Methods of Gold and Silver Nanoparticles Preparation

. 2019 Dec 18 ; 13 (1) : . [epub] 20191218

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31861259

Grantová podpora
19-02482S Grantová Agentura České Republiky
18-07619S Grantová Agentura České Republiky

The versatile family of nanoparticles is considered to have a huge impact on the different fields of materials research, mostly nanoelectronics, catalytic chemistry and in study of cytocompatibility, targeted drug delivery and tissue engineering. Different approaches for nanoparticle preparation have been developed, not only based on "bottom up" and "top down" techniques, but also several procedures of effective nanoparticle modifications have been successfully used. This paper is focused on different techniques of nanoparticles' preparation, with primary focus on metal nanoparticles. Dispergation methods such as laser ablation and vacuum sputtering are introduced. Condensation methods such as reduction with sodium citrate, the Brust-Schiffrin method and approaches based on ultraviolet light or biosynthesis of silver and gold are also discussed. Basic properties of colloidal solutions are described. Also a historical overview of nanoparticles are briefly introduced together with short introduction to specific properties of nanoparticles and their solutions.

Zobrazit více v PubMed

Zhou J., Ralston J., Sedef R., Beattie D.A. Functionalized gold nanoparticles: Synthesis, structure and colloid stability. J. Colloid Interface Sci. 2009;331:251–262. doi: 10.1016/j.jcis.2008.12.002. PubMed DOI

Zhang L., Wang E. Metal nanoclusters: New fluorescent probes for sensors and bioimaging. Nano Today. 2014;9:132–157. doi: 10.1016/j.nantod.2014.02.010. DOI

Ghosh P., Han G., De M., Kim C.K., Rotello V.M. Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev. 2008;60:1307–1315. doi: 10.1016/j.addr.2008.03.016. PubMed DOI

Kamat P.V. Photophysical, Photochemical and Photocatalytic Aspects of Metal Nanoparticles. J. Phys. Chem. B. 2002;106:7729–7744. doi: 10.1021/jp0209289. DOI

Mingos D.M.P. Historical Introduction to Gold Colloids, Clusters and Nanoparticles. Springer Nature Switzerland AG; Basel, Switzerland: 2014.

Sahoo G.P., Basu S., Samanta S., Misra A. Microwave-assisted synthesis of anisotropic gold nanocrystals in polymer matrix and their catalytic activities. J. Exp. Nanosci. 2014;10:690–702. doi: 10.1080/17458080.2013.877163. DOI

Fajstavr D., Slepička P., Švorčík V. LIPSS with gold nanoclusters prepared by combination of heat treatment and KrF exposure. Appl. Surf. Sci. 2019;465:919–928. doi: 10.1016/j.apsusc.2018.09.167. DOI

Scholl J.A., Koh A.L., Dionne J.A. Quantum plasmon resonances of individual metallic nanoparticles. Nature. 2012;483:421–427. doi: 10.1038/nature10904. PubMed DOI

Sun Y., Xia Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science. 2002;298:2176–2179. doi: 10.1126/science.1077229. PubMed DOI

Naidu K.B., Govender P., Adam J.K. Biomedical applications and toxicity of nanosilver: A review. Med. Technol. SA. 2015;29:13–19.

Yu S.J., Yin Y.G., Liu J.F. Silver nanoparticles in the environment. Environ. Sci. Proc. Impacts. 2013;15:78–92. doi: 10.1039/C2EM30595J. PubMed DOI

Edwards-Jones V. The benefits of silver in hygiene, personal care and healthcare. Lett. Appl. Microbiol. 2009;49:147–152. doi: 10.1111/j.1472-765X.2009.02648.x. PubMed DOI

Chernousova S., Epple M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem. Int. Ed. Engl. 2013;52:1636–1653. doi: 10.1002/anie.201205923. PubMed DOI

Simon-Deckers A., Gouget B., Mayne-L’hermite M., Herlin-Boime N., Reynaud C., Carriere M. In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicology. 2008;253:137–146. doi: 10.1016/j.tox.2008.09.007. PubMed DOI

Cho J.-G., Kim K.-T., Ryu T.-K., Lee J.-W., Kim J.-E., Kim J. Stepwise embryonic toxicity of silver nanoparticles on Oryzias latipes. BioMed. Res. Int. 2013;2013:1–7. PubMed PMC

Gaillet S., Rouanet J.M. Silver nanoparticles: Their potential toxic effects after oral exposureand underlying mechanisms–A review. Food Chem. Toxicol. 2015;77:58–63. doi: 10.1016/j.fct.2014.12.019. PubMed DOI

Hornyak G.L., Tibbals H., Dutta J. Introduction to Nanoscience. CRC Press; Boca Raton, FL, USA: 2009.

