Genomic Damage Induced in Nicotiana tabacum L. Plants by Colloidal Solution with Silver and Gold Nanoparticles

. 2021 Jun 21 ; 10 (6) : . [epub] 20210621

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34205810

Grantová podpora
17-10907S GA CR Czech science foundation

Tobacco seedlings (Nicotiana tabacum L cv. Wisconsin 38) were treated for 24 h with colloidal solution of silver and gold nanoparticles (AgNPs and AuNPs) of different size or cultivated for 8 weeks on soil polluted with these NPs. DNA damage in leaf and roots nuclei was evaluated by the comet assay. AgNPs of the size 22-25 nm at concentrations higher than 50 mg·L-1 significantly increased the tail moments (TM) values in leaf nuclei compared to the negative control. Ag nanoparticles of smaller size 12-15 nm caused a slight increase in tail moment without significant difference from the negative control. The opposite effect of AgNPs was observed on roots. The increasing tail moment was registered for smaller NPs. Similar results were observed for AuNPs at a concentration of 100 mg·L-1. DNA damaging effects after growing tobacco plants for 8 weeks in soil polluted with AgNPs and AuNPs of different size and concentrations were observed. While lower concentrations of both types of particles had no effect on the integrity of DNA, concentration of 30 mg·kg-1 of AgNPs caused significant DNA damage in leaves of tobacco plants. AuNPs had no effect even at the highest concentration. The content of Ag was determined by ICP-MS in above-ground part of plants (leaves) after 8 weeks of growth in soil with 30 mg·kg-1. AgNPs and was 2.720 ± 0.408 µg·g-1. Long term effect is much less harmful probably due to the plant restoration capability.

Zobrazit více v PubMed

Jeevanandam J., Barhoum A., Chan Y.S., Dufresne A., Danquah M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018;9:1050–1074. doi: 10.3762/bjnano.9.98. PubMed DOI PMC

Hochella M.F., Spencer M.G., Jones K.L. Nanotechnology: Nature’s gift or scientists’ brainchild? Environ. Sci. Nano. 2015;2:114–119. doi: 10.1039/C4EN00145A. DOI

Judy J.D., Unrine J.M., Rao W., Wirick S., Bertsch P.M. Bioavailability of gold nanomaterials to plants: Importance of particle size and surface coating. Environ. Sci. Technol. 2012;46:8467–8474. doi: 10.1021/es3019397. PubMed DOI

Avalos A., Haza A.I., Mateo D., Morales P. Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells. J. Appl. Toxicol. 2014;34:413–423. doi: 10.1002/jat.2957. PubMed DOI

Carlson C., Hussain S.M., Schrand A.M., Braydich-Stolle L.K., Hess K.L., Jones R.L., Schlager J.J. Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species. J. Phys. Chem. B. 2008;112:13608–13619. doi: 10.1021/jp712087m. PubMed DOI

Khaing Oo M.K., Yang Y., Hu Y., Gomez M., Du H., Wang H. Gold nanoparticle-enhanced and size-dependent generation of reactive oxygen species from protoporphyrin IX. ACS Nano. 2012;6:1939–1947. doi: 10.1021/nn300327c. PubMed DOI

Scherer M.D., Sposito J.C.V., Falco W.F., Grisolia A.B., Andrade L.H.C., Lima S.M., Machado G., Nascimento V.A., Goncalves D.A., Wender H., et al. Cytotoxic and genotoxic effects of silver nanoparticles on meristematic cells of Allium cepa roots: A close analysis of particle size dependence. Sci. Total Environ. 2019;660:459–467. doi: 10.1016/j.scitotenv.2018.12.444. PubMed DOI

Latha D., Prabu P., Gnanamoorthy G., Munusamy S., Sampurnam S., Arulvasu C., Narayanan V. Size-dependent catalytic property of gold nanoparticle mediated by Justicia adhatoda leaf extract. SN Appl. Sci. 2018;1:134. doi: 10.1007/s42452-018-0148-y. DOI

Freese C., Gibson M.I., Klok H.A., Unger R.E., Kirkpatrick C.J. Size- and coating-dependent uptake of polymer-coated gold nanoparticles in primary human dermal microvascular endothelial cells. Biomacromolecules. 2012;13:1533–1543. doi: 10.1021/bm300248u. PubMed DOI

Etame A.B., Smith C.A., Chan W.C., Rutka J.T. Design and potential application of PEGylated gold nanoparticles with size-dependent permeation through brain microvasculature. Nanomedicine. 2011;7:992–1000. doi: 10.1016/j.nano.2011.04.004. PubMed DOI

Chakraborty A., Das A., Raha S., Barui A. Size-dependent apoptotic activity of gold nanoparticles on osteosarcoma cells correlated with SERS signal. J. Photochem. Photobiol. B. 2020;203:111778. doi: 10.1016/j.jphotobiol.2020.111778. PubMed DOI

Siddiqi K.S., Husen A. Engineered gold nanoparticles and plant adaptation potential. Nanoscale Res. Lett. 2016;11:400. doi: 10.1186/s11671-016-1607-2. PubMed DOI PMC

Navarro E., Baun A., Behra R., Hartmann N.B., Filser J., Miao A.J., Quigg A., Santschi P.H., Sigg L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 2008;17:372–386. doi: 10.1007/s10646-008-0214-0. PubMed DOI

Eichert T., Kurtz A., Steiner U., Goldbach H.E. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol. Plant. 2008;134:151–160. doi: 10.1111/j.1399-3054.2008.01135.x. PubMed DOI

Yan A., Chen Z. Impacts of silver Nanoparticles on plants: A focus on the phytotoxicity and underlying mechanism. Int. J. Mol. Sci. 2019;20:1003. doi: 10.3390/ijms20051003. PubMed DOI PMC

Aslani F., Bagheri S., Muhd Julkapli N., Juraimi A.S., Hashemi F.S.G., Baghdadi A. Effects of engineered nanomaterials on plants growth: An overview. Sci. World J. 2014;2014:641759. doi: 10.1155/2014/641759. PubMed DOI PMC

Rodriguez-Garraus A., Azqueta A., Vettorazzi A., Lopez de Cerain A. Genotoxicity of silver nanoparticles. Nanomaterials. 2020;10:251. doi: 10.3390/nano10020251. PubMed DOI PMC

Polivkova M., Hubacek T., Staszek M., Svorcik V., Siegel J. Antimicrobial treatment of polymeric medical devices by silver nanomaterials and related technology. Int. J. Mol. Sci. 2017;18:419. doi: 10.3390/ijms18020419. PubMed DOI PMC

Singh N., Manshian B., Jenkins G.J., Griffiths S.M., Williams P.M., Maffeis T.G., Wright C.J., Doak S.H. Nano genotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials. 2009;30:3891–3914. doi: 10.1016/j.biomaterials.2009.04.009. PubMed DOI

Xie H., Mason M.M., Wise J.P., Sr. Genotoxicity of metal nanoparticles. Rev. Environ. Health. 2011;26:251–268. doi: 10.1515/REVEH.2011.033. PubMed DOI

Magdolenova Z., Collins A., Kumar A., Dhawan A., Stone V., Dusinska M. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology. 2014;8:233–278. doi: 10.3109/17435390.2013.773464. PubMed DOI

Evans S.J., Clift M.J., Singh N., de Oliveira Mallia J., Burgum M., Wills J.W., Wilkinson T.S., Jenkins G.J., Doak S.H. Critical review of the current and future challenges associated with advanced in vitro systems towards the study of nanoparticle (secondary) genotoxicity. Mutagenesis. 2017;32:233–241. doi: 10.1093/mutage/gew054. PubMed DOI PMC

Singh N.P., McCoy M.T., Tice R.R., Schneider E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 1988;175:184–191. doi: 10.1016/0014-4827(88)90265-0. PubMed DOI

Olive P.L., Banath J.P., Durand R.E. Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the “comet” assay. Radiat. Res. 1990;122:86–94. doi: 10.2307/3577587. PubMed DOI

Gichner T., Lovecka P., Vrchotova B. Genomic damage induced in tobacco plants by chlorobenzoic acids--metabolic products of polychlorinated biphenyls. Mutat. Res. 2008;657:140–145. doi: 10.1016/j.mrgentox.2008.08.021. PubMed DOI

Siegel J., Kaimlova M., Vyhnalkova B., Trelin A., Lyutakov O., Slepicka P., Svorcik V., Vesely M., Vokata B., Malinsky P., et al. Optomechanical processing of silver colloids: New generation of nanoparticle-polymer composites with bactericidal effect. Int. J. Mol. Sci. 2020;22:312. doi: 10.3390/ijms22010312. PubMed DOI PMC

Bastús N.G., Piella J., Puntes V. Quantifying the sensitivity of multipolar (dipolar, quadrupolar, and octapolar) surface plasmon resonances in silver nanoparticles: The effect of size, composition, and surface coating. Langmuir. 2016;32:290–300. doi: 10.1021/acs.langmuir.5b03859. PubMed DOI

Bastús N.G., Comenge J., Puntes V. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: Size focusing versus Ostwald ripening. Langmuir. 2011;27:11098–11105. doi: 10.1021/la201938u. PubMed DOI

Slepička P., Slepičková Kasálková N., Siegel J., Kolská Z., Švorčík V. Methods of gold and silver nanoparticles preparation. Materials. 2020;13:1. doi: 10.3390/ma13010001. PubMed DOI PMC

Brunner T.J., Wick P., Manser P., Spohn P., Grass R.N., Limbach L.K., Bruinink A., Stark W.J. In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol. 2006;40:4374–4381. doi: 10.1021/es052069i. PubMed DOI

Fubini B., Fenoglio I., Tomatis M., Turci F. Effect of chemical composition and state of the surface on the toxic response to high aspect ratio nanomaterials. Nanomedicine. 2011;6:899–920. doi: 10.2217/nnm.11.80. PubMed DOI

Cvjetko P., Zovko M., Stefanic P.P., Biba R., Tkalec M., Domijan A.M., Vrcek I.V., Letofsky-Papst I., Sikic S., Balen B. Phytotoxic effects of silver nanoparticles in tobacco plants. Environ. Sci. Pollut. Res. Int. 2018;25:5590–5602. doi: 10.1007/s11356-017-0928-8. PubMed DOI

Ghosh M., Manivannan J., Sinha S., Chakraborty A., Mallick S.K., Bandyopadhyay M., Mukherjee A. In vitro and in vivo genotoxicity of silver nanoparticles. Mutat. Res. 2012;749:60–69. doi: 10.1016/j.mrgentox.2012.08.007. PubMed DOI

Geisler-Lee J., Brooks M., Gerfen J.R., Wang Q., Fotis C., Sparer A., Ma X., Berg R.H., Geisler M. Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana. Nanomaterials. 2014;4:301–318. doi: 10.3390/nano4020301. PubMed DOI PMC

Sabo-Attwood T., Unrine J.M., Stone J.W., Murphy C.J., Ghoshroy S., Blom D., Bertsch P.M., Newman L.A. Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology. 2012;6:353–360. doi: 10.3109/17435390.2011.579631. PubMed DOI

Rajeshwari A., Suresh S., Chandrasekaran N., Mukherjee A. Toxicity evaluation of gold nanoparticles using an Allium cepa bioassay. RSC Adv. 2016;6:24000–24009. doi: 10.1039/C6RA04712B. DOI

Tebbe M., Kuttner C., Männel F.A., Chanan A.M. Colloidally stable and surfactant-free protein gold nanorods in biological media. Appl. Mater. Interfaces. 2015;7:5984–5991. doi: 10.1021/acsami.5b00335. PubMed DOI PMC

Lasat M.M. Phytoextraction of toxic metals. J. Environ. Qual. 2002;31:109–120. doi: 10.2134/jeq2002.1090. PubMed DOI

Machesky M.L., Andrade W.O., Rose A.W. Interactions of gold (III) chloride and elemental gold with peat-derived humic substances. Chem. Geol. 1992;102:53–71. doi: 10.1016/0009-2541(92)90146-V. DOI

Mahnoudi M., Azadmanesh K., Shokrgozan M.A., Journeay W.S., Laurent S. Effect of nanoparticles on the cell life cycle. Chem. Rev. 2011;111:3407–3432. doi: 10.1021/cr1003166. PubMed DOI

Li H., Xia H., Ding W., Li Y., Shi Q., Wang D., Tao X. Synthesis of monodisperse, quasi-spherical silver nanoparticles with sizes defined by the nature of silver precursors. Langmuir. 2014;30:2498–2504. doi: 10.1021/la4047148. PubMed DOI

Gichner T., Patkova Z., Szakova J., Demnerova K. Cadmium induces DNA damage in tobacco roots, but no DNA damage, somatic mutations or homologous recombination in tobacco leaves. Mutat. Res. 2004;559:49–57. doi: 10.1016/j.mrgentox.2003.12.008. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace