Tuning Surface Chemistry of Polyetheretherketone by Gold Coating and Plasma Treatment
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28637351
PubMed Central
PMC5478547
DOI
10.1186/s11671-017-2182-x
PII: 10.1186/s11671-017-2182-x
Knihovny.cz E-zdroje
- Klíčová slova
- Atomic force microscopy, Cell proliferation, Gold sputtering, Mouse embryonic fibroblasts, Plasma treatment, Polyetheretherketone, Scanning electron microscopy,
- Publikační typ
- časopisecké články MeSH
Polyetheretherketone (PEEK) has good chemical and biomechanical properties that are excellent for biomedical applications. However, PEEK exhibits hydrophobic and other surface characteristics which cause limited cell adhesion. We have investigated the potential of Ar plasma treatment for the formation of a nanostructured PEEK surface in order to enhance cell adhesion. The specific aim of this study was to reveal the effect of the interface of plasma-treated and gold-coated PEEK matrices on adhesion and spreading of mouse embryonic fibroblasts. The surface characteristics (polarity, surface chemistry, and structure) before and after treatment were evaluated by various experimental techniques (gravimetry, goniometry, X-ray photoelectron spectroscopy (XPS), and electrokinetic analysis). Further, atomic force microscopy (AFM) was employed to examine PEEK surface morphology and roughness. The biological response of cells towards nanostructured PEEK was evaluated in terms of cell adhesion, spreading, and proliferation. Detailed cell morphology was evaluated by scanning electron microscopy (SEM). Compared to plasma treatment, gold coating improved PEEK wettability. The XPS method showed a decrease in the carbon concentration with increasing time of plasma treatment. Cell adhesion determined on the interface between plasma-treated and gold-coated PEEK matrices was directly proportional to the thickness of a gold layer on a sample. Our results suggest that plasma treatment in a combination with gold coating could be used in biomedical applications requiring enhanced cell adhesion.
Biology Centre CAS CR SoWa National Research Infrastructure Ceske Budejovice Czech Republic
Department of Organic Technology University of Chemistry and Technology Prague Prague Czech Republic
Faculty and Science J E Purkyně University in Usti nad Labem Usti nad Labem Czech Republic
Zobrazit více v PubMed
Adell R, Lekholm U, Rockler B, Branemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Maxillof. 1981;10:387–416. PubMed
Aziz-Kerrzo M, Conroy KG, Fenelon AM, Farrell ST, Breslin CB. Electrochemical studies on the stability and corrosion resistance of titanium-based implant materials. Biomaterials. 2001;22:1531–1539. doi: 10.1016/S0142-9612(00)00309-4. PubMed DOI
Ribeiro DA, Matsumoto MA, Padovan LE, Marques ME, Salvadori DM. Genotoxicity of corrosion eluates obtained from endosseous implants. Implant Dent. 2007;16:101–109. doi: 10.1097/ID.0b013e3180327663. PubMed DOI
Ramakrishna S, Mayer J, Wintermantel E, Leong KW. Biomedical applications of polymer-composite materials: a review. Compos Sci Technol. 2001;61:1189–1224. doi: 10.1016/S0266-3538(00)00241-4. DOI
Boccaccini AR, Blaker JJ. Bioactive composite materials for tissue engineering scaffolds. Expert Rev Med Devic. 2005;2:303–317. doi: 10.1586/17434440.2.3.303. PubMed DOI
Eschbach L. Nonresorbable polymers in bone surgery. Injury. 2000;31:22–27. doi: 10.1016/S0020-1383(00)80019-4. PubMed DOI
Delepine F, Jund S, Schlatterer B, De Peretti F. Experience with poly ether ketone (PEEK) cages and locking plate for anterior cervical fusion in the treatment of spine trauma without cord injury. Rev Chir Orthop. 2007;93:789–797. PubMed
Kulkarni A, Hee H, Wong H. Solis cage (PEEK) for anterior cervical fusion: preliminary radiological results with emphasis on fusion and subsidence. Spine J. 2007;7:205–209. doi: 10.1016/j.spinee.2006.03.002. PubMed DOI
Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28:4845–4869. doi: 10.1016/j.biomaterials.2007.07.013. PubMed DOI PMC
Almasi D, Iqbal N, Sadeghi M, Sudin I, Kadir MR, Kamarul T. Preparation methods for improving PEEK’s bioactivity for orthopedic and dental application: a review. Internat J Biomaterials. 2016;2016:8202653–65. doi: 10.1155/2016/8202653. PubMed DOI PMC
Katzer A, Marquardt H, Westendorf J, Wening JV, Foerster G. Polyetheretherketone-cytotoxicity and mutagenicity in vitro. Biomaterials. 2002;23:1749–1759. doi: 10.1016/S0142-9612(01)00300-3. PubMed DOI
Rivard CH, Rhalmi S, Coillard C. In vivo biocompatibility testing of peek polymer for a spinal implant system: a study in rabbits. J Biomed Mater Res. 2002;62:488–498. doi: 10.1002/jbm.10159. PubMed DOI
Nieminen T, Kallela I, Wuolijoki E, Kainulainen H, Hiidenheimo I, Rantala I. Amorphous and crystalline polyetheretherketone: mechanical properties and tissue reactions during a 3-year follow-up. J Biomed Mater Res A. 2008;84:377–383. doi: 10.1002/jbm.a.31310. PubMed DOI
Tsou HK, Hsieh PY, Chung CJ, Tang CH, Shyr TW, He JL. Low-temperature deposition of anatase TiO2 on medical grade polyetheretherketone to assist osseous integration. Surf Coat Tech. 2009;204:1121–1125. doi: 10.1016/j.surfcoat.2009.06.018. DOI
Briem D, Strametz S, Schroder K, Meenen NM, Lehmann W, Linhart W, Ohl A, Rueger JM. Response of primary fibroblasts and osteoblasts to plasma treated polyetheretherketone (PEEK) surfaces. J Mater Sci-Mater M. 2005;16:671–677. doi: 10.1007/s10856-005-2539-z. PubMed DOI
Thull R. Surface modifications to improve biocompatibility and mechanical properties of orthopedic implants. Orthopade. 2003;32:51–59. doi: 10.1007/s00132-002-0412-z. PubMed DOI
Chu PK, Chen JY, Wang LP, Huang N. Plasma-surface modification of biomaterials. Mat Sci Eng R. 2002;36:143–206. doi: 10.1016/S0927-796X(02)00004-9. DOI
Novotna Z, Reznickova A, Kvitek O, Slepickova-Kasalkova N, Kolska Z, Svorcik V. Cells adhesion and growth on gold nanoparticle grafted glass. Appl Surf Sci. 2014;307:217–223. doi: 10.1016/j.apsusc.2014.04.017. DOI
Siegel J, Krajcar R, Kolska Z, Hnatowicz V, Svorcik V. Annealing of gold nanostructures sputtered on polytetrafluoroethylene. Nanoscale Res Lett. 2011;6:588–597. doi: 10.1186/1556-276X-6-588. PubMed DOI PMC
Slepicka P, Michaljanicova I, Slepickova-Kasalkova N, Kolska Z, Rimpelova S, Ruml T, Svorcik V. Poly-l-lactic acid modified by etching and grafting with gold nanoparticles. J Mater Sci. 2013;8:5871–5879. doi: 10.1007/s10853-013-7383-9. DOI
Novotna Z, Reznickova A, Rimpelova S, Vesely M, Kolska Z, Svorcik V. Tailoring of PEEK bioactivity for improved cell interaction: plasma treatment in action. RSC Adv. 2015;5:41428–41436. doi: 10.1039/C5RA03861H. DOI
Novotna Z, Reznickova A, Viererblova L, Kolafa J, Kolska Z, Riha J, Svorcik V. Physicochemical properties of gold nanostructures deposited on glass. J Nanomater. 2014;2014:1–8. doi: 10.1155/2014/753853. DOI
Vosmanska V, Kolarova K, Rimpelova S, Kolska Z, Svorcik V. Antibacterial wound dressing: plasma treatment effect on chitosan impregnation and in situ synthesis of silver chloride on cellulose surface. RSC Adv. 2015;5:17690–17699. doi: 10.1039/C4RA16296J. DOI
Svorcik V, Kotal V, Siegel J, Sajdl P, Mackova A, Hnatowicz V. Ablation and water etching of poly(ethylene) modified by argon plasma. Polym Degrad Stab. 2017;92:1645–1649. doi: 10.1016/j.polymdegradstab.2007.06.013. DOI
Svorcik V, Kolska Z, Luxbacher T, Mistrik J. Properties of Au nanolayer sputtered on polyethyleneterephtalate. Mater Lett. 2010;64:1160–1162. doi: 10.1016/j.matlet.2009.12.018. DOI
Kolska Z, Reznickova A, Svorcik V. Surface characterization of polymer foils. e-Polymers. 2012;083:1–13.
Kolska Z, Reznickova A, Nagyova M, Slepickova-Kasalkova N, Sajdl P, Slepicka P, Svorcik V. Plasma activated polymers grafted with cysteamine for bio-application. Polym Degrad Stab. 2014;101:1–9. doi: 10.1016/j.polymdegradstab.2014.01.024. DOI
Rimpelova S, Slepickova-Kasalkova N, Slepicka P, Lemerova H, Svorcik V, Ruml T. Plasma treated polyethylene grafted with adhesive molecules for enhanced adhesion and growth of fibroblasts. Mat Sci Eng C. 2013;33:1116–1124. doi: 10.1016/j.msec.2012.12.003. PubMed DOI
Rimpelova S, Peterkova L, Slepickova Kasalkova N, Slepicka P, Svorcik V, Ruml T. Surface modification of biodegradable poly(l-lactic acid) by argon plasma: fibroblasts and keratinocytes in the spotlight. Plasma Process Polym. 2014;11:1057–1067. doi: 10.1002/ppap.201400021. DOI
Husain S, Luthra U. Addition of lysine, an amino-acid to fix fragile structures, cytoskeleton for electron-microscopic studies. Curr Sci India. 1993;64:681–682.
Watanabe S, Ogawa K, Cury DP, Dias FJ, Sosthenes MCK, Issa JPM, Iyomasa MM. Fine structure of bacterial adhesion to the epithelial cell membranes of the filiform papillae of tongue and palatine mucosa of rodents: a morphometric, TEM, and HRSEM study. Microsc Res Techniq. 2013;76:1226–1233. doi: 10.1002/jemt.22289. PubMed DOI
Vesel A, Junkar I, Cvelbar U, Kovac J, Mozetic M. Surface modification of polyester by oxygen- and nitrogen-plasma treatment. Surf Interface Anal. 2008;40:1444–1453. doi: 10.1002/sia.2923. DOI
Nakamatsu J, Delgado-Aparicio LF, Da Silva R, Soberon F. Ageing of plasma-treated poly(tetrafluoroethylene) surfaces. J Adhes Sci and Technol. 1999;13:753–761. doi: 10.1163/156856199X00983. DOI
Larrieu J, Held B, Martinez H, Tison Y. Ageing of atactic and isotactic polystyrene thin films treated by oxygen DC pulsed plasma. Surf Coat Tech. 2005;200:2310–2316. doi: 10.1016/j.surfcoat.2004.06.032. DOI
Morent R, De Geyter N, Leys C, Gengembre L, Payen E. Study of the ageing behaviour of polymer films treated with a dielectric barrier discharge in air, helium and argon at medium pressure. Surf Coat Tech. 2007;201:7847–7854. doi: 10.1016/j.surfcoat.2007.03.018. DOI
Reznickova A, Novotna Z, Slepickova-Kasalkova N, Svorcik V. Gold nanoparticles deposited on glass: physicochemical characterization and cytocompatibility. Nanoscale Res Lett. 2013;8:252–259. doi: 10.1186/1556-276X-8-252. PubMed DOI PMC
Khorasani MT, Mirzadeh H, Irani S. Plasma surface modification of poly (l-lactic acid) and poly (lactic-co-glycolic acid) films for improvement of nerve cells adhesion. Radiat Phys Chem. 2008;77:280–287. doi: 10.1016/j.radphyschem.2007.05.013. DOI
