Surface Engineering of AgNPs-Decorated Polyetheretherketone

. 2023 Jan 11 ; 24 (2) : . [epub] 20230111

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36674946

Grantová podpora
22-04006S Czech Science Foundation

Metal nanostructure-treated polymers are widely recognized as the key material responsible for a specific antibacterial response in medical-based applications. However, the finding of an optimal bactericidal effect in combination with an acceptable level of cytotoxicity, which is typical for metal nanostructures, prevents their expansion from being more significant so far. This study explores the possibility of firmly anchoring silver nanoparticles (AgNPs) into polyetherether ketone (PEEK) with a tailored surface morphology that exhibits laser-induced periodic surface structures (LIPSS). We demonstrated that laser-induced forward transfer technology is a suitable tool, which, under specific conditions, enables uniform decoration of the PEEK surface with AgNPs, regardless of whether the surface is planar or LIPSS structured. The antibacterial test proved that AgNPs-decorated LIPSS represents a more effective bactericidal protection than their planar counterparts, even if they contain a lower concentration of immobilized particles. Nanostructured PEEK with embedded AgNPs may open up new possibilities in the production of templates for replication processes in the construction of functional bactericidal biopolymers or may be directly used in tissue engineering applications.

Zobrazit více v PubMed

Lehmuskero A., Johansson P., Rubinsztein-Dunlop H., Tong L.M., Kall M. Laser Trapping of Colloidal Metal Nanoparticles. ACS Nano. 2015;9:3453–3469. doi: 10.1021/acsnano.5b00286. PubMed DOI

Urban A.S., Carretero-Palacios S., Lutich A.A., Lohmueller T., Feldmann J., Jaeckel F. Optical trapping and manipulation of plasmonic nanoparticles: Fundamentals, applications, and perspectives. Nanoscale. 2014;6:4458–4474. doi: 10.1039/c3nr06617g. PubMed DOI

Polimeno P., Patti F., Infusino M., Sanchez J.J., Iati M.A., Saija R., Volpe G., Marago O.M., Veltri A. Gain-Assisted Optomechanical Position Locking of Metal/Dielectric Nanoshells in Optical Potentials. Acs Photonics. 2020;7:1262–1270. doi: 10.1021/acsphotonics.0c00213. DOI

Siegel J., Kaimlova M., Vyhnalkova B., Trelin A., Lyutakov O., Slepicka P., Svorcik V., Vesely M., Vokata B., Malinsky P., et al. Optomechanical Processing of Silver Colloids: New Generation of Nanoparticle-Polymer Composites with Bactericidal Effect. Int. J. Mol. Sci. 2021;22:312. doi: 10.3390/ijms22010312. PubMed DOI PMC

Siegel J., Lyutakov O., Polívková M., Staszek M., Hubáček T., Švorčík V. Laser-assisted immobilization of colloid silver nanoparticles on polyethyleneterephthalate. Appl. Surf. Sci. 2017;420:661–668. doi: 10.1016/j.apsusc.2017.05.151. DOI

Min C., Shen Z., Shen J., Zhang Y., Fang H., Yuan G., Du L., Zhu S., Lei T., Yuan X. Focused plasmonic trapping of metallic particles. Nat. Commun. 2013;4:2891. doi: 10.1038/ncomms3891. PubMed DOI PMC

Li R.Z., Guo L., Liu L.L., Yang M.Q., Fang Y.M., Yu Y., Yan J. Laser-Induced Forward Transfer of Silver Nanoparticles for a Black Metal Absorber. Front. Phys. 2022;10:932050. doi: 10.3389/fphy.2022.932050. DOI

Hussain Z., Abourehab M.A.S., Khan S., Thu H.E. Metal Nanoparticles for Drug Delivery and Diagnostic Applications. Elsevier; Amsterdam, The Netherlands: 2020. Silver nanoparticles: A promising nanoplatform for targeted delivery of therapeutics and optimized therapeutic efficacy; pp. 141–173.

Su F., Jia Q., Li Z., Wang M., He L., Peng D., Song Y., Zhang Z., Fang S. Aptamer-templated silver nanoclusters embedded in zirconium metal-organic framework for targeted antitumor drug delivery. Microporous Mesoporous Mater. 2019;275:152–162. doi: 10.1016/j.micromeso.2018.08.026. DOI

Lakhotia S.R., Mukhopadhyay M., Kumari P. Surface-Modified Nanocomposite Membranes. Sep. Purif. Rev. 2018;47:288–305. doi: 10.1080/15422119.2017.1386681. DOI

Chen L., Peng X. Silver nanoparticle decorated cellulose nanofibrous membrane with good antibacterial ability and high water permeability. Appl. Mater. Today. 2017;9:130–135. doi: 10.1016/j.apmt.2017.06.005. DOI

Nastulyavichus A., Tolordava E., Rudenko A., Zazymkina D., Shakhov P., Busleev N., Romanova Y., Ionin A., Kudryashov S. In Vitro Destruction of Pathogenic Bacterial Biofilms by Bactericidal Metallic Nanoparticles via Laser-Induced Forward Transfer. Nanomaterials. 2020;10:2259. doi: 10.3390/nano10112259. PubMed DOI PMC

Krajcar R., Siegel J., Lyutakov O., Slepicka P., Svorcik V. Optical response of anisotropic silver nanostructures on polarized light. Mater. Lett. 2014;137:72–74. doi: 10.1016/j.matlet.2014.08.113. DOI

Slepicka P., Siegel J., Lyutakov O., Kasalkova N.S., Kolska Z., Bacakova L., Svorcik V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. doi: 10.1016/j.biotechadv.2017.12.011. PubMed DOI

Peterbauer T., Yakunin S., Siegel J., Hering S., Fahrner M., Romanin C., Heitz J. Dynamics of Spreading and Alignment of Cells Cultured In Vitro on a Grooved Polymer Surface. J. Nanomater. 2011;2011:413079. doi: 10.1155/2011/413079. DOI

Wan Y.Z., Wang Y.L., Wen T.Y. Effect of specific surface area and silver content on bacterial adsorption onto ACF(Ag) Carbon. 1999;37:351–353. doi: 10.1016/S0008-6223(99)90001-5. DOI

Luo D., Wei F., Shao H., Xie L., Cui Z., Qin S., Yu J. Microstructure construction of polypropylene-based hollow fiber membranes with bimodal microporous structure for water flux enhancement and rejection performance retention. Sep. Purif. Technol. 2019;213:328–338. doi: 10.1016/j.seppur.2018.12.052. DOI

Siegel J., Slepicka P., Heitz J., Kolska Z., Sajdl P., Svorcik V. Gold nano-wires and nano-layers at laser-induced nano-ripples on PET. Appl. Surf. Sci. 2010;256:2205–2209. doi: 10.1016/j.apsusc.2009.09.074. DOI

Rebollar E., Frischauf I., Olbrich M., Peterbauer T., Hering S., Preiner J., Hinterdorfer P., Romanin C., Heitz J. Proliferation of aligned mammalian cells on laser-nanostructured polystyrene. Biomaterials. 2008;29:1796–1806. doi: 10.1016/j.biomaterials.2007.12.039. PubMed DOI

Chernousova S., Epple M. Silver as Antibacterial Agent: Ion, Nanoparticle, and Metal. Angew. Chem.-Int. Edit. 2013;52:1636–1653. doi: 10.1002/anie.201205923. PubMed DOI

Alexander J.W. History of the medical use of silver. Surg. Infect. 2009;10:289–292. doi: 10.1089/sur.2008.9941. PubMed DOI

Pollini M., Paladini F., Catalano M., Taurino A., Licciulli A., Maffezzoli A., Sannino A. Antibacterial coatings on haemodialysis catheters by photochemical deposition of silver nanoparticles. J. Mater. Sci. Mater. Med. 2011;22:2005–2012. doi: 10.1007/s10856-011-4380-x. PubMed DOI

Roe D., Karandikar B., Bonn-Savage N., Gibbins B., Roullet J.-B. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J. Antimicrob. Chemother. 2008;61:869–876. doi: 10.1093/jac/dkn034. PubMed DOI

Xing Z.-C., Chae W.-P., Baek J.-Y., Choi M.-J., Jung Y., Kang I.-K. In Vitro Assessment of Antibacterial Activity and Cytocompatibility of Silver-Containing PHBV Nanofibrous Scaffolds for Tissue Engineering. Biomacromolecules. 2010;11:1248–1253. doi: 10.1021/bm1000372. PubMed DOI

Patrascu J.M., Nedelcu I.A., Sonmez M., Ficai D., Ficai A., Vasile B.S., Ungureanu C., Albu M.G., Andor B., Andronescu E., et al. Composite Scaffolds Based on Silver Nanoparticles for Biomedical Applications. J. Nanomater. 2015;2015:587989. doi: 10.1155/2015/587989. DOI

Agarwala M., Barman T., Gogoi D., Choudhury B., Pal A.R., Yadav R.N.S. Highly effective antibiofilm coating of silver–polymer nanocomposite on polymeric medical devices deposited by one step plasma process. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014;102:1223–1235. doi: 10.1002/jbm.b.33106. PubMed DOI

Melinte V., Buruiana T., Moraru I.D., Buruiana E.C. Silver-polymer composite materials with antibacterial properties. Dig. J. Nanomater. Biostructures. 2011;6:213–223.

