanoparticles. Nanoscale. 2009;1:61–67. doi: 10.1039/b9nr00112c. PubMed DOI
Chung E., Nam S.Y., Ricles L.M., Emelianov S.Y., Suggs L.J. Evaluation of gold nanotracers to track adipose-derived stem cells in a PEGylated fibrin gel for dermal tissue engineering applications. Int. J. Nanomed. 2013;8:325–336. doi: 10.2147/IJN.S36711. PubMed DOI PMC
Pryjmaková J., Kaimlová M., Hubáček T., Švorčík V., Siegel J. Nanostructured Materials for Artificial Tissue Replacements. Int. J. Mol. Sci. 2020;21:2521. doi: 10.3390/ijms21072521. PubMed DOI PMC
Orlando A., Colombo M., Prosperi D., Corsi F., Panariti A., Rivolta I., Masserini M., Cazzaniga E. Evaluation of gold nanoparticles biocompatibility: A multiparametric study on cultured endothelial cells and macrophages. J. Nanopart. Res. 2016;18:58. doi: 10.1007/s11051-016-3359-4. DOI
Suarasan S., Focsan M., Soritau O., Maniu D., Astilean S. One-pot, green synthesis of gold nanoparticles by gelatin and investigation of their biological effects on Osteoblast cells. Colloids Surf. B Biointerfaces. 2015;132:122–131. doi: 10.1016/j.colsurfb.2015.05.009. PubMed DOI
Lee S.J., Lee H.-J., Kim S.-Y., Seok J.M., Lee J.H., Kim W.D., Kwon I.K., Park S.-Y., Park S.A. In situ gold nanoparticle growth on polydopamine-coated 3D-printed scaffolds improves osteogenic differentiation for bone tissue engineering applications: In vitro and in vivo studies. Nanoscale. 2018;10:15447–15453. doi: 10.1039/C8NR04037K. PubMed DOI
Navaei A., Saini H., Christenson W., Sullivan R.T., Ros R., Nikkhah M. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs. Acta Biomater. 2016;41:133–146. doi: 10.1016/j.actbio.2016.05.027. PubMed DOI
Shevach M., Maoz B.M., Feiner R., Shapira A., Dvir T. Nanoengineering gold particle composite fibers for cardiac tissue engineering. J. Mater. Chem. B. 2013;1:5210–5217. doi: 10.1039/c3tb20584c. PubMed DOI
Shevach M., Fleischer S., Shapira A., Dvir T. Gold Nanoparticle-Decellularized Matrix Hybrids for Cardiac Tissue Engineering. Nano Lett. 2014;14:5792–5796. doi: 10.1021/nl502673m. PubMed DOI
Marambio-Jones C., Hoek E. A Review of the Antibacterial Effects of Silver Nanomaterials and Potential Implications for Human Health and the Environment. J. Nanopart. Res. 2010;12:1531–1551. doi: 10.1007/s11051-010-9900-y. DOI
Polívková M., Štrublová V., Hubáček T., Rimpelová S., Švorčík V., Siegel J. Surface characterization and antibacterial response of silver nanowire arrays supported on laser-treated polyethylene naphthalate. Mater. Sci. Eng. C. 2017;72:512–518. doi: 10.1016/j.msec.2016.11.072. PubMed DOI
Asharani P.V., Low Kah Mun G., Hande M.P., Valiyaveettil S. Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells. ACS Nano. 2009;3:279–290. doi: 10.1021/nn800596w. PubMed DOI
Yang L., Yan W., Wang H., Zhuang H., Zhang J. Shell thickness-dependent antibacterial activity and biocompatibility of gold@silver core–shell nanoparticles. RSC Adv. 2017;7:11355–11361. doi: 10.1039/C7RA00485K. DOI
Shankar S., Jaiswal L., Aparna R.S.L., Prasad R.G.S.V. Synthesis, characterization, in vitro biocompatibility, and antimicrobial activity of gold, silver and gold silver alloy nanoparticles prepared from Lansium domesticum fruit peel extract. Mater. Lett. 2014;137:75–78. doi: 10.1016/j.matlet.2014.08.122. DOI
Navya P.N., Madhyastha H., Madhyastha R., Nakajima Y., Maruyama M., Srinivas S.P., Jain D., Amin M.H., Bhargava S.K., Daima H.K. Single step formation of biocompatible bimetallic alloy nanoparticles of gold and silver using isonicotinylhydrazide. Mater. Sci. Eng. C. 2019;96:286–294. doi: 10.1016/j.msec.2018.11.024. PubMed DOI
Pryjmaková J., Kaimlová M., Vokatá B., Hubáček T., Slepička P., Švorčík V., Siegel J. Bimetallic Nanowires on Laser-Patterned PEN as Promising Biomaterials. Nanomaterials. 2021;11:2285. doi: 10.3390/nano11092285. PubMed DOI PMC
Csete M., Bor Z. Laser-induced periodic surface structure formation on polyethylene-terephthalate. Appl. Surf. Sci. 1998;133:5–16. doi: 10.1016/S0169-4332(98)00192-5. DOI
Ehrhardt M., Lai S., Lorenz P., Zimmer K. Guiding of LIPSS formation by excimer laser irradiation of pre-patterned polymer films for tailored hierarchical structures. Appl. Surf. Sci. 2020;506:144785. doi: 10.1016/j.apsusc.2019.144785. DOI
Rebollar E., Pérez S., Hernández J.J., Martín-Fabiani I., Rueda D.R., Ezquerra T.A., Castillejo M. Assessment and Formation Mechanism of Laser-Induced Periodic Surface Structures on Polymer Spin-Coated Films in Real and Reciprocal Space. Langmuir. 2011;27:5596–5606. doi: 10.1021/la200451c. PubMed DOI
Cui J., Nogales A., Ezquerra T.A., Rebollar E. Influence of substrate and film thickness on polymer LIPSS formation. Appl. Surf. Sci. 2017;394:125–131. doi: 10.1016/j.apsusc.2016.10.045. DOI
Slepička P., Neděla O., Sajdl P., Kolská Z., Švorčík V. Polyethylene naphthalate as an excellent candidate for ripple nanopatterning. Appl. Surf. Sci. 2013;285:885–892. doi: 10.1016/j.apsusc.2013.09.007. DOI
Slepicka P., Chaloupka A., Sajdl P., Heitz J., Hnatowicz V., Švorčík V. Angle dependent laser nanopatterning of poly(ethylene terephthalate) surfaces. Appl. Surf. Sci. 2011;257:6021–6025. doi: 10.1016/j.apsusc.2011.01.107. DOI
Belardini A., Larciprete M.C., Centini M., Fazio E., Sibilia C., Bertolotti M., Toma A., Chiappe D., Mongeot F.B.d. Tailored second harmonic generation from self-organized metal nano-wires arrays. Opt. Express. 2009;17:3603–3609. doi: 10.1364/OE.17.003603. PubMed DOI
Siegel J., Heitz J., Řezníčková A., Švorčík V. Preparation and characterization of fully separated gold nanowire arrays. Appl. Surf. Sci. 2013;264:443–447. doi: 10.1016/j.apsusc.2012.10.041. DOI
Polivkova M., Valova M., Rimpelova S., Slepicka P., Svorcik V., Siegel J. Pd nanowire coatings of laser-treated polyethylene naphthalate: Preparation, characterization and biological response. Express Polym. Lett. 2018;12:1039–1046. doi: 10.3144/expresspolymlett.2018.91. DOI
Kaimlová M., Nemogová I., Kolářová K., Slepička P., Švorčík V., Siegel J. Optimization of silver nanowire formation on laser processed PEN: Surface properties and antibacterial effects. Appl. Surf. Sci. 2019;473:516–526. doi: 10.1016/j.apsusc.2018.12.185. DOI
Bäuerle D. Laser Processing and Chemistry. 3rd ed. Springer; Berlin/Heidelberg, Germany; New York, NY, USA: 2000.
Pryjmaková J., Hryhoruk M., Veselý M., Slepička P., Švorčík V., Siegel J. Engineered Cu-PEN Composites at the Nanoscale: Preparation and Characterisation. Nanomaterials. 2022;12:1220. doi: 10.3390/nano12071220. PubMed DOI PMC
Murakami D., Jinnai H., Takahara A. Wetting Transition from the Cassie–Baxter State to the Wenzel State on Textured Polymer Surfaces. Langmuir. 2014;30:2061–2067. doi: 10.1021/la4049067. PubMed DOI
Pessková V., Kubies D., Hulejová H., Himmlová L. The influence of implant surface properties on cell adhesion and proliferation. J. Mater. Science. Mater. Med. 2007;18:465–473. doi: 10.1007/s10856-007-2006-0. PubMed DOI
Ross A.M., Jiang Z., Bastmeyer M., Lahann J. Physical aspects of cell culture substrates: Topography, roughness, and elasticity. Small. 2012;8:336–355. doi: 10.1002/smll.201100934. PubMed DOI
Ton-That C., Shard A.G., Bradley R.H. Thickness of Spin-Cast Polymer Thin Films Determined by Angle-Resolved XPS and AFM Tip-Scratch Methods. Langmuir. 2000;16:2281–2284. doi: 10.1021/la990605c. DOI
Markossian S., Grossman A., Brimacombe K. Assay Guidance Manual. [(accessed on 9 August 2022)]; Available online: https://www.ncbi.nlm.nih.gov/books/NBK53196/