Slepicka P, Slepickova Kasalkova N, Siegel J, Kolska Z, Bacakova L, Svorcik V. Nano-structured and functionalized surfaces for cytocompatibility improvement and bactericidal action. Biotechnol Adv. 2015;33:1120–1129. doi: 10.1016/j.biotechadv.2015.01.001. PubMed DOI
Kotal V, Svorcik V, Slepicka P, Sajdl P, Blahova O, Sutta P, Hnatowicy V. Gold coating of poly(ethylene terephthalate) modified by argon plasma. Plasma Process Polym. 2007;4:69–76. doi: 10.1002/ppap.200600069. DOI
Brennan WJ, Feast WJ, Munro HS, Walker SA. Investigation of the aging of plasma oxidized PEEK. Polymer. 1991;32:1527–1530. doi: 10.1016/0032-3861(91)90436-M. DOI
Tsougeni K, Vourdas N, Tserepi A, Gogolides E, Cardinaud C. Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces: from stable super hydrophilic to super hydrophobic surfaces. Langmuir. 2009;25:11748–11759. doi: 10.1021/la901072z. PubMed DOI
Slepicka P, Trostova S, Slepickova-Kasalkova N, Kolska Z, Malinsky P, Mackova A, Bacakova L, Svorcik V. Nanostructuring of polymethylpentene by plasma and heat treatment for improved biocompatibility. Poly Degrad Stab. 2012;97:1075–1082. doi: 10.1016/j.polymdegradstab.2012.04.013. DOI
Nedela O, Slepicka P, Kolska Z, Slepickova-Kasalkova N, Sajdl P, Vesely M, Svorcik V. Functionalized polyethylene naphthalate for cytocompatibility improvement. React Funct Polym. 2016;100:44–52. doi: 10.1016/j.reactfunctpolym.2016.01.004. DOI
Jurik P, Slepicka P, Mistrik J, Janicek P, Rimpelova S, Kolska Z, Svorcik V. Oriented gold ripple-like structures on poly-l-lactic acid. Appl Surf Sci. 2014;321:503–510. doi: 10.1016/j.apsusc.2014.10.033. DOI
Siegel J, Jurik P, Kolska Z, Svorcik V. Annealing of silver nanolayers sputtered on polytetrafluoroethylene. Surf Interface Anal. 2013;45:1063–1066. doi: 10.1002/sia.5227. DOI
Hiemenz P, Rajagopalan R. Principles of colloid and surface chemistry. New York: Marcel Dekker, Inc; 1997. The electrical double layer and double-layer interactions; pp. 499–533.
Michaljanicova I, Slepicka P, Slepickova-Kasalkova N, Sajdl P, Svorcik V. Plasma and laser treatment of PMP for biocompatibility improvement. Vacuum. 2014;107:184–190. doi: 10.1016/j.vacuum.2014.01.023. DOI
Slanina H, Konig A, Claus H, Frosch M, Schubert-Unkmeir A. Real-time impedance analysis of host cell response to meningococcal infection. J Microbiol Meth. 2011;84:101–108. doi: 10.1016/j.mimet.2010.11.004. PubMed DOI
Howat WJ, Barabas T, Holmes JA, Holgate ST, Lackie PM. Distribution of basement membrane pores in bronchus revealed by microscopy following epithelial removal. J Struct Biol. 2002;139:137–145. doi: 10.1016/S1047-8477(02)00589-0. PubMed DOI