Haider M.S., Shao G.N., Imran S.M., Park S.S., Abbas N., Tahir M.S., Hussain M., Bae W., Kim H.T. Aminated polyethersulfone-silver nanoparticles (AgNPs-APES) composite membranes with controlled silver ion release for antibacterial and water treatment applications. Mater. Sci. Eng. C. 2016;62:732–745. doi: 10.1016/j.msec.2016.02.025. PubMed DOI

Zhou L., Qian Y., Zhu Y., Liu H., Gan K., Guo J. The effect of different surface treatments on the bond strength of PEEK composite materials. Dent. Mater. 2014;30:e209–e215. doi: 10.1016/j.dental.2014.03.011. PubMed DOI

Bathala L., Majeti V., Rachuri N., Singh N., Gedela S. The Role of Polyether Ether Ketone (Peek) in Dentistry—A Review. J Med. Life. 2019;12:5–9. doi: 10.25122/jml-2019-0003. PubMed DOI PMC

Xu X., Li Y., Wang L., Li Y., Pan J., Fu X., Luo Z., Sui Y., Zhang S., Wang L., et al. Triple-functional polyetheretherketone surface with enhanced bacteriostasis and anti-inflammatory and osseointegrative properties for implant application. Biomaterials. 2019;212:98–114. doi: 10.1016/j.biomaterials.2019.05.014. PubMed DOI

Sanpo N., Tan M.L., Cheang P., Khor K.A. Antibacterial Property of Cold-Sprayed HA-Ag/PEEK Coating. J. Therm. Spray Technol. 2009;18:10–15. doi: 10.1007/s11666-008-9283-0. DOI

Liu X., Gan K., Liu H., Song X., Chen T., Liu C. Antibacterial properties of nano-silver coated PEEK prepared through magnetron sputtering. Dent. Mater. 2017;33:E348–E360. doi: 10.1016/j.dental.2017.06.014. PubMed DOI

Deng Y., Yang L., Huang X., Chen J., Shi X., Yang W., Hong M., Wang Y., Dargusch M.S., Chen Z.-G. Dual Ag/ZnO-Decorated Micro-/Nanoporous Sulfonated Polyetheretherketone with Superior Antibacterial Capability and Biocompatibility via Layer-by-Layer Self-Assembly Strategy. Macromol. Biosci. 2018;18:1800028. doi: 10.1002/mabi.201800028. PubMed DOI

Dorovskikh S.I., Vikulova E.S., Sergeevichev D.S., Guselnikova T.Y., Zheravin A.A., Nasimov D.A., Vasilieva M.B., Chepeleva E.V., Saprykin A.I., Basova T.V., et al. Biological Studies of New Implant Materials Based on Carbon and Polymer Carriers with Film Heterostructures Containing Noble Metals. Biomedicines. 2022;10:2230. doi: 10.3390/biomedicines10092230. PubMed DOI PMC

Ru X., Chu M., Jiang J., Yin T., Li J., Gao S. Polyetheretherketone/Nano-Ag-TiO2 composite with mechanical properties and antibacterial activity. J. Appl. Polym. Sci. 2022;140:e53377. doi: 10.1002/app.53377. DOI

Bauerle D. Laser Processing and Chemistry. 4th ed. Springer; Berlin, Germany: 2011. pp. 133–156.

Nicolle L.E. Catheter associated urinary tract infections. Antimicrob. Resist. Infect. Control. 2014;3:23. doi: 10.1186/2047-2994-3-23. PubMed DOI PMC

Ning C., Wang X., Li L., Zhu Y., Li M., Yu P., Zhou L., Zhou Z., Chen J., Tan G., et al. Concentration Ranges of Antibacterial Cations for Showing the Highest Antibacterial Efficacy but the Least Cytotoxicity against Mammalian Cells: Implications for a New Antibacterial Mechanism. Chem. Res. Toxicol. 2015;28:1815–1822. doi: 10.1021/acs.chemrestox.5b00258. PubMed DOI PMC

Riveiro A., Soto R., Comesana R., Boutinguiza M., del Val J., Quintero F., Lusquinos F., Pou J. Laser surface modification of PEEK. Appl. Surf. Sci. 2012;258:9437–9442. doi: 10.1016/j.apsusc.2012.01.154. DOI

Kaimlova M., Nemogova I., Kolarova K., Slepicka P., Svorcik V., Siegel J. Optimization of silver nanowire formation on laser processed PEN: Surface properties and antibacterial effects. Appl. Surf. Sci. 2019;473:516–526. doi: 10.1016/j.apsusc.2018.12.185. DOI

Herigstad B., Hamilton M., Heersink J. How to optimize the drop plate method for enumerating bacteria. J. Microbiol. Methods. 2001;44:121–129. doi: 10.1016/S0167-7012(00)00241-4. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A New Promising Material for Biological Applications: Multilevel Physical Modification of AgNP-Decorated PEEK

. 2023 Dec 05 ; 13 (24) : . [epub] 20231205

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...