Bimetallic Nanowires on Laser-Patterned PEN as Promising Biomaterials
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-05506S
Grantová Agentura České Republiky
PubMed
34578601
PubMed Central
PMC8472103
DOI
10.3390/nano11092285
PII: nano11092285
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial properties, bimetallic nanowires, biocompatibility, nanostructure, polymer, surface modification,
- Publikační typ
- časopisecké články MeSH
As inflammation frequently occurs after the implantation of a medical device, biocompatible, antibacterial materials must be used. Polymer-metal nanocomposites are promising materials. Here we prepared enhanced polyethylene naphthalate (PEN) using surface modification techniques and investigated its suitability for biomedical applications. The PEN was modified by a KrF laser forming periodic ripple patterns with specific surface characteristics. Next, Au/Ag nanowires were deposited onto the patterned PEN using vacuum evaporation. Atomic force microscopy confirmed that the surface morphology of the modified PEN changed accordingly with the incidence angle of the laser beam. Energy-dispersive X-ray spectroscopy showed that the distribution of the selected metals was dependent on the evaporation technique. Our bimetallic nanowires appear to be promising antibacterial agents due to the presence of antibacterial noble metals. The antibacterial effect of the prepared Au/Ag nanowires against E. coli and S. epidermidis was demonstrated using 24 h incubation with a drop plate test. Moreover, a WST-1 cytotoxicity test that was performed to determine the toxicity of the nanowires showed that the materials could be considered non-toxic. Collectively, these results suggest that prepared Au/Ag nanostructures are effective, biocompatible surface coatings for use in medical devices.
Zobrazit více v PubMed
Pryjmaková J., Kaimlová M., Hubáček T., Švorčík V., Siegel J. Nanostructured Materials for Artificial Tissue Replacements. Int. J. Mol. Sci. 2020;21:2521. doi: 10.3390/ijms21072521. PubMed DOI PMC
Slepička P., Siegel J., Lyutakov O., Kasálková N.S., Kolská Z., Bačáková L., Švorčík V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. doi: 10.1016/j.biotechadv.2017.12.011. PubMed DOI
Aderson J.M. Inflammatory Response to Implants. ASAIO J. 1988;34:101–107. doi: 10.1097/00002480-198804000-00005. PubMed DOI
Nicolle L.E. Catheter associated urinary tract infections. Antimicrob. Resist. Infect. Control. 2014;3:23. doi: 10.1186/2047-2994-3-23. PubMed DOI PMC
Pavithra D., Doble M. Biofilm formation, bacterial adhesion and host response on polymeric implants—Issues and prevention. Biomed. Mater. 2008;3:034003. doi: 10.1088/1748-6041/3/3/034003. PubMed DOI
Fisher L.E., Hook A.L., Ashraf W., Yousef A., Barrett D.A., Scurr D.J., Chen X., Smith E.F., Fay M., Parmenter C.D., et al. Biomaterial modification of urinary catheters with antimicrobials to give long-term broadspectrum antibiofilm activity. J. Control. Release. 2015;202:57–64. doi: 10.1016/j.jconrel.2015.01.037. PubMed DOI
Chellamani K.P., Balaji R.S., Sudharsan J. Antibacterial properties of allopathic drug loaded polycaprolactone nanomembrane. J. Acad. Ind. Res. 2013;2:341–344.
Muszanska A.K., Rochford E.T.J., Gruszka A., Bastian A.A., Busscher H.J., Norde W., Van Der Mei H.C., Herrmann A. Antiadhesive Polymer Brush Coating Functionalized with Antimicrobial and RGD Peptides to Reduce Biofilm Formation and Enhance Tissue Integration. Biomacromolecules. 2014;15:2019–2026. doi: 10.1021/bm500168s. PubMed DOI
Roe D., Karandikar B., Bonn-Savage N., Gibbins B., Roullet J.-B. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J. Antimicrob. Chemother. 2008;61:869–876. doi: 10.1093/jac/dkn034. PubMed DOI
Siegel J., Kaimlová M., Vyhnálková B., Trelin A., Lyutakov O., Slepička P., Švorčík V., Veselý M., Vokatá B., Malinský P., et al. Optomechanical Processing of Silver Colloids: New Generation of Nanoparticle-Polymer Composites with Bactericidal Effect. Int. J. Mol. Sci. 2020;22:312. doi: 10.3390/ijms22010312. PubMed DOI PMC
Riveiro A., Maçon A.L.B., Del Val J., Comesaña R., Pou J. Laser Surface Texturing of Polymers for Biomedical Applications. Front. Phys. 2018;6:16. doi: 10.3389/fphy.2018.00016. DOI
Allen N.S. A study of the light absorption properties of polymer films using UV-visible derivative spectroscopy. Polym. Photochem. 1981;1:43–55. doi: 10.1016/0144-2880(81)90014-2. DOI
Michaljaničová I., Slepička P., Rimpelova S., Kasálková N.S., Švorčík V. Regular pattern formation on surface of aromatic polymers and its cytocompatibility. Appl. Surf. Sci. 2016;370:131–141. doi: 10.1016/j.apsusc.2016.02.160. DOI
Barb R.-A., Hrelescu C., Dong L., Heitz J., Siegel J., Slepička P., Vosmanská V., Svorcik V., Magnus B., Marksteiner R., et al. Laser-induced periodic surface structures on polymers for formation of gold nanowires and activation of human cells. Appl. Phys. A. 2014;117:295–300. doi: 10.1007/s00339-013-8219-9. DOI
Siegel J., Slepička P., Heitz J., Kolská Z., Sajdl P., Švorčík V. Gold nano-wires and nano-layers at laser-induced nano-ripples on PET. Appl. Surf. Sci. 2010;256:2205–2209. doi: 10.1016/j.apsusc.2009.09.074. DOI
Kaimlová M., Nemogová I., Kolarova K., Slepička P., Švorčík V., Siegel J. Optimization of silver nanowire formation on laser processed PEN: Surface properties and antibacterial effects. Appl. Surf. Sci. 2019;473:516–526. doi: 10.1016/j.apsusc.2018.12.185. DOI
Suarasan S., Focsan M., Soritau O., Maniu D., Astilean S. One-pot, green synthesis of gold nanoparticles by gelatin and investigation of their biological effects on Osteoblast cells. Colloids Surf. B Biointerfaces. 2015;132:122–131. doi: 10.1016/j.colsurfb.2015.05.009. PubMed DOI
Ko W.-K., Heo D.N., Moon H.-J., Lee S.J., Bae M.S., Lee J.B., Sun I.-C., Jeon H.B., Park H.K., Kwon I.K. The effect of gold nanoparticle size on osteogenic differentiation of adipose-derived stem cells. J. Colloid Interface Sci. 2015;438:68–76. doi: 10.1016/j.jcis.2014.08.058. PubMed DOI
Peterbauer T., Yakunin S., Siegel J., Hering S., Fahrner M., Romanin C., Heitz J. Dynamics of Spreading and Alignment of Cells Cultured In Vitro on a Grooved Polymer Surface. J. Nanomater. 2011;2011:413079. doi: 10.1155/2011/413079. DOI
Crabtree J.H., Burchette R.J., ASiddiqi R., Huen I.T., Hadnott L.L., Fishman A. The efficacy of silver-ion implanted catheters in reducing peritoneal dialysis-related infections. Perit. Dial. Int. 2003;23:368–374. PubMed
Guo L., Yuan W., Lu Z., Li C. Polymer/nanosilver composite coatings for antibacterial applications. Colloids Surf. A Physicochem. Eng. Asp. 2013;439:69–83. doi: 10.1016/j.colsurfa.2012.12.029. DOI
Mahmoodi S., Elmi A., Nezhadi S.H. Copper Nanoparticles as Antibacterial Agents. J. Mol. Pharm. Org. Process. Res. 2018;6:1–7. doi: 10.4172/2329-9053.1000140. DOI
Panacek A., Kvitek L., Prucek R., Kolar M., Vecerova R., Pizurova N., Sharma V.K., Nevecna T., Zboril R. Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B. 2006;110:16248–16253. doi: 10.1021/jp063826h. PubMed DOI
Zhang Y., Dasari T.P.S., Deng H., Yu H. Antimicrobial Activity of Gold Nanoparticles and Ionic Gold. J. Environ. Sci. Heath Part C. 2015;33:286–327. doi: 10.1080/10590501.2015.1055161. PubMed DOI
Braydich-Stolle L., Hussain S., Schlager J.J., Hofmann M.-C. In Vitro Cytotoxicity of Nanoparticles in Mammalian Germline Stem Cells. Toxicol. Sci. 2005;88:412–419. doi: 10.1093/toxsci/kfi256. PubMed DOI PMC
Asharani P.V., Mun G.L.K., Hande M.P., Valiyaveettil S. Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells. ACS Nano. 2009;3:279–290. doi: 10.1021/nn800596w. PubMed DOI
Polívková M., Štrublová V., Hubáček T., Rimpelová S., Švorčík V., Siegel J. Surface characterization and antibacterial response of silver nanowire arrays supported on laser-treated polyethylene naphthalate. Mater. Sci. Eng. C. 2017;72:512–518. doi: 10.1016/j.msec.2016.11.072. PubMed DOI
Ton-That C., Shard A., Bradley R.H. Thickness of Spin-Cast Polymer Thin Films Determined by Angle-Resolved XPS and AFM Tip-Scratch Methods. Langmuir. 2000;16:2281–2284. doi: 10.1021/la990605c. DOI
Herigstad B., Hamilton M., Heersink J. How to optimize the drop plate method for enumerating bacteria. J. Microbiol. Methods. 2001;44:121–129. doi: 10.1016/S0167-7012(00)00241-4. PubMed DOI
Novotna Z., Reznickova A., Rimpelova S., Vesely M., Kolska Z., Svorcik V. Tailoring of PEEK bioactivity for improved cell interaction: Plasma treatment in action. RSC Adv. 2015;5:41428–41436. doi: 10.1039/C5RA03861H. DOI
Slepička P., Nedela O., Siegel J., Krajcar R., Kolska Z., Svorcik V. Ripple polystyrene nano-pattern induced by KrF laser. Express Polym. Lett. 2014;8:459–466. doi: 10.3144/expresspolymlett.2014.50. DOI
Slepička P., Chaloupka A., Sajdl P., Heitz J., Hnatowicz V., Švorčík V. Angle dependent laser nanopatterning of poly (ethylene terephthalate) surfaces. Appl. Surf. Sci. 2011;257:6021–6025. doi: 10.1016/j.apsusc.2011.01.107. DOI
Bäuerle D. Laser Processing and Chemistry. 3rd ed. Springer-Verlag; Berlin/Heidelberg, Germany: New York, NY, USA: 2000.
Csete M., Bor Z. Laser-induced periodic surface structure formation on polyethylene-terephthalate. Appl. Surf. Sci. 1998;133:5–16. doi: 10.1016/S0169-4332(98)00192-5. DOI
Belardini A., Larciprete M.C., Centini M., Fazio E., Sibilia C., Bertolotti M., Toma A., Chiappe D., De Mongeot F.B. Tailored second harmonic generation from self-organized metal nano-wires arrays. Opt. Express. 2009;17:3603–3609. doi: 10.1364/OE.17.003603. PubMed DOI
Tyler B.J., Castner D.G., Ratner B.D. Regularization: A stable and accurate method for generating depth profiles from angle-dependent XPS data. Surf. Interface Anal. 1989;14:443–450. doi: 10.1002/sia.740140804. DOI
Vollath D. Nanoparticles-Nanocomposites-Nanomaterials: An Introduction for Beginners. WILEY-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2013. Optical properties; pp. 181–228.
Gunawidjaja R., Kharlampieva E., Choi I., Tsukruk V.V. Bimetallic Nanostructures as Active Raman Markers: Gold-Nanoparticle Assembly on 1D and 2D Silver Nanostructure Surfaces. Small. 2009;5:2460–2466. doi: 10.1002/smll.200900688. PubMed DOI
Joo H.-Y., Kim H.J., Kim S.J., Kim S.Y. Spectrophotometric analysis of aluminum nitride thin films. J. Vac. Sci. Technol. A. 1999;17:862–870. doi: 10.1116/1.582035. DOI
Murakami D., Jinnai H., Takahara A. Wetting Transition from the Cassie-Baxter State to the Wenzel State on Textured Polymer Surfaces. Langmuir. 2014;30:2061–2067. doi: 10.1021/la4049067. PubMed DOI
Chernousova S., Epple M. Silver as Antibacterial Agent: Ion, Nanoparticle, and Metal. Angew. Chem. Int. Ed. 2013;52:1636–1653. doi: 10.1002/anie.201205923. PubMed DOI
Siegel J., Polívková M., Staszek M., Kolarova K., Rimpelova S., Švorčík V. Nanostructured silver coatings on polyimide and their antibacterial response. Mater. Lett. 2015;145:87–90. doi: 10.1016/j.matlet.2015.01.050. DOI
Chen M., Yu Q., Sun H. Novel Strategies for the Prevention and Treatment of Biofilm Related Infections. Int. J. Mol. Sci. 2013;14:18488–18501. doi: 10.3390/ijms140918488. PubMed DOI PMC
PeŠŠková V., Kubies D., Hulejová H., Himmlová L. The influence of implant surface properties on cell adhesion and proliferation. J. Mater. Sci. Mater. Med. 2007;18:465–473. doi: 10.1007/s10856-007-2006-0. PubMed DOI
Ross A.M., Jiang Z., Bastmeyer M., Lahann J. Physical Aspects of Cell Culture Substrates: Topography, Roughness, and Elasticity. Small. 2012;8:336–355. doi: 10.1002/smll.201100934. PubMed DOI
Marambio-Jones C., Hoek E.M.V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanoparticle Res. 2010;12:1531–1551. doi: 10.1007/s11051-010-9900-y. DOI
Jung D., Minami I., Patel S., Lee J., Jiang B., Yuan Q., Li L., Kobayashi S., Chen Y., Lee K.-B., et al. Incorporation of functionalized gold nanoparticles into nanofibers for enhanced attachment and differentiation of mammalian cells. J. Nanobiotechnol. 2012;10:1–10. doi: 10.1186/1477-3155-10-23. PubMed DOI PMC
Laser-Processed PEN with Au Nanowires Array: A Biocompatibility Assessment
Engineered Cu-PEN Composites at the Nanoscale: Preparation and Characterisation