Barber D., Freestone I. An investigation of the origin of the colour of the Lycurgus Cup by analytical transmission electron microscopy. Archaeometry. 1990;32:33–45. doi: 10.1111/j.1475-4754.1990.tb01079.x. DOI

Mehlman F. Phaidon Guide to Glass. Phaidon Press LTD; London, UK: 1982.

Kumar N., Kumar R. Nanotechnology and Nanomaterials in the Treatment of Life-Threatening Diseases. Elsevier; Amsterdam, The Netherlands: 2014. pp. 1–51.

Daniel M.C., Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis and nanotechnology. Chem. Rev. 2004;104:293–346. doi: 10.1021/cr030698+. PubMed DOI

Tweney R.D. Discovering discovery: How Faraday found the first metallic colloid. Perspect. Sci. 2006;14:97–121. doi: 10.1162/posc.2006.14.1.97. DOI

Rayavarapu R.G., Petersen W., Ungureanu C., Post J.N., van Leeuwen T.G., Manohar S. Synthesis and bioconjugation of gold nanoparticles as potential molecular probes for light-based imaging techniques. Int. J. Biomed. Imaging. 2007;2007:29817. doi: 10.1155/2007/29817. PubMed DOI PMC

Mehrotra P. Biosensors and their applications–A review. J. Oral Biol. Craniofacial Res. 2016;6:153–159. doi: 10.1016/j.jobcr.2015.12.002. PubMed DOI PMC

Sawant S.N. Development of Biosensors from Biopolymer Composites. In: Sadasivuni K.K., Cabibihan J.J., Ponnamma D., AlMaadeed M.A.A., Kim J., editors. Biopolymer Composites in Electronics. Elsevier; Amsterdam, The Netherlands: 2017.

Liedberg B., Johansen K. Affinity biosensing based on surface plasmon resonance detection. In: Rogers K.R., Mulchandani A., editors. Affinity Biosensors. Springer; Berlin, Germany: 1998. pp. 31–53.

Slepickova Kasalkova N., Žáková P., Stibor I., Slepička P., Kolská Z., Karpíšková J., Švorčík V. Carbon nanostructures grafted biopolymers for medical applications. Mater. Technol. 2019;34:376–385. doi: 10.1080/10667857.2019.1573943. DOI

Žáková P., Slepičková Kasálková N., Slepička P., Kolská Z., Karpíšková J., Stibor I., Švorčík V. Cytocompatibility of polyethylene grafted with triethylenetetramine functionalized carbon nanoparticles. Appl. Surf. Sci. 2017;422:809–816. doi: 10.1016/j.apsusc.2017.06.089. PubMed DOI

Lu J., Elam J.W., Stair P. Atomic layer deposition-Sequential self-limiting surface reactions for advanced catalyst “bottom-up” synthesis. Surf. Sci. Rep. 2016;71:410–472. doi: 10.1016/j.surfrep.2016.03.003. DOI

Schmid G. Large clusters and colloids. Metals in the embryonic state. Chem. Rev. 1992;92:1709–1727. doi: 10.1021/cr00016a002. DOI

Hosokawa M., Nogi K., Naito M., Yokoyama T. Nanoparticle Technology Handbook. Elsevier; Amsterdam, The Netherlands: 2007.

Eustis S., El-Sayed M.A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 2006;35:209–217. doi: 10.1039/B514191E. PubMed DOI

Slepička P., Elashnikov R., Ulbrich P., Staszek M., Kolská Z., Švorčík V. Stabilization of sputtered gold and silver nanoparticles in PEG colloid solutions. J. Nanopart. Res. 2015;17:11–26. doi: 10.1007/s11051-014-2850-z. DOI

Unser S., Bruzas I., He J., Sagle L. Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches. Sensors. 2015;15:15684–15716. doi: 10.3390/s150715684. PubMed DOI PMC

Kelly K.L., Coronado E., Zhao L.L., Schatz G.C. The Optical Properties of Metal Nanoparticles? The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B. 2002;107:668–677. doi: 10.1021/jp026731y. DOI

Cao G., Wang Y. Nanostructures and Nanomaterials: Synthesis, Properties, and Applications. Volume 2 World Scientific Co. Pte Ltd.; Singapore: 2011. (World Scientific Series in Nanoscience and Nanotechnology).

