Engineered Cu-PEN Composites at the Nanoscale: Preparation and Characterisation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-05506S
Czech Science Foundation
PubMed
35407337
PubMed Central
PMC9000622
DOI
10.3390/nano12071220
PII: nano12071220
Knihovny.cz E-zdroje
- Klíčová slova
- laser treatment, nanocomposites, nanostructured polymer, nanowires, periodic structures,
- Publikační typ
- časopisecké články MeSH
As polymeric materials are already used in many industries, the range of their applications is constantly expanding. Therefore, their preparation procedures and the resulting properties require considerable attention. In this work, we designed the surface of polyethylene naphthalate (PEN) introducing copper nanowires. The surface of PEN was transformed into coherent ripple patterns by treatment with a KrF excimer laser. Then, Cu deposition onto nanostructured surfaces by a vacuum evaporation technique was accomplished, giving rise to nanowires. The morphology of the prepared structures was investigated by atomic force microscopy and scanning electron microscopy. Energy dispersive spectroscopy and X-ray photoelectron spectroscopy revealed the distribution of Cu in the nanowires and their gradual oxidation. The optical properties of the Cu nanowires were measured by UV-Vis spectroscopy. The sessile drop method revealed the hydrophobic character of the Cu/PEN surface, which is important for further studies of biological responses. Our study suggests that a combination of laser surface texturing and vacuum evaporation can be an effective and simple method for the preparation of a Cu/polymer nanocomposite with potential exploitation in bioapplications; however, it should be borne in mind that significant post-deposition oxidation of the Cu nanowire occurs, which may open up new strategies for further biological applications.
Zobrazit více v PubMed
Li X., Wang Y., Yin C., Yin Z. Copper nanowires in recent electronic applications: Progress and perspectives. J. Mater. Chem. C. 2020;8:849–872. doi: 10.1039/C9TC04744A. DOI
Andra S., Balu S.k., Jeevanandam J., Muthalagu M. Emerging nanomaterials for antibacterial textile fabrication. Naunyn-Schmiedeberg Arch. Pharmacol. 2021;394:1355–1382. doi: 10.1007/s00210-021-02064-8. PubMed DOI
Dehhaghi M., Tabatabaei M., Aghbashlo M., Kazemi Shariat Panahi H., Nizami A.-S. A state-of-the-art review on the application of nanomaterials for enhancing biogas production. J. Environ. Manag. 2019;251:109597. doi: 10.1016/j.jenvman.2019.109597. PubMed DOI
Jacob J., Haponiuk J.T., Thomas S., Gopi S. Biopolymer based nanomaterials in drug delivery systems: A review. Mater. Today Chem. 2018;9:43–55. doi: 10.1016/j.mtchem.2018.05.002. DOI
Lu Y., Li L., Zhu Y., Wang X., Li M., Lin Z., Hu X., Zhang Y., Yin Q., Xia H., et al. Multifunctional Copper-Containing Carboxymethyl Chitosan/Alginate Scaffolds for Eradicating Clinical Bacterial Infection and Promoting Bone Formation. ACS Appl. Mater. Interfaces. 2018;10:127–138. doi: 10.1021/acsami.7b13750. PubMed DOI PMC
Siddique S., Chow J.C.L. Application of Nanomaterials in Biomedical Imaging and Cancer Therapy. Nanomaterials. 2020;10:1700. doi: 10.3390/nano10091700. PubMed DOI PMC
Saleem H., Zaidi S.J. Recent Developments in the Application of Nanomaterials in Agroecosystems. Nanomaterials. 2020;10:2411. doi: 10.3390/nano10122411. PubMed DOI PMC
Saleem H., Zaidi S.J. Developments in the Application of Nanomaterials for Water Treatment and Their Impact on the Environment. Nanomaterials. 2020;10:1764. doi: 10.3390/nano10091764. PubMed DOI PMC
