Engineered Cu-PEN Composites at the Nanoscale: Preparation and Characterisation

. 2022 Apr 05 ; 12 (7) : . [epub] 20220405

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35407337

Grantová podpora
21-05506S Czech Science Foundation

As polymeric materials are already used in many industries, the range of their applications is constantly expanding. Therefore, their preparation procedures and the resulting properties require considerable attention. In this work, we designed the surface of polyethylene naphthalate (PEN) introducing copper nanowires. The surface of PEN was transformed into coherent ripple patterns by treatment with a KrF excimer laser. Then, Cu deposition onto nanostructured surfaces by a vacuum evaporation technique was accomplished, giving rise to nanowires. The morphology of the prepared structures was investigated by atomic force microscopy and scanning electron microscopy. Energy dispersive spectroscopy and X-ray photoelectron spectroscopy revealed the distribution of Cu in the nanowires and their gradual oxidation. The optical properties of the Cu nanowires were measured by UV-Vis spectroscopy. The sessile drop method revealed the hydrophobic character of the Cu/PEN surface, which is important for further studies of biological responses. Our study suggests that a combination of laser surface texturing and vacuum evaporation can be an effective and simple method for the preparation of a Cu/polymer nanocomposite with potential exploitation in bioapplications; however, it should be borne in mind that significant post-deposition oxidation of the Cu nanowire occurs, which may open up new strategies for further biological applications.

Zobrazit více v PubMed

Li X., Wang Y., Yin C., Yin Z. Copper nanowires in recent electronic applications: Progress and perspectives. J. Mater. Chem. C. 2020;8:849–872. doi: 10.1039/C9TC04744A. DOI

Andra S., Balu S.k., Jeevanandam J., Muthalagu M. Emerging nanomaterials for antibacterial textile fabrication. Naunyn-Schmiedeberg Arch. Pharmacol. 2021;394:1355–1382. doi: 10.1007/s00210-021-02064-8. PubMed DOI

Dehhaghi M., Tabatabaei M., Aghbashlo M., Kazemi Shariat Panahi H., Nizami A.-S. A state-of-the-art review on the application of nanomaterials for enhancing biogas production. J. Environ. Manag. 2019;251:109597. doi: 10.1016/j.jenvman.2019.109597. PubMed DOI

Jacob J., Haponiuk J.T., Thomas S., Gopi S. Biopolymer based nanomaterials in drug delivery systems: A review. Mater. Today Chem. 2018;9:43–55. doi: 10.1016/j.mtchem.2018.05.002. DOI

Lu Y., Li L., Zhu Y., Wang X., Li M., Lin Z., Hu X., Zhang Y., Yin Q., Xia H., et al. Multifunctional Copper-Containing Carboxymethyl Chitosan/Alginate Scaffolds for Eradicating Clinical Bacterial Infection and Promoting Bone Formation. ACS Appl. Mater. Interfaces. 2018;10:127–138. doi: 10.1021/acsami.7b13750. PubMed DOI PMC

Siddique S., Chow J.C.L. Application of Nanomaterials in Biomedical Imaging and Cancer Therapy. Nanomaterials. 2020;10:1700. doi: 10.3390/nano10091700. PubMed DOI PMC

Saleem H., Zaidi S.J. Recent Developments in the Application of Nanomaterials in Agroecosystems. Nanomaterials. 2020;10:2411. doi: 10.3390/nano10122411. PubMed DOI PMC

Saleem H., Zaidi S.J. Developments in the Application of Nanomaterials for Water Treatment and Their Impact on the Environment. Nanomaterials. 2020;10:1764. doi: 10.3390/nano10091764. PubMed DOI PMC

Siegel J., Polívková M., Staszek M., Kolářová K., Rimpelová S., Švorčík V. Nanostructured silver coatings on polyimide and their antibacterial response. Mater. Lett. 2015;145:87–90. doi: 10.1016/j.matlet.2015.01.050. DOI

Yılmaz K., Şakalak H., Gürsoy M., Karaman M. Initiated Chemical Vapor Deposition of Poly (Ethylhexyl Acrylate) Films in a Large-Scale Batch Reactor. Ind. Eng. Chem. Res. 2019;58:14795–14801. doi: 10.1021/acs.iecr.9b02213. DOI

Zhang J., Yu X., Li H., Liu X. Surface modification of polytetrafluoroethylene by nitrogen ion implantation. Appl. Surf. Sci. 2002;185:255–261. doi: 10.1016/S0169-4332(01)00824-8. DOI

da Rocha Rodrigues R., da Silva R.L.C.G., Caseli L., Péres L.O. Conjugated polymers as Langmuir and Langmuir-Blodgett films: Challenges and applications in nanostructured devices. Adv. Colloid Interface Sci. 2020;285:102277. doi: 10.1016/j.cis.2020.102277. PubMed DOI

Švorčík V., Kolářová K., Slepička P., Macková A., Novotná M., Hnatowicz V. Modification of surface properties of high and low density polyethylene by Ar plasma discharge. Polym. Degrad. Stab. 2006;91:1219–1225. doi: 10.1016/j.polymdegradstab.2005.09.007. DOI

Csete M., Bor Z. Laser-induced periodic surface structure formation on polyethylene-terephthalate. Appl. Surf. Sci. 1998;133:5–16. doi: 10.1016/S0169-4332(98)00192-5. DOI

Siegel J., Grossberger D., Pryjmaková J., Šlouf M., Švorčík V. Laser-Promoted Immobilization of Ag Nanoparticles: Effect of Surface Morphology of Poly(ethylene terephthalate) Nanomaterials. 2022;12:792. doi: 10.3390/nano12050792. PubMed DOI PMC

Villermaux F., Tabrizian M., Yahia L.H., Meunier M., Piron D.L. Excimer laser treatment of NiTi shape memory alloy biomaterials. Appl. Surf. Sci. 1997;109-110:62–66. doi: 10.1016/S0169-4332(96)00619-8. DOI

Cheang P., Khor K.A., Teoh L.L., Tam S.C. Pulsed laser treatment of plasma-sprayed hydroxyapatite coatings. Biomaterials. 1996;17:1901–1904. doi: 10.1016/0142-9612(95)00146-8. PubMed DOI

Riveiro A., Maçon A.L.B., del Val J., Comesaña R., Pou J. Laser Surface Texturing of Polymers for Biomedical Applications. Front. Phys. 2018;6:1–17. doi: 10.3389/fphy.2018.00016. DOI

Siegel J., Šuláková P., Kaimlová M., Švorčík V., Hubáček T. Underwater Laser Treatment of PET: Effect of Processing Parameters on Surface Morphology and Chemistry. Appl. Sci. 2018;8:2389. doi: 10.3390/app8122389. DOI

Slepicka P. Ripple polystyrene nano-pattern induced by KrF laser. Express Polym. Lett. 2014;8:459–466. doi: 10.3144/expresspolymlett.2014.50. DOI

Slepička P., Chaloupka A., Sajdl P., Heitz J., Hnatowicz V., Švorčík V. Angle dependent laser nanopatterning of poly(ethylene terephthalate) surfaces. Appl. Surf. Sci. 2011;257:6021–6025. doi: 10.1016/j.apsusc.2011.01.107. DOI

Siegel J., Heitz J., Řezníčková A., Švorčík V. Preparation and characterization of fully separated gold nanowire arrays. Appl. Surf. Sci. 2013;264:443–447. doi: 10.1016/j.apsusc.2012.10.041. DOI

Polívková M., Štrublová V., Hubáček T., Rimpelová S., Švorčík V., Siegel J. Surface characterization and antibacterial response of silver nanowire arrays supported on laser-treated polyethylene naphthalate. Mater. Sci. Eng. C. 2017;72:512–518. doi: 10.1016/j.msec.2016.11.072. PubMed DOI

Pryjmaková J., Kaimlová M., Vokatá B., Hubáček T., Slepička P., Švorčík V., Siegel J. Bimetallic Nanowires on Laser-Patterned PEN as Promising Biomaterials. Nanomaterials. 2021;11:2285. doi: 10.3390/nano11092285. PubMed DOI PMC

Yu S., Lee J.-W., Han T.H., Park C., Kwon Y., Hong S.M., Koo C.M. Copper Shell Networks in Polymer Composites for Efficient Thermal Conduction. ACS Appl. Mater. Interfaces. 2013;5:11618–11622. doi: 10.1021/am4030406. PubMed DOI

Li N., Fu Y., Lu Q., Xiao C. Microstructure and Performance of a Porous Polymer Membrane with a Copper Nano-Layer Using Vapor-Induced Phase Separation Combined with Magnetron Sputtering. Polymers. 2017;9:524. doi: 10.3390/polym9100524. PubMed DOI PMC

Song J., Li J., Xu J., Zeng H. Superstable Transparent Conductive Cu@Cu4Ni Nanowire Elastomer Composites against Oxidation, Bending, Stretching, and Twisting for Flexible and Stretchable Optoelectronics. Nano Lett. 2014;14:6298–6305. doi: 10.1021/nl502647k. PubMed DOI

Long J., Zhong M., Fan P., Gong D., Zhang H. Wettability conversion of ultrafast laser structured copper surface. J. Laser Appl. 2015;27:S29107. doi: 10.2351/1.4906477. DOI

Saravanakumar K., Sathiyaseelan A., Mariadoss A.V.A., Xiaowen H., Wang M.-H. Physical and bioactivities of biopolymeric films incorporated with cellulose, sodium alginate and copper oxide nanoparticles for food packaging application. Int. J. Biol. Macromol. 2020;153:207–214. doi: 10.1016/j.ijbiomac.2020.02.250. PubMed DOI

Efatian H., Ahari H., Shahbazzadeh D., Nowruzi B., Yousefi S. Fabrication and characterization of LDPE/silver-copper/titanium dioxide nanocomposite films for application in Nile Tilapia (Oreochromis niloticus) packaging. J. Food Meas. Charact. 2021;15:2430–2439. doi: 10.1007/s11694-021-00836-7. DOI

Yang Y., Huang Q., Payne G.F., Sun R., Wang X. A highly conductive, pliable and foldable Cu/cellulose paper electrode enabled by controlled deposition of copper nanoparticles. Nanoscale. 2019;11:725–732. doi: 10.1039/C8NR07123C. PubMed DOI

Zhou Y., Wu S., Liu F. High-performance polyimide nanocomposites with polydopamine-coated copper nanoparticles and nanowires for electronic applications. Mater. Lett. 2019;237:19–21. doi: 10.1016/j.matlet.2018.11.067. DOI

Addou F., Duguet T., Ledru Y., Mesnier D., Vahlas C. Engineering Copper Adhesion on Poly-Epoxy Surfaces Allows One-Pot Metallization of Polymer Composite Telecommunication Waveguides. Coatings. 2021;11:50. doi: 10.3390/coatings11010050. DOI

Stewart I.E., Rathmell A.R., Yan L., Ye S., Flowers P.F., You W., Wiley B.J. Solution-processed copper–nickel nanowire anodes for organic solar cells. Nanoscale. 2014;6:5980–5988. doi: 10.1039/c4nr01024h. PubMed DOI

Chakraborty R., Basu T. Metallic copper nanoparticles induce apoptosis in a human skin melanoma A-375 cell line. Nanotechnology. 2017;28:105101. doi: 10.1088/1361-6528/aa57b0. PubMed DOI

Li K.-C., Chu H.-C., Lin Y., Tuan H.-Y., Hu Y.-C. PEGylated Copper Nanowires as a Novel Photothermal Therapy Agent. ACS Appl. Mater. Interfaces. 2016;8:12082–12090. doi: 10.1021/acsami.6b04579. PubMed DOI

Xu C., Chen J., Li L., Pu X., Chu X., Wang X., Li M., Lu Y., Zheng X. Promotion of chondrogenic differentiation of mesenchymal stem cells by copper: Implications for new cartilage repair biomaterials. Mater. Sci. Eng. C. 2018;93:106–114. doi: 10.1016/j.msec.2018.07.074. PubMed DOI

Zhu Y., Hartel M.C., Yu N., Garrido P.R., Kim S., Lee J., Bandaru P., Guan S., Lin H., Emaminejad S., et al. Epidermis-Inspired Wearable Piezoresistive Pressure Sensors Using Reduced Graphene Oxide Self-Wrapped Copper Nanowire Networks. Small Methods. 2022;6:2100900. doi: 10.1002/smtd.202100900. PubMed DOI PMC

Kaimlová M., Nemogová I., Kolářová K., Slepička P., Švorčík V., Siegel J. Optimization of silver nanowire formation on laser processed PEN: Surface properties and antibacterial effects. Appl. Surf. Sci. 2019;473:516–526. doi: 10.1016/j.apsusc.2018.12.185. DOI

Ton-That C., Shard A.G., Bradley R.H. Thickness of Spin-Cast Polymer Thin Films Determined by Angle-Resolved XPS and AFM Tip-Scratch Methods. Langmuir. 2000;16:2281–2284. doi: 10.1021/la990605c. DOI

Siegel J., Heitz J., Švorčík V. Self-organized gold nanostructures on laser patterned PET. Surf. Coat. Technol. 2011;206:517–521. doi: 10.1016/j.surfcoat.2011.07.080. DOI

Belardini A., Larciprete M.C., Centini M., Fazio E., Sibilia C., Bertolotti M., Toma A., Chiappe D., Mongeot F.B.d. Tailored second harmonic generation from self-organized metal nano-wires arrays. Opt. Express. 2009;17:3603–3609. doi: 10.1364/OE.17.003603. PubMed DOI

Tyler B.J., Castner D.G., Ratner B.D. Regularization: A stable and accurate method for generating depth profiles from angle-dependent XPS data. Surf. Interface Anal. 1989;14:443–450. doi: 10.1002/sia.740140804. DOI

Laurens P., Ould Bouali M., Meducin F., Sadras B. Characterization of modifications of polymer surfaces after excimer laser treatments below the ablation threshold. Appl. Surf. Sci. 2000;154–155:211–216. doi: 10.1016/S0169-4332(99)00443-2. DOI

Allen N.S. A study of the light absorption properties of polymer films using UV-visible derivative spectroscopy. Polym. Photochem. 1981;1:43–55. doi: 10.1016/0144-2880(81)90014-2. DOI

Molokanova L.G., Kochnev Y.K., Nechaev A.N., Chukova S.N., Apel P.Y. Effect of ultraviolet radiation on polyethylene naphthalate films irradiated with high-energy heavy ions. High Energy Chem. 2017;51:182–188. doi: 10.1134/S0018143917030109. DOI

Lotey G.S., Kumar S., Verma N.K. Fabrication and electrical characterization of highly ordered copper nanowires. Appl. Nanosci. 2012;2:7–13. doi: 10.1007/s13204-011-0034-z. DOI

Julkarnain M., Mondal A., Rahman M.M., Rana M. Preparation and Properties of Chemically Reduced Cu and Ag Nanoparticles; Proceedings of the International Conference on Mechanical, Industrial and Materials Engineering; Rajshahi, Bangladesh. 1–3 November 2013.

Chen L., Wang S.-Y., Xiang X., Tao W.-Q. Mechanism of surface nanostructure changing wettability: A molecular dynamics simulation. Comput. Mater. Sci. 2020;171:109223. doi: 10.1016/j.commatsci.2019.109223. DOI

Murakami D., Jinnai H., Takahara A. Wetting Transition from the Cassie–Baxter State to the Wenzel State on Textured Polymer Surfaces. Langmuir. 2014;30:2061–2067. doi: 10.1021/la4049067. PubMed DOI

Ren G., Hu D., Cheng E.W.C., Vargas-Reus M.A., Reip P., Allaker R.P. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents. 2009;33:587–590. doi: 10.1016/j.ijantimicag.2008.12.004. PubMed DOI

Ahamed M., Alhadlaq H.A., Khan M.A.M., Karuppiah P., Al-Dhabi N.A. Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J. Nanomater. 2014;2014:17. doi: 10.1155/2014/637858. DOI

Ali A., Ershad M., Vyas V.K., Hira S.K., Manna P.P., Singh B.N., Yadav S., Srivastava P., Singh S.P., Pyare R. Studies on effect of CuO addition on mechanical properties and in vitro cytocompatibility in 1393 bioactive glass scaffold. Mater. Sci. Eng. C. 2018;93:341–355. doi: 10.1016/j.msec.2018.08.003. PubMed DOI

Tran C.D., Makuvaza J., Munson E., Bennett B. Biocompatible Copper Oxide Nanoparticle Composites from Cellulose and Chitosan: Facile Synthesis, Unique Structure, and Antimicrobial Activity. ACS Appl. Mater. Interfaces. 2017;9:42503–42515. doi: 10.1021/acsami.7b11969. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace