Surface Engineering of AgNPs-Decorated Polyetheretherketone
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
22-04006S
Czech Science Foundation
PubMed
36674946
PubMed Central
PMC9865445
DOI
10.3390/ijms24021432
PII: ijms24021432
Knihovny.cz E-zdroje
- Klíčová slova
- bactericidal effect, laser treatment, periodic structures, silver nanoparticles, surface morphology,
- MeSH
- antibakteriální látky farmakologie chemie MeSH
- ketony chemie MeSH
- kovové nanočástice * chemie MeSH
- polyethylenglykoly chemie MeSH
- stříbro chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- ketony MeSH
- polyetheretherketone MeSH Prohlížeč
- polyethylenglykoly MeSH
- stříbro MeSH
Metal nanostructure-treated polymers are widely recognized as the key material responsible for a specific antibacterial response in medical-based applications. However, the finding of an optimal bactericidal effect in combination with an acceptable level of cytotoxicity, which is typical for metal nanostructures, prevents their expansion from being more significant so far. This study explores the possibility of firmly anchoring silver nanoparticles (AgNPs) into polyetherether ketone (PEEK) with a tailored surface morphology that exhibits laser-induced periodic surface structures (LIPSS). We demonstrated that laser-induced forward transfer technology is a suitable tool, which, under specific conditions, enables uniform decoration of the PEEK surface with AgNPs, regardless of whether the surface is planar or LIPSS structured. The antibacterial test proved that AgNPs-decorated LIPSS represents a more effective bactericidal protection than their planar counterparts, even if they contain a lower concentration of immobilized particles. Nanostructured PEEK with embedded AgNPs may open up new possibilities in the production of templates for replication processes in the construction of functional bactericidal biopolymers or may be directly used in tissue engineering applications.
Zobrazit více v PubMed
Lehmuskero A., Johansson P., Rubinsztein-Dunlop H., Tong L.M., Kall M. Laser Trapping of Colloidal Metal Nanoparticles. ACS Nano. 2015;9:3453–3469. doi: 10.1021/acsnano.5b00286. PubMed DOI
Urban A.S., Carretero-Palacios S., Lutich A.A., Lohmueller T., Feldmann J., Jaeckel F. Optical trapping and manipulation of plasmonic nanoparticles: Fundamentals, applications, and perspectives. Nanoscale. 2014;6:4458–4474. doi: 10.1039/c3nr06617g. PubMed DOI
Polimeno P., Patti F., Infusino M., Sanchez J.J., Iati M.A., Saija R., Volpe G., Marago O.M., Veltri A. Gain-Assisted Optomechanical Position Locking of Metal/Dielectric Nanoshells in Optical Potentials. Acs Photonics. 2020;7:1262–1270. doi: 10.1021/acsphotonics.0c00213. DOI
Siegel J., Kaimlova M., Vyhnalkova B., Trelin A., Lyutakov O., Slepicka P., Svorcik V., Vesely M., Vokata B., Malinsky P., et al. Optomechanical Processing of Silver Colloids: New Generation of Nanoparticle-Polymer Composites with Bactericidal Effect. Int. J. Mol. Sci. 2021;22:312. doi: 10.3390/ijms22010312. PubMed DOI PMC
Siegel J., Lyutakov O., Polívková M., Staszek M., Hubáček T., Švorčík V. Laser-assisted immobilization of colloid silver nanoparticles on polyethyleneterephthalate. Appl. Surf. Sci. 2017;420:661–668. doi: 10.1016/j.apsusc.2017.05.151. DOI
Min C., Shen Z., Shen J., Zhang Y., Fang H., Yuan G., Du L., Zhu S., Lei T., Yuan X. Focused plasmonic trapping of metallic particles. Nat. Commun. 2013;4:2891. doi: 10.1038/ncomms3891. PubMed DOI PMC
Li R.Z., Guo L., Liu L.L., Yang M.Q., Fang Y.M., Yu Y., Yan J. Laser-Induced Forward Transfer of Silver Nanoparticles for a Black Metal Absorber. Front. Phys. 2022;10:932050. doi: 10.3389/fphy.2022.932050. DOI
Hussain Z., Abourehab M.A.S., Khan S., Thu H.E. Metal Nanoparticles for Drug Delivery and Diagnostic Applications. Elsevier; Amsterdam, The Netherlands: 2020. Silver nanoparticles: A promising nanoplatform for targeted delivery of therapeutics and optimized therapeutic efficacy; pp. 141–173.
Su F., Jia Q., Li Z., Wang M., He L., Peng D., Song Y., Zhang Z., Fang S. Aptamer-templated silver nanoclusters embedded in zirconium metal-organic framework for targeted antitumor drug delivery. Microporous Mesoporous Mater. 2019;275:152–162. doi: 10.1016/j.micromeso.2018.08.026. DOI
Lakhotia S.R., Mukhopadhyay M., Kumari P. Surface-Modified Nanocomposite Membranes. Sep. Purif. Rev. 2018;47:288–305. doi: 10.1080/15422119.2017.1386681. DOI
Chen L., Peng X. Silver nanoparticle decorated cellulose nanofibrous membrane with good antibacterial ability and high water permeability. Appl. Mater. Today. 2017;9:130–135. doi: 10.1016/j.apmt.2017.06.005. DOI
Nastulyavichus A., Tolordava E., Rudenko A., Zazymkina D., Shakhov P., Busleev N., Romanova Y., Ionin A., Kudryashov S. In Vitro Destruction of Pathogenic Bacterial Biofilms by Bactericidal Metallic Nanoparticles via Laser-Induced Forward Transfer. Nanomaterials. 2020;10:2259. doi: 10.3390/nano10112259. PubMed DOI PMC
Krajcar R., Siegel J., Lyutakov O., Slepicka P., Svorcik V. Optical response of anisotropic silver nanostructures on polarized light. Mater. Lett. 2014;137:72–74. doi: 10.1016/j.matlet.2014.08.113. DOI
Slepicka P., Siegel J., Lyutakov O., Kasalkova N.S., Kolska Z., Bacakova L., Svorcik V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. doi: 10.1016/j.biotechadv.2017.12.011. PubMed DOI
Peterbauer T., Yakunin S., Siegel J., Hering S., Fahrner M., Romanin C., Heitz J. Dynamics of Spreading and Alignment of Cells Cultured In Vitro on a Grooved Polymer Surface. J. Nanomater. 2011;2011:413079. doi: 10.1155/2011/413079. DOI
Wan Y.Z., Wang Y.L., Wen T.Y. Effect of specific surface area and silver content on bacterial adsorption onto ACF(Ag) Carbon. 1999;37:351–353. doi: 10.1016/S0008-6223(99)90001-5. DOI
Luo D., Wei F., Shao H., Xie L., Cui Z., Qin S., Yu J. Microstructure construction of polypropylene-based hollow fiber membranes with bimodal microporous structure for water flux enhancement and rejection performance retention. Sep. Purif. Technol. 2019;213:328–338. doi: 10.1016/j.seppur.2018.12.052. DOI
Siegel J., Slepicka P., Heitz J., Kolska Z., Sajdl P., Svorcik V. Gold nano-wires and nano-layers at laser-induced nano-ripples on PET. Appl. Surf. Sci. 2010;256:2205–2209. doi: 10.1016/j.apsusc.2009.09.074. DOI
Rebollar E., Frischauf I., Olbrich M., Peterbauer T., Hering S., Preiner J., Hinterdorfer P., Romanin C., Heitz J. Proliferation of aligned mammalian cells on laser-nanostructured polystyrene. Biomaterials. 2008;29:1796–1806. doi: 10.1016/j.biomaterials.2007.12.039. PubMed DOI
Chernousova S., Epple M. Silver as Antibacterial Agent: Ion, Nanoparticle, and Metal. Angew. Chem.-Int. Edit. 2013;52:1636–1653. doi: 10.1002/anie.201205923. PubMed DOI
Alexander J.W. History of the medical use of silver. Surg. Infect. 2009;10:289–292. doi: 10.1089/sur.2008.9941. PubMed DOI
Pollini M., Paladini F., Catalano M., Taurino A., Licciulli A., Maffezzoli A., Sannino A. Antibacterial coatings on haemodialysis catheters by photochemical deposition of silver nanoparticles. J. Mater. Sci. Mater. Med. 2011;22:2005–2012. doi: 10.1007/s10856-011-4380-x. PubMed DOI
Roe D., Karandikar B., Bonn-Savage N., Gibbins B., Roullet J.-B. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J. Antimicrob. Chemother. 2008;61:869–876. doi: 10.1093/jac/dkn034. PubMed DOI
Xing Z.-C., Chae W.-P., Baek J.-Y., Choi M.-J., Jung Y., Kang I.-K. In Vitro Assessment of Antibacterial Activity and Cytocompatibility of Silver-Containing PHBV Nanofibrous Scaffolds for Tissue Engineering. Biomacromolecules. 2010;11:1248–1253. doi: 10.1021/bm1000372. PubMed DOI
Patrascu J.M., Nedelcu I.A., Sonmez M., Ficai D., Ficai A., Vasile B.S., Ungureanu C., Albu M.G., Andor B., Andronescu E., et al. Composite Scaffolds Based on Silver Nanoparticles for Biomedical Applications. J. Nanomater. 2015;2015:587989. doi: 10.1155/2015/587989. DOI
Agarwala M., Barman T., Gogoi D., Choudhury B., Pal A.R., Yadav R.N.S. Highly effective antibiofilm coating of silver–polymer nanocomposite on polymeric medical devices deposited by one step plasma process. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014;102:1223–1235. doi: 10.1002/jbm.b.33106. PubMed DOI
Melinte V., Buruiana T., Moraru I.D., Buruiana E.C. Silver-polymer composite materials with antibacterial properties. Dig. J. Nanomater. Biostructures. 2011;6:213–223.
