Genomic Damage Induced in Nicotiana tabacum L. Plants by Colloidal Solution with Silver and Gold Nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-10907S
GA CR Czech science foundation
PubMed
34205810
PubMed Central
PMC8234410
DOI
10.3390/plants10061260
PII: plants10061260
Knihovny.cz E-zdroje
- Klíčová slova
- comet assay, gold nanoparticles, silver nanoparticles, tobacco,
- Publikační typ
- časopisecké články MeSH
Tobacco seedlings (Nicotiana tabacum L cv. Wisconsin 38) were treated for 24 h with colloidal solution of silver and gold nanoparticles (AgNPs and AuNPs) of different size or cultivated for 8 weeks on soil polluted with these NPs. DNA damage in leaf and roots nuclei was evaluated by the comet assay. AgNPs of the size 22-25 nm at concentrations higher than 50 mg·L-1 significantly increased the tail moments (TM) values in leaf nuclei compared to the negative control. Ag nanoparticles of smaller size 12-15 nm caused a slight increase in tail moment without significant difference from the negative control. The opposite effect of AgNPs was observed on roots. The increasing tail moment was registered for smaller NPs. Similar results were observed for AuNPs at a concentration of 100 mg·L-1. DNA damaging effects after growing tobacco plants for 8 weeks in soil polluted with AgNPs and AuNPs of different size and concentrations were observed. While lower concentrations of both types of particles had no effect on the integrity of DNA, concentration of 30 mg·kg-1 of AgNPs caused significant DNA damage in leaves of tobacco plants. AuNPs had no effect even at the highest concentration. The content of Ag was determined by ICP-MS in above-ground part of plants (leaves) after 8 weeks of growth in soil with 30 mg·kg-1. AgNPs and was 2.720 ± 0.408 µg·g-1. Long term effect is much less harmful probably due to the plant restoration capability.
Zobrazit více v PubMed
Jeevanandam J., Barhoum A., Chan Y.S., Dufresne A., Danquah M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018;9:1050–1074. doi: 10.3762/bjnano.9.98. PubMed DOI PMC
Hochella M.F., Spencer M.G., Jones K.L. Nanotechnology: Nature’s gift or scientists’ brainchild? Environ. Sci. Nano. 2015;2:114–119. doi: 10.1039/C4EN00145A. DOI
Judy J.D., Unrine J.M., Rao W., Wirick S., Bertsch P.M. Bioavailability of gold nanomaterials to plants: Importance of particle size and surface coating. Environ. Sci. Technol. 2012;46:8467–8474. doi: 10.1021/es3019397. PubMed DOI
Avalos A., Haza A.I., Mateo D., Morales P. Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells. J. Appl. Toxicol. 2014;34:413–423. doi: 10.1002/jat.2957. PubMed DOI
Carlson C., Hussain S.M., Schrand A.M., Braydich-Stolle L.K., Hess K.L., Jones R.L., Schlager J.J. Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species. J. Phys. Chem. B. 2008;112:13608–13619. doi: 10.1021/jp712087m. PubMed DOI
Khaing Oo M.K., Yang Y., Hu Y., Gomez M., Du H., Wang H. Gold nanoparticle-enhanced and size-dependent generation of reactive oxygen species from protoporphyrin IX. ACS Nano. 2012;6:1939–1947. doi: 10.1021/nn300327c. PubMed DOI
Scherer M.D., Sposito J.C.V., Falco W.F., Grisolia A.B., Andrade L.H.C., Lima S.M., Machado G., Nascimento V.A., Goncalves D.A., Wender H., et al. Cytotoxic and genotoxic effects of silver nanoparticles on meristematic cells of Allium cepa roots: A close analysis of particle size dependence. Sci. Total Environ. 2019;660:459–467. doi: 10.1016/j.scitotenv.2018.12.444. PubMed DOI
Latha D., Prabu P., Gnanamoorthy G., Munusamy S., Sampurnam S., Arulvasu C., Narayanan V. Size-dependent catalytic property of gold nanoparticle mediated by Justicia adhatoda leaf extract. SN Appl. Sci. 2018;1:134. doi: 10.1007/s42452-018-0148-y. DOI
Freese C., Gibson M.I., Klok H.A., Unger R.E., Kirkpatrick C.J. Size- and coating-dependent uptake of polymer-coated gold nanoparticles in primary human dermal microvascular endothelial cells. Biomacromolecules. 2012;13:1533–1543. doi: 10.1021/bm300248u. PubMed DOI
Etame A.B., Smith C.A., Chan W.C., Rutka J.T. Design and potential application of PEGylated gold nanoparticles with size-dependent permeation through brain microvasculature. Nanomedicine. 2011;7:992–1000. doi: 10.1016/j.nano.2011.04.004. PubMed DOI
Chakraborty A., Das A., Raha S., Barui A. Size-dependent apoptotic activity of gold nanoparticles on osteosarcoma cells correlated with SERS signal. J. Photochem. Photobiol. B. 2020;203:111778. doi: 10.1016/j.jphotobiol.2020.111778. PubMed DOI
Siddiqi K.S., Husen A. Engineered gold nanoparticles and plant adaptation potential. Nanoscale Res. Lett. 2016;11:400. doi: 10.1186/s11671-016-1607-2. PubMed DOI PMC
Navarro E., Baun A., Behra R., Hartmann N.B., Filser J., Miao A.J., Quigg A., Santschi P.H., Sigg L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 2008;17:372–386. doi: 10.1007/s10646-008-0214-0. PubMed DOI
Eichert T., Kurtz A., Steiner U., Goldbach H.E. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol. Plant. 2008;134:151–160. doi: 10.1111/j.1399-3054.2008.01135.x. PubMed DOI
Yan A., Chen Z. Impacts of silver Nanoparticles on plants: A focus on the phytotoxicity and underlying mechanism. Int. J. Mol. Sci. 2019;20:1003. doi: 10.3390/ijms20051003. PubMed DOI PMC
Aslani F., Bagheri S., Muhd Julkapli N., Juraimi A.S., Hashemi F.S.G., Baghdadi A. Effects of engineered nanomaterials on plants growth: An overview. Sci. World J. 2014;2014:641759. doi: 10.1155/2014/641759. PubMed DOI PMC
Rodriguez-Garraus A., Azqueta A., Vettorazzi A., Lopez de Cerain A. Genotoxicity of silver nanoparticles. Nanomaterials. 2020;10:251. doi: 10.3390/nano10020251. PubMed DOI PMC
Polivkova M., Hubacek T., Staszek M., Svorcik V., Siegel J. Antimicrobial treatment of polymeric medical devices by silver nanomaterials and related technology. Int. J. Mol. Sci. 2017;18:419. doi: 10.3390/ijms18020419. PubMed DOI PMC
Singh N., Manshian B., Jenkins G.J., Griffiths S.M., Williams P.M., Maffeis T.G., Wright C.J., Doak S.H. Nano genotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials. 2009;30:3891–3914. doi: 10.1016/j.biomaterials.2009.04.009. PubMed DOI
Xie H., Mason M.M., Wise J.P., Sr. Genotoxicity of metal nanoparticles. Rev. Environ. Health. 2011;26:251–268. doi: 10.1515/REVEH.2011.033. PubMed DOI
Magdolenova Z., Collins A., Kumar A., Dhawan A., Stone V., Dusinska M. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology. 2014;8:233–278. doi: 10.3109/17435390.2013.773464. PubMed DOI
Evans S.J., Clift M.J., Singh N., de Oliveira Mallia J., Burgum M., Wills J.W., Wilkinson T.S., Jenkins G.J., Doak S.H. Critical review of the current and future challenges associated with advanced in vitro systems towards the study of nanoparticle (secondary) genotoxicity. Mutagenesis. 2017;32:233–241. doi: 10.1093/mutage/gew054. PubMed DOI PMC
Singh N.P., McCoy M.T., Tice R.R., Schneider E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 1988;175:184–191. doi: 10.1016/0014-4827(88)90265-0. PubMed DOI
Olive P.L., Banath J.P., Durand R.E. Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the “comet” assay. Radiat. Res. 1990;122:86–94. doi: 10.2307/3577587. PubMed DOI
Gichner T., Lovecka P., Vrchotova B. Genomic damage induced in tobacco plants by chlorobenzoic acids--metabolic products of polychlorinated biphenyls. Mutat. Res. 2008;657:140–145. doi: 10.1016/j.mrgentox.2008.08.021. PubMed DOI
Siegel J., Kaimlova M., Vyhnalkova B., Trelin A., Lyutakov O., Slepicka P., Svorcik V., Vesely M., Vokata B., Malinsky P., et al. Optomechanical processing of silver colloids: New generation of nanoparticle-polymer composites with bactericidal effect. Int. J. Mol. Sci. 2020;22:312. doi: 10.3390/ijms22010312. PubMed DOI PMC
Bastús N.G., Piella J., Puntes V. Quantifying the sensitivity of multipolar (dipolar, quadrupolar, and octapolar) surface plasmon resonances in silver nanoparticles: The effect of size, composition, and surface coating. Langmuir. 2016;32:290–300. doi: 10.1021/acs.langmuir.5b03859. PubMed DOI
Bastús N.G., Comenge J., Puntes V. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: Size focusing versus Ostwald ripening. Langmuir. 2011;27:11098–11105. doi: 10.1021/la201938u. PubMed DOI
Slepička P., Slepičková Kasálková N., Siegel J., Kolská Z., Švorčík V. Methods of gold and silver nanoparticles preparation. Materials. 2020;13:1. doi: 10.3390/ma13010001. PubMed DOI PMC
Brunner T.J., Wick P., Manser P., Spohn P., Grass R.N., Limbach L.K., Bruinink A., Stark W.J. In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol. 2006;40:4374–4381. doi: 10.1021/es052069i. PubMed DOI
Fubini B., Fenoglio I., Tomatis M., Turci F. Effect of chemical composition and state of the surface on the toxic response to high aspect ratio nanomaterials. Nanomedicine. 2011;6:899–920. doi: 10.2217/nnm.11.80. PubMed DOI
Cvjetko P., Zovko M., Stefanic P.P., Biba R., Tkalec M., Domijan A.M., Vrcek I.V., Letofsky-Papst I., Sikic S., Balen B. Phytotoxic effects of silver nanoparticles in tobacco plants. Environ. Sci. Pollut. Res. Int. 2018;25:5590–5602. doi: 10.1007/s11356-017-0928-8. PubMed DOI
Ghosh M., Manivannan J., Sinha S., Chakraborty A., Mallick S.K., Bandyopadhyay M., Mukherjee A. In vitro and in vivo genotoxicity of silver nanoparticles. Mutat. Res. 2012;749:60–69. doi: 10.1016/j.mrgentox.2012.08.007. PubMed DOI
Geisler-Lee J., Brooks M., Gerfen J.R., Wang Q., Fotis C., Sparer A., Ma X., Berg R.H., Geisler M. Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana. Nanomaterials. 2014;4:301–318. doi: 10.3390/nano4020301. PubMed DOI PMC
Sabo-Attwood T., Unrine J.M., Stone J.W., Murphy C.J., Ghoshroy S., Blom D., Bertsch P.M., Newman L.A. Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology. 2012;6:353–360. doi: 10.3109/17435390.2011.579631. PubMed DOI
Rajeshwari A., Suresh S., Chandrasekaran N., Mukherjee A. Toxicity evaluation of gold nanoparticles using an Allium cepa bioassay. RSC Adv. 2016;6:24000–24009. doi: 10.1039/C6RA04712B. DOI
Tebbe M., Kuttner C., Männel F.A., Chanan A.M. Colloidally stable and surfactant-free protein gold nanorods in biological media. Appl. Mater. Interfaces. 2015;7:5984–5991. doi: 10.1021/acsami.5b00335. PubMed DOI PMC
Lasat M.M. Phytoextraction of toxic metals. J. Environ. Qual. 2002;31:109–120. doi: 10.2134/jeq2002.1090. PubMed DOI
Machesky M.L., Andrade W.O., Rose A.W. Interactions of gold (III) chloride and elemental gold with peat-derived humic substances. Chem. Geol. 1992;102:53–71. doi: 10.1016/0009-2541(92)90146-V. DOI
Mahnoudi M., Azadmanesh K., Shokrgozan M.A., Journeay W.S., Laurent S. Effect of nanoparticles on the cell life cycle. Chem. Rev. 2011;111:3407–3432. doi: 10.1021/cr1003166. PubMed DOI
Li H., Xia H., Ding W., Li Y., Shi Q., Wang D., Tao X. Synthesis of monodisperse, quasi-spherical silver nanoparticles with sizes defined by the nature of silver precursors. Langmuir. 2014;30:2498–2504. doi: 10.1021/la4047148. PubMed DOI
Gichner T., Patkova Z., Szakova J., Demnerova K. Cadmium induces DNA damage in tobacco roots, but no DNA damage, somatic mutations or homologous recombination in tobacco leaves. Mutat. Res. 2004;559:49–57. doi: 10.1016/j.mrgentox.2003.12.008. PubMed DOI