Siegel J., Polívková M., Staszek M., Kolářová K., Rimpelová S., Švorčík V. Nanostructured silver coatings on polyimide and their antibacterial response. Mater. Lett. 2015;145:87–90. doi: 10.1016/j.matlet.2015.01.050. DOI
Yılmaz K., Şakalak H., Gürsoy M., Karaman M. Initiated Chemical Vapor Deposition of Poly (Ethylhexyl Acrylate) Films in a Large-Scale Batch Reactor. Ind. Eng. Chem. Res. 2019;58:14795–14801. doi: 10.1021/acs.iecr.9b02213. DOI
Zhang J., Yu X., Li H., Liu X. Surface modification of polytetrafluoroethylene by nitrogen ion implantation. Appl. Surf. Sci. 2002;185:255–261. doi: 10.1016/S0169-4332(01)00824-8. DOI
da Rocha Rodrigues R., da Silva R.L.C.G., Caseli L., Péres L.O. Conjugated polymers as Langmuir and Langmuir-Blodgett films: Challenges and applications in nanostructured devices. Adv. Colloid Interface Sci. 2020;285:102277. doi: 10.1016/j.cis.2020.102277. PubMed DOI
Švorčík V., Kolářová K., Slepička P., Macková A., Novotná M., Hnatowicz V. Modification of surface properties of high and low density polyethylene by Ar plasma discharge. Polym. Degrad. Stab. 2006;91:1219–1225. doi: 10.1016/j.polymdegradstab.2005.09.007. DOI
Csete M., Bor Z. Laser-induced periodic surface structure formation on polyethylene-terephthalate. Appl. Surf. Sci. 1998;133:5–16. doi: 10.1016/S0169-4332(98)00192-5. DOI
Siegel J., Grossberger D., Pryjmaková J., Šlouf M., Švorčík V. Laser-Promoted Immobilization of Ag Nanoparticles: Effect of Surface Morphology of Poly(ethylene terephthalate) Nanomaterials. 2022;12:792. doi: 10.3390/nano12050792. PubMed DOI PMC
Villermaux F., Tabrizian M., Yahia L.H., Meunier M., Piron D.L. Excimer laser treatment of NiTi shape memory alloy biomaterials. Appl. Surf. Sci. 1997;109-110:62–66. doi: 10.1016/S0169-4332(96)00619-8. DOI
Cheang P., Khor K.A., Teoh L.L., Tam S.C. Pulsed laser treatment of plasma-sprayed hydroxyapatite coatings. Biomaterials. 1996;17:1901–1904. doi: 10.1016/0142-9612(95)00146-8. PubMed DOI
Riveiro A., Maçon A.L.B., del Val J., Comesaña R., Pou J. Laser Surface Texturing of Polymers for Biomedical Applications. Front. Phys. 2018;6:1–17. doi: 10.3389/fphy.2018.00016. DOI
Siegel J., Šuláková P., Kaimlová M., Švorčík V., Hubáček T. Underwater Laser Treatment of PET: Effect of Processing Parameters on Surface Morphology and Chemistry. Appl. Sci. 2018;8:2389. doi: 10.3390/app8122389. DOI
Slepicka P. Ripple polystyrene nano-pattern induced by KrF laser. Express Polym. Lett. 2014;8:459–466. doi: 10.3144/expresspolymlett.2014.50. DOI
Slepička P., Chaloupka A., Sajdl P., Heitz J., Hnatowicz V., Švorčík V. Angle dependent laser nanopatterning of poly(ethylene terephthalate) surfaces. Appl. Surf. Sci. 2011;257:6021–6025. doi: 10.1016/j.apsusc.2011.01.107. DOI
Siegel J., Heitz J., Řezníčková A., Švorčík V. Preparation and characterization of fully separated gold nanowire arrays. Appl. Surf. Sci. 2013;264:443–447. doi: 10.1016/j.apsusc.2012.10.041. DOI
Polívková M., Štrublová V., Hubáček T., Rimpelová S., Švorčík V., Siegel J. Surface characterization and antibacterial response of silver nanowire arrays supported on laser-treated polyethylene naphthalate. Mater. Sci. Eng. C. 2017;72:512–518. doi: 10.1016/j.msec.2016.11.072. PubMed DOI
Pryjmaková J., Kaimlová M., Vokatá B., Hubáček T., Slepička P., Švorčík V., Siegel J. Bimetallic Nanowires on Laser-Patterned PEN as Promising Biomaterials. Nanomaterials. 2021;11:2285. doi: 10.3390/nano11092285. PubMed DOI PMC
Yu S., Lee J.-W., Han T.H., Park C., Kwon Y., Hong S.M., Koo C.M. Copper Shell Networks in Polymer Composites for Efficient Thermal Conduction. ACS Appl. Mater. Interfaces. 2013;5:11618–11622. doi: 10.1021/am4030406. PubMed DOI
Li N., Fu Y., Lu Q., Xiao C. Microstructure and Performance of a Porous Polymer Membrane with a Copper Nano-Layer Using Vapor-Induced Phase Separation Combined with Magnetron Sputtering. Polymers. 2017;9:524. doi: 10.3390/polym9100524. PubMed DOI PMC
Song J., Li J., Xu J., Zeng H. Superstable Transparent Conductive Cu@Cu4Ni Nanowire Elastomer Composites against Oxidation, Bending, Stretching, and Twisting for Flexible and Stretchable Optoelectronics. Nano Lett. 2014;14:6298–6305. doi: 10.1021/nl502647k. PubMed DOI
Long J., Zhong M., Fan P., Gong D., Zhang H. Wettability conversion of ultrafast laser structured copper surface. J. Laser Appl. 2015;27:S29107. doi: 10.2351/1.4906477. DOI
Saravanakumar K., Sathiyaseelan A., Mariadoss A.V.A., Xiaowen H., Wang M.-H. Physical and bioactivities of biopolymeric films incorporated with cellulose, sodium alginate and copper oxide nanoparticles for food packaging application. Int. J. Biol. Macromol. 2020;153:207–214. doi: 10.1016/j.ijbiomac.2020.02.250. PubMed DOI
Efatian H., Ahari H., Shahbazzadeh D., Nowruzi B., Yousefi S. Fabrication and characterization of LDPE/silver-copper/titanium dioxide nanocomposite films for application in Nile Tilapia (Oreochromis niloticus) packaging. J. Food Meas. Charact. 2021;15:2430–2439. doi: 10.1007/s11694-021-00836-7. DOI
Yang Y., Huang Q., Payne G.F., Sun R., Wang X. A highly conductive, pliable and foldable Cu/cellulose paper electrode enabled by controlled deposition of copper nanoparticles. Nanoscale. 2019;11:725–732. doi: 10.1039/C8NR07123C. PubMed DOI
Zhou Y., Wu S., Liu F. High-performance polyimide nanocomposites with polydopamine-coated copper nanoparticles and nanowires for electronic applications. Mater. Lett. 2019;237:19–21. doi: 10.1016/j.matlet.2018.11.067. DOI
Addou F., Duguet T., Ledru Y., Mesnier D., Vahlas C. Engineering Copper Adhesion on Poly-Epoxy Surfaces Allows One-Pot Metallization of Polymer Composite Telecommunication Waveguides. Coatings. 2021;11:50. doi: 10.3390/coatings11010050. DOI
Stewart I.E., Rathmell A.R., Yan L., Ye S., Flowers P.F., You W., Wiley B.J. Solution-processed copper–nickel nanowire anodes for organic solar cells. Nanoscale. 2014;6:5980–5988. doi: 10.1039/c4nr01024h. PubMed DOI
Chakraborty R., Basu T. Metallic copper nanoparticles induce apoptosis in a human skin melanoma A-375 cell line. Nanotechnology. 2017;28:105101. doi: 10.1088/1361-6528/aa57b0. PubMed DOI
Li K.-C., Chu H.-C., Lin Y., Tuan H.-Y., Hu Y.-C. PEGylated Copper Nanowires as a Novel Photothermal Therapy Agent. ACS Appl. Mater. Interfaces. 2016;8:12082–12090. doi: 10.1021/acsami.6b04579. PubMed DOI
Xu C., Chen J., Li L., Pu X., Chu X., Wang X., Li M., Lu Y., Zheng X. Promotion of chondrogenic differentiation of mesenchymal stem cells by copper: Implications for new cartilage repair biomaterials. Mater. Sci. Eng. C. 2018;93:106–114. doi: 10.1016/j.msec.2018.07.074. PubMed DOI
Zhu Y., Hartel M.C., Yu N., Garrido P.R., Kim S., Lee J., Bandaru P., Guan S., Lin H., Emaminejad S., et al. Epidermis-Inspired Wearable Piezoresistive Pressure Sensors Using Reduced Graphene Oxide Self-Wrapped Copper Nanowire Networks. Small Methods. 2022;6:2100900. doi: 10.1002/smtd.202100900. PubMed DOI PMC
Kaimlová M., Nemogová I., Kolářová K., Slepička P., Švorčík V., Siegel J. Optimization of silver nanowire formation on laser processed PEN: Surface properties and antibacterial effects. Appl. Surf. Sci. 2019;473:516–526. doi: 10.1016/j.apsusc.2018.12.185. DOI
Ton-That C., Shard A.G., Bradley R.H. Thickness of Spin-Cast Polymer Thin Films Determined by Angle-Resolved XPS and AFM Tip-Scratch Methods. Langmuir. 2000;16:2281–2284. doi: 10.1021/la990605c. DOI
Siegel J., Heitz J., Švorčík V. Self-organized gold nanostructures on laser patterned PET. Surf. Coat. Technol. 2011;206:517–521. doi: 10.1016/j.surfcoat.2011.07.080. DOI
Belardini A., Larciprete M.C., Centini M., Fazio E., Sibilia C., Bertolotti M., Toma A., Chiappe D., Mongeot F.B.d. Tailored second harmonic generation from self-organized metal nano-wires arrays. Opt. Express. 2009;17:3603–3609. doi: 10.1364/OE.17.003603. PubMed DOI
Tyler B.J., Castner D.G., Ratner B.D. Regularization: A stable and accurate method for generating depth profiles from angle-dependent XPS data. Surf. Interface Anal. 1989;14:443–450. doi: 10.1002/sia.740140804. DOI
Laurens P., Ould Bouali M., Meducin F., Sadras B. Characterization of modifications of polymer surfaces after excimer laser treatments below the ablation threshold. Appl. Surf. Sci. 2000;154–155:211–216. doi: 10.1016/S0169-4332(99)00443-2. DOI
Allen N.S. A study of the light absorption properties of polymer films using UV-visible derivative spectroscopy. Polym. Photochem. 1981;1:43–55. doi: 10.1016/0144-2880(81)90014-2. DOI
Molokanova L.G., Kochnev Y.K., Nechaev A.N., Chukova S.N., Apel P.Y. Effect of ultraviolet radiation on polyethylene naphthalate films irradiated with high-energy heavy ions. High Energy Chem. 2017;51:182–188. doi: 10.1134/S0018143917030109. DOI
Lotey G.S., Kumar S., Verma N.K. Fabrication and electrical characterization of highly ordered copper nanowires. Appl. Nanosci. 2012;2:7–13. doi: 10.1007/s13204-011-0034-z. DOI
Julkarnain M., Mondal A., Rahman M.M., Rana M. Preparation and Properties of Chemically Reduced Cu and Ag Nanoparticles; Proceedings of the International Conference on Mechanical, Industrial and Materials Engineering; Rajshahi, Bangladesh. 1–3 November 2013.
Chen L., Wang S.-Y., Xiang X., Tao W.-Q. Mechanism of surface nanostructure changing wettability: A molecular dynamics simulation. Comput. Mater. Sci. 2020;171:109223. doi: 10.1016/j.commatsci.2019.109223. DOI
Murakami D., Jinnai H., Takahara A. Wetting Transition from the Cassie–Baxter State to the Wenzel State on Textured Polymer Surfaces. Langmuir. 2014;30:2061–2067. doi: 10.1021/la4049067. PubMed DOI
Ren G., Hu D., Cheng E.W.C., Vargas-Reus M.A., Reip P., Allaker R.P. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents. 2009;33:587–590. doi: 10.1016/j.ijantimicag.2008.12.004. PubMed DOI
Ahamed M., Alhadlaq H.A., Khan M.A.M., Karuppiah P., Al-Dhabi N.A. Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J. Nanomater. 2014;2014:17. doi: 10.1155/2014/637858. DOI
Ali A., Ershad M., Vyas V.K., Hira S.K., Manna P.P., Singh B.N., Yadav S., Srivastava P., Singh S.P., Pyare R. Studies on effect of CuO addition on mechanical properties and in vitro cytocompatibility in 1393 bioactive glass scaffold. Mater. Sci. Eng. C. 2018;93:341–355. doi: 10.1016/j.msec.2018.08.003. PubMed DOI
Tran C.D., Makuvaza J., Munson E., Bennett B. Biocompatible Copper Oxide Nanoparticle Composites from Cellulose and Chitosan: Facile Synthesis, Unique Structure, and Antimicrobial Activity. ACS Appl. Mater. Interfaces. 2017;9:42503–42515. doi: 10.1021/acsami.7b11969. PubMed DOI
Laser-Processed PEN with Au Nanowires Array: A Biocompatibility Assessment