Haider M.S., Shao G.N., Imran S.M., Park S.S., Abbas N., Tahir M.S., Hussain M., Bae W., Kim H.T. Aminated polyethersulfone-silver nanoparticles (AgNPs-APES) composite membranes with controlled silver ion release for antibacterial and water treatment applications. Mater. Sci. Eng. C. 2016;62:732–745. doi: 10.1016/j.msec.2016.02.025. PubMed DOI
Zhou L., Qian Y., Zhu Y., Liu H., Gan K., Guo J. The effect of different surface treatments on the bond strength of PEEK composite materials. Dent. Mater. 2014;30:e209–e215. doi: 10.1016/j.dental.2014.03.011. PubMed DOI
Bathala L., Majeti V., Rachuri N., Singh N., Gedela S. The Role of Polyether Ether Ketone (Peek) in Dentistry—A Review. J Med. Life. 2019;12:5–9. doi: 10.25122/jml-2019-0003. PubMed DOI PMC
Xu X., Li Y., Wang L., Li Y., Pan J., Fu X., Luo Z., Sui Y., Zhang S., Wang L., et al. Triple-functional polyetheretherketone surface with enhanced bacteriostasis and anti-inflammatory and osseointegrative properties for implant application. Biomaterials. 2019;212:98–114. doi: 10.1016/j.biomaterials.2019.05.014. PubMed DOI
Sanpo N., Tan M.L., Cheang P., Khor K.A. Antibacterial Property of Cold-Sprayed HA-Ag/PEEK Coating. J. Therm. Spray Technol. 2009;18:10–15. doi: 10.1007/s11666-008-9283-0. DOI
Liu X., Gan K., Liu H., Song X., Chen T., Liu C. Antibacterial properties of nano-silver coated PEEK prepared through magnetron sputtering. Dent. Mater. 2017;33:E348–E360. doi: 10.1016/j.dental.2017.06.014. PubMed DOI
Deng Y., Yang L., Huang X., Chen J., Shi X., Yang W., Hong M., Wang Y., Dargusch M.S., Chen Z.-G. Dual Ag/ZnO-Decorated Micro-/Nanoporous Sulfonated Polyetheretherketone with Superior Antibacterial Capability and Biocompatibility via Layer-by-Layer Self-Assembly Strategy. Macromol. Biosci. 2018;18:1800028. doi: 10.1002/mabi.201800028. PubMed DOI
Dorovskikh S.I., Vikulova E.S., Sergeevichev D.S., Guselnikova T.Y., Zheravin A.A., Nasimov D.A., Vasilieva M.B., Chepeleva E.V., Saprykin A.I., Basova T.V., et al. Biological Studies of New Implant Materials Based on Carbon and Polymer Carriers with Film Heterostructures Containing Noble Metals. Biomedicines. 2022;10:2230. doi: 10.3390/biomedicines10092230. PubMed DOI PMC
Ru X., Chu M., Jiang J., Yin T., Li J., Gao S. Polyetheretherketone/Nano-Ag-TiO2 composite with mechanical properties and antibacterial activity. J. Appl. Polym. Sci. 2022;140:e53377. doi: 10.1002/app.53377. DOI
Bauerle D. Laser Processing and Chemistry. 4th ed. Springer; Berlin, Germany: 2011. pp. 133–156.
Nicolle L.E. Catheter associated urinary tract infections. Antimicrob. Resist. Infect. Control. 2014;3:23. doi: 10.1186/2047-2994-3-23. PubMed DOI PMC
Ning C., Wang X., Li L., Zhu Y., Li M., Yu P., Zhou L., Zhou Z., Chen J., Tan G., et al. Concentration Ranges of Antibacterial Cations for Showing the Highest Antibacterial Efficacy but the Least Cytotoxicity against Mammalian Cells: Implications for a New Antibacterial Mechanism. Chem. Res. Toxicol. 2015;28:1815–1822. doi: 10.1021/acs.chemrestox.5b00258. PubMed DOI PMC
Riveiro A., Soto R., Comesana R., Boutinguiza M., del Val J., Quintero F., Lusquinos F., Pou J. Laser surface modification of PEEK. Appl. Surf. Sci. 2012;258:9437–9442. doi: 10.1016/j.apsusc.2012.01.154. DOI
Kaimlova M., Nemogova I., Kolarova K., Slepicka P., Svorcik V., Siegel J. Optimization of silver nanowire formation on laser processed PEN: Surface properties and antibacterial effects. Appl. Surf. Sci. 2019;473:516–526. doi: 10.1016/j.apsusc.2018.12.185. DOI
Herigstad B., Hamilton M., Heersink J. How to optimize the drop plate method for enumerating bacteria. J. Microbiol. Methods. 2001;44:121–129. doi: 10.1016/S0167-7012(00)00241-4. PubMed DOI