Amendola V., Meneghetti M. Size Evaluation of Gold Nanoparticles by UV−vis Spectroscopy. J. Phys. Chem. C. 2009;113:4277–4285. doi: 10.1021/jp8082425. DOI

Niskanen I., Forsberg V., Zakrisson D., Reza S., Hummelgård M., Andres B., Fedorov I., Suopajärvi T., Liimatainen H., Thungström G. Determination of nanoparticle size using Rayleigh approximation and Mie theory. Chem. Eng. Sci. 2019;201:222–229. doi: 10.1016/j.ces.2019.02.020. DOI

Liu Y., Zhao Y., Zhang L., Yan Y., Jiang Y. Controllable plasmon-induced catalytic reaction by surface-enhanced and tip-enhanced Raman spectroscopy. Spectrochim. Acta A. 2019;219:539–546. doi: 10.1016/j.saa.2019.04.086. PubMed DOI

Lok C.N., Ho C.M., Chen R., He Q.Y., Yu W.Y., Sun H., Tam P.H., Chiu J.F., Che C.M. Silver nanoparticles: Partial oxidation and antibacterial activities. J. Biol. Inorg. Chem. 2007;12:527–534. doi: 10.1007/s00775-007-0208-z. PubMed DOI

Krutyakov Y.A., Kudrinskiy A.A., Olenin A.Y., Lisichkin G.V. Synthesis and properties of silver nanoparticles: Advances and prospects. Russ. Chem. Rev. 2008;77:233. doi: 10.1070/RC2008v077n03ABEH003751. DOI

Schmid G., Corain B. Nanoparticulated gold: Syntheses, structures, electronics, and reactivities. Eur. J. Inorg. Chem. 2003;2003:3081–3098. doi: 10.1002/ejic.200300187. DOI

Valueva S.V., Kipper A.I., Borovikova L.N., Matveeva N.A. The influence of the nature of a nanoparticle and polymer matrix on the morphological characteristics of polymeric nanostructures. Russ. J. Phys. Chem. 2010;84:2110–2115. doi: 10.1134/S0036024410120186. DOI

Xia Y., Xiong Y., Lim B., Skrabalak S.E. Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angew. Chem. Int. Ed. 2008;48:60–103. doi: 10.1002/anie.200802248. PubMed DOI PMC

Yu D., Yam V.W.-W. Controlled Synthesis of Monodisperse Silver Nanocubes in Water. J. Am. Chem. Soc. 2004;126:13200–13201. doi: 10.1021/ja046037r. PubMed DOI

Reznickova A., Slepicka P., Slavikova N., Staszek M., Svorcik V. Preparation, aging and temperature stability of PEGylated gold nanoparticles. Colloid. Surf. A. 2017;523:91–97. doi: 10.1016/j.colsurfa.2017.04.005. DOI

Deori K., Gupta D., Saha B., Deka S. Design of 3-Dimensionally Self-Assembled CeO2 Nanocube as a Breakthrough Catalyst for Efficient Alkylarene Oxidation in Water. ACS Catal. 2014;4:3169–3179. doi: 10.1021/cs500644j. DOI

Dykman L., Bogatyrev V., Shchegolev S.Y., Khlebtsov N. Gold Nanoparticles: Synthesis, Proper Ties, and Biomedical Applications. Nauka; Moscow, Russia: 2008.

Panáček A., Kvítek L., Prucek R., Kolář M., Večeřová R., Pizúrová N., Sharma V.K., Nevěcná T., Zbořil R. Silver Colloid Nanoparticles? Synthesis, Characterization, and Their Antibacterial Activity. J. Phys. Chem. B. 2006;110:16248–16253. doi: 10.1021/jp063826h. PubMed DOI

Tran Q.H., Nguyen V.Q., Le A.T. Silver nanoparticles: Synthesis, properties, toxicology, applications and perspectives. Adv. Nat. Sci. Nanosci. 2013;4:033001. doi: 10.1088/2043-6262/4/3/033001. DOI

Dibrov P., Dzioba J., Gosink K.K., Häse C.C. Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrob. Agents Chemother. 2002;46:2668–2670. doi: 10.1128/AAC.46.8.2668-2670.2002. PubMed DOI PMC

Pal S., Tak Y.K., Song J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microb. 2007;73:1712–1720. doi: 10.1128/AEM.02218-06. PubMed DOI PMC

Singaravelu G., Arockiamary J., Kumar V.G., Govindaraju K. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloid Surf. B. 2007;57:97–101. doi: 10.1016/j.colsurfb.2007.01.010. PubMed DOI

Arockiya Aarthi Rajathi F., Parthiban C., Ganesh Kumar V., Anantharaman P. Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (kützing) Spectrochim. Acta A. 2012;99:166–173. doi: 10.1016/j.saa.2012.08.081. PubMed DOI

Nguyenova H.Y., Vokata B., Zaruba K., Siegel J., Kolska Z., Svorcik V., Slepicka P., Reznickova A. Silver nanoparticles grafted onto PET: Effect of preparation method on antibacterial activity. React. Funct. Polym. 2019;145:104376. doi: 10.1016/j.reactfunctpolym.2019.104376. DOI

Neděla O., Slepička P., Slepickova Kasalkova N., Sajdl P., Kolská Z., Rimpelová S., Švorčík V. Antibacterial properties of angle-dependent nanopatterns on polystyrene. React. Funct. Polym. 2019;136:173–180. doi: 10.1016/j.reactfunctpolym.2019.01.007. DOI

Neděla O., Slepička P., Švorčík V. Surface Modification of Polymer Substrates for Biomedical Applications. Materials. 2017;10:1115. doi: 10.3390/ma10101115. PubMed DOI PMC

Kimling J., Maier M., Okenve B., Kotaidis V., Ballot H., Plech A. Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B. 2006;110:15700–15707. doi: 10.1021/jp061667w. PubMed DOI

Pillai Z.S., Kamat P.V. What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J. Phys. Chem. B. 2004;108:945–951. doi: 10.1021/jp037018r. DOI

Panigrahi S., Kundu S., Ghosh S., Nath S., Pal T. General method of synthesis for metal nanoparticles. J. Nanopart. Res. 2004;6:411–414. doi: 10.1007/s11051-004-6575-2. DOI

Mikhlin Y., Karacharov A., Likhatski M., Podlipskaya T., Zubavichus Y., Veligzhanin A., Zaikovski V. Submicrometer intermediates in the citrate synthesis of gold nanoparticles: New insights into the nucleation and crystal growth mechanisms. J. Colloid Interface Sci. 2011;362:330–336. doi: 10.1016/j.jcis.2011.06.077. PubMed DOI

Wagner J., Kohler J.M. Continuous synthesis of gold nanoparticles in a microreactor. Nano Lett. 2005;5:685591. doi: 10.1021/nl050097t. PubMed DOI

Siegel J., Kvítek O., Ulbrich P., Kolská Z., Slepička P., Švorčík V. Progressive approach for metal nanoparticle synthesis. Mater. Lett. 2012;89:47–50. doi: 10.1016/j.matlet.2012.08.048. DOI

Staszek M., Siegel J., Kolarova K., Rimpelova S., Svorcik V. Formation and antibacterial action of Pt and Pd nanoparticles sputtered into liquid. Micro Nano Lett. 2014;9:778–781. doi: 10.1049/mnl.2014.0345. DOI

Zhang A., Liu M., Liu M., Xiao Y., Li Z., Chen J., Sun Y., Zhao J., Fang S., Jia D., et al. Homogeneous Pd nanoparticles produced in direct reactions: Green synthesis, formation mechanism and catalysis properties. J. Mater. Chem. A. 2014;2:1369–1374. doi: 10.1039/C3TA14299J. DOI

Brust M., Walker M., Bethell D., Schiffrin D.J., Whyman R. Synthesis of thiol-derivatized gold nanoparticles in a 1994, 2-phase liquid-liquid system. J. Chem. Soc. Chem. Commun. 1994:801–802. doi: 10.1039/C39940000801. DOI

Liu Y., Liu L., Yuan M., Guo R. Preparation and characterization of casein-stabilized gold nanoparticles for catalytic applications. Colloid Surf. A. 2013;417:18–25. doi: 10.1016/j.colsurfa.2012.08.050. DOI

Doyen M., Bartik K., Bruylants G. UV-Vis and NMR study of the formation of gold nanoparticles by citrate reduction: Observation of gold-citrate aggregates. J. Colloid Interface Sci. 2013;399:1–5. doi: 10.1016/j.jcis.2013.02.040. PubMed DOI

De S., Kundu R., Biswas A. Synthesis of gold nanoparticles in niosomes. J. Colloid Interface Sci. 2012;386:9–15. doi: 10.1016/j.jcis.2012.06.073. PubMed DOI

Wangoo N., Bhasin K.K., Mehta S.K., Suri C.R. Synthesis and capping of water-dispersed gold nanoparticles by an amino acid: Bioconjugation and binding studies. J. Colloid Interface Sci. 2008;323:247–254. doi: 10.1016/j.jcis.2008.04.043. PubMed DOI

Hori T., Nagata K., Iwase A., Hori F. Synthesis of Cu nanoparticles using gamma-ray irradiation reduction method. Jpn. J. Appl. Phys. 2014;53:05FC05. doi: 10.7567/JJAP.53.05FC05. DOI

Yokoyama S., Takahashi H., Itoh T., Motomiya K., Tohji K. Synthesis of metallic Cu nanoparticles by controlling Cu complexes in aqueous solution. Adv. Powder Technol. 2014;25:999–1006. doi: 10.1016/j.apt.2014.01.024. DOI

Bankar A., Joshi B., Kumar A.R., Zinjarde S. Banana peel extract mediated synthesis of gold nanoparticles. Colloids Surf. B. 2010;80:45–50. doi: 10.1016/j.colsurfb.2010.05.029. PubMed DOI

Bankar A., Joshi B., Kumar A.R., Zinjarde S. Banana peel extract mediated novel route for the synthesis of palladium nanoparticles. Mater. Lett. 2010;64:1951–1953. doi: 10.1016/j.matlet.2010.06.021. DOI

Bankar A., Joshi B., Kumar A.R., Zinjarde S. Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloid Surf. A. 2010;368:58–63. doi: 10.1016/j.colsurfa.2010.07.024. PubMed DOI

Das R.K., Sharma P., Nahar P., Bora U. Synthesis of gold nanoparticles using aqueous extract of Calotropis procera latex. Mater. Lett. 2011;65:610–613. doi: 10.1016/j.matlet.2010.11.040. DOI

Ren F., He X., Wang K., Yin J. Biosynthesis of gold nanoparticles using catclaw buttercup (Radix Ranunculi Ternati) and evaluation of its colloidal stability. J. Biomed. Nanotechnol. 2012;8:586–593. doi: 10.1166/jbn.2012.1417. PubMed DOI

Im H.-J., Lee B.C., Yeon J.-W. Preparation and characterization of Ag nanoparticle-embedded blank and ligand-anchored silica gels. J. Nanosci. Nanotechnol. 2013;13:7643–7647. doi: 10.1166/jnn.2013.7824. PubMed DOI

Sarkar P., Bhui D.K., Bar H., Sahoo G.P., De S.P., Misra A. Synthesis and photophysical study of silver nanoparticles stabilized by unsaturated dicarboxylates. J. Lumin. 2009;129:704–709. doi: 10.1016/j.jlumin.2009.02.002. DOI

Mafune F., Kohno J.-Y., Takeda Y., Kondow T., Sawabe H. Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J. Phys. Chem. B. 2000;104:9111–9117. doi: 10.1021/jp001336y. DOI

Hatakeyama Y., Morita T., Takahashi S., Onishi K., Nishikawa K. Synthesis of Gold Nanoparticles in Liquid Polyethylene Glycol by Sputter Deposition and Temperature Effects on their Size and Shape. J. Phys. Chem. C. 2011;115:3279–3285. doi: 10.1021/jp110455k. DOI

Gracia R., Vijayakrishna K., Mecerreyes D. Poly (ionic liquid) s with redox active counter-anions: All-in-one reactants and stabilizers for the synthesis of functional colloids. React. Funct. Polym. 2014;79:54–58. doi: 10.1016/j.reactfunctpolym.2014.03.005. DOI

Torimoto T., Okazaki K.-I., Kiyama T., Hirahara K., Tanaka N., Kuwabata S. Sputter deposition onto ionic liquids: Simple and clean synthesis of highly dispersed ultrafine metal nanoparticles. Appl. Phys. Lett. 2006;89:243117. doi: 10.1063/1.2404975. DOI

Wender H., de Oliveira L.F., Feil A.F., Lissner E., Migowski P., Meneghetti M.R., Teixeira S.R., Dupont J. Synthesis of gold nanoparticles in a biocompatible fluid from sputtering deposition onto castor oil. Chem. Commun. 2010;46:7019–7021. doi: 10.1039/c0cc01353f. PubMed DOI

Vanecht E., Binnemans K., Patskovsky S., Meunier M., Seo J.W., Stappers L., Fransaer J. Stability of sputter-deposited gold nanoparticles in imidazolium ionic liquids. Phys. Chem. Chem. Phys. 2012;14:5662–5671. doi: 10.1039/c2cp23677j. PubMed DOI

Hatakeyama Y., Onishi K., Nishikawa K. Effects of sputtering conditions on formation of gold nanoparticles in sputter deposition technique. RSC Adv. 2011;1:1815–1821. doi: 10.1039/c1ra00688f. DOI

Hatakeyama Y., Takahashi S., Nishikawa K. Can Temperature Control the Size of Au Nanoparticles Prepared in Ionic Liquids by the Sputter Deposition Technique? J. Phys. Chem. C. 2010;114:11098–11102. doi: 10.1021/jp102763n. DOI

Ye G.X., Zhang Q.R., Feng C.M., Ge H.L., Jiao Z.K. Structural and electrical properties of a metallic rough-thin-film system deposited on liquid substrates. Phys. Rev. B. 1996;54:14754–14757. doi: 10.1103/PhysRevB.54.14754. PubMed DOI

Ye G.X., Geng C.M., Zhang Z.R., Ge H.L., Zhang X.J. Structural and critical behaviors of ag rough films deposited on liquid substrates. Chin. Phys. Lett. 1996;13:772–774. doi: 10.1088/0256-307X/13/10/016. DOI

Da Silva E.C., da Silva MG A., Meneghetti S.M.P., Machado G., Alencar M.A.R.C., Hickmann J.M., Meneghetti M.R. Synthesis of colloids based on gold nanoparticles dispersed in castor oil. J. Nanopart. Res. 2008;10:201–208. doi: 10.1007/s11051-008-9483-z. DOI

Wender H., Goncalves R.V., Feil A.F., Migowski P., Poletto F.S., Pohlmann A.R., Dupont J., Teixeira S.R. Sputtering onto liquids: From thin films to nanoparticles. J. Phys. Chem. C. 2011;115:16362–16367. doi: 10.1021/jp205390d. DOI

Dupont J., de Souza R.F., Suarez P.A.Z. Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev. 2002;102:3667–3691. doi: 10.1021/cr010338r. PubMed DOI

Wender H., Migowski P., Feil A.F., Teixeira S.R., Dupont J. Sputtering deposition of nanoparticles onto liquid substrates: Recent advances and future trends. Coord. Chem. Rev. 2013;257:2468–2483. doi: 10.1016/j.ccr.2013.01.013. DOI

Antonietti M., Kuang D.B., Smarsly B., Yong Z. Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angew. Chem. Int. Ed. 2004;43:4988–4992. doi: 10.1002/anie.200460091. PubMed DOI

Migowski P., Dupont J. Catalytic applications of metal nanoparticles in imidazolium ionic liquids. Chem. Eur. J. 2007;13:32–39. doi: 10.1002/chem.200601438. PubMed DOI

Wender H., de Oliveira L.F., Migowski P., Feil A.F., Lissner E., Prechtl M.H.G., Teixeira S.R., Dupont J. Ionic liquid surface composition controls the size of gold nanoparticles prepared by sputtering deposition. J. Phys. Chem. C. 2010;114:11764–11768. doi: 10.1021/jp102231x. DOI

Migowski P., Zanchet D., Machado G., Gelesky M.A., Teixeira S.R., Dupont J. Nanostructures in ionic liquids: Correlation of iridium nanoparticles’ size and shape with imidazolium salts’ structural organization and catalytic properties. Phys. Chem. Chem. Phys. 2010;12:6826–6833. doi: 10.1039/b925834e. PubMed DOI

Redel E., Thomann R., Janiak C. Use of ionic liquids (ILs) for the IL-anion size-dependent formation of Cr, Mo and W nanoparticles from metal carbonyl M(CO)6 precursors. Chem. Commun. 2008;15:1789–1791. doi: 10.1039/b718055a. PubMed DOI

Redel E., Thomann R., Janiak C. First correlation of nanoparticle size-dependent formation with the ionic liquid anion molecular volume. Inorg. Chem. 2008;47:14–16. doi: 10.1021/ic702071w. PubMed DOI

Švorčík V., Kolská Z., Siegel J., Slepička P. “Short” Dithiol and Au Nanoparticles Grafting on Plasma Treated Polyethyleneterephthalate. J. Nano Res. 2013;25:40–48. doi: 10.4028/www.scientific.net/JNanoR.25.40. PubMed DOI PMC

Kalachyova Y., Lyutakov O., Solovyev A., Slepička P., Švorčík V. Surface morphology and optical properties of porphyrin/Au and Au/porphyrin/Au systems. Nanoscale Res. Lett. 2013;8:547. PubMed PMC

Slepičková Kasálková N., Stýblová Š., Slepička P., Rimpelová S., Švorčík V. Surface changes of polymer modified by gold nanoparticles. Int. J. Nanotechnol. 2017;14:120–132. doi: 10.1504/IJNT.2017.082451. DOI

Slepička P., Přibyl M., Fajstavr D., Ulbrich P., Siegel J., Řezníčková A., Švorčík V. Grafting of platinum nanostructures on biopolymer at elevated temperature. Colloids Surf. A. 2018;546:316–325.

Slepička P., Michaljaničová I., Slepičková Kasálková N., Kolská Z., Rimpelová S., Ruml T., Švorčík V. Poly-l -lactic acid modified by etching and grafting with gold nanoparticles. J. Mater. Sci. 2013;48:5871–5879. doi: 10.1007/s10853-013-7383-9. DOI

Reznickova A., Slepicka P., Nguyenova H.Y., Kolska Z., Dendisova M., Svorcik V. Copper-gold sandwich structures on PE and PET and their SERS enhancement effect. RSC Adv. 2017;7:23055–23064. doi: 10.1039/C7RA01010A. DOI

Slepicka P., Slepickova Kasalkova N., Siegel J., Kolska Z., Bacakova Z., Svorcik V. Nano-structured and functionalized surfaces for cytocompatibility improvement and bactericidal action. Biotechnol. Adv. 2015;33:1120–1129. doi: 10.1016/j.biotechadv.2015.01.001. PubMed DOI

Slepicka P., Siegel J., Lyutakov O., Slepickova Kasalkova N., Kolska Z., Bacakova L., Svorcik V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. doi: 10.1016/j.biotechadv.2017.12.011. PubMed DOI

Slepička P., Malá Z., Rimpelová S., Švorčík V. Antibacterial properties of modified biodegradable PHB non-woven fabric. Mater. Sci. Eng. C. 2016;65:364–368. doi: 10.1016/j.msec.2016.04.052. PubMed DOI

Hayat M.A. Colloidal Gold: Principles, Methods, and Applications. Elsevier; Amsterdam, The Netherlands: 2012.

Yi Z., Xu X., Luo J., Li X., Yi Y., Jiang X., Yi Y., Tang Y. Size controllable synthesis of ultrafine spherical gold particles and their simulation of plasmonic and SERS behaviors. Phys. B. 2014;438:22–28. doi: 10.1016/j.physb.2013.12.043. DOI

Reetz M.T., Helbig W. Size-Selective Synthesis of Nanostructured Transition Metal Clusters. J. Am. Chem. Soc. 1994;116:7401–7402. doi: 10.1021/ja00095a051. DOI

Khaydarov R.A., Khaydarov R.R., Gapurova O., Estrin Y., Scheper T. Electrochemical method for the synthesis of silver nanoparticles. J. Nanopart. Res. 2008;11:1193–1200. doi: 10.1007/s11051-008-9513-x. DOI

Turkevich J., Cooperá Stevenson P., Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951;11:55–75. doi: 10.1039/df9511100055. DOI

Ojea-Jiménez I., Romero F.M., Bastús N.G., Puntes V. Small gold nanoparticles synthesized with sodium citrate and heavy water: Insights into the reaction mechanism. J. Phys. Chem. C. 2010;114:1800–1804. doi: 10.1021/jp9091305. DOI

Dykman L.A., Bogatyrev V.A. Gold nanoparticles: Preparation, functionalisation and applications in biochemistry and immunochemistry. Russ. Chem. Rev. 2007;76:181. doi: 10.1070/RC2007v076n02ABEH003673. DOI

Weiser H.B., Reyerson L. Inorganic colloid chemistry. J. Phys. Chem. 1935;39:305–306. doi: 10.1021/j150362a018. DOI

Henglein A., Giersig M. Formation of colloidal silver nanoparticles: Capping action of citrate. J. Phys. Chem. B. 1999;103:9533–9539. doi: 10.1021/jp9925334. DOI

Nishimoto M., Abe S., Yonezawa T. Preparation of Ag nanoparticles using hydrogen peroxide as a reducing agent. New J. Chem. 2018;42:14493–14501. doi: 10.1039/C8NJ01747F. DOI

Rashid M.U., Bhuiyan K.H., Quayum M.E. Synthesis of silver nano particles(Ag-NPs) and their uses for quantitative analysis of vitamin C tablets. Dhaka Univ. J. Pharm. Sci. 2013;12:2933. doi: 10.3329/dujps.v12i1.16297. DOI

Ghorbani R.H., Safekordi A.A., Attar H., Sorkhabadi S.M.R. Biological and nonbiological methods for silver nanoparticles synthesis. Chem. Biochem. Eng. 2011;25:317–326.

Boisselier E., Astruc D. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 2009;38:1759–1782. doi: 10.1039/b806051g. PubMed DOI

Krutyakov Y.A., Olenin A.Y., Kudrinskii A., Dzhurik P., Lisichkin G. Aggregative stability and polydispersity of silver nanoparticles prepared using two-phase aqueous organic systems. Nanotechnol. Russ. 2008;3:303–310. doi: 10.1134/S1995078008050054. DOI

El Roustom B., Foti G., Comninellis C. Preparation of gold nanoparticles by heat treatment of sputter deposited gold on boron-doped diamond film electrode. Electrochem. Commun. 2005;7:398–405. doi: 10.1016/j.elecom.2005.02.014. DOI

Kanninen P., Johans C., Merta J., Konttur K. Influence of ligand structure on the stability and oxidation of coppernanoparticles. J. Colloid Interface Sci. 2008;318:88–95. doi: 10.1016/j.jcis.2007.09.069. PubMed DOI

Felici S., Lavecchia T., Angjellari M., Micheli L., Orlanducci S., Terranova M.T., Palleschi G. Towards a model of electrochemical immunosensor using silver nanoparticles. Procedia Technol. 2017;27:155–156. doi: 10.1016/j.protcy.2017.04.133. DOI

Xu H., Xu J., Jiang X., Zhu Z., Rao J., Yin J., Wu T., Liu H., Liu S. Thermosensitive Unimolecular Micelles Surface-Decorated with Gold Nanoparticles of Tunable Spatial Distribution. Chem. Mater. 2007;19:2489–2494. doi: 10.1021/cm070088g. DOI

Farrusseng D., Tuel A. Perspectives on zeolite-encapsulated metal nanoparticles and their applications in catalysis. New J. Chem. 2016;40:3933–3949. doi: 10.1039/C5NJ02608C. DOI

Choi M., Wu Z., Iglesia E. Mercaptosilane-Assisted Synthesis of Metal Clusters within Zeolites and Catalytic Consequences of Encapsulation. J. Am. Chem. Soc. 2010;132:9129–9137. doi: 10.1021/ja102778e. PubMed DOI

Herrera A.P., Resto O., Briano J.G., Rinaldi C. Synthesis and agglomeration of gold nanoparticles in reverse micelles. Nanotechnology. 2005;16:S618. doi: 10.1088/0957-4484/16/7/040. PubMed DOI

de Oliveira R., Zhao P., Li N., de Santa Maria L.C., Vergnaud J., Ruiz J., Astruc D., Barratt G. Synthesis and in vitro studies of gold nanoparticles loaded with docetaxel. Int. J. Pharm. 2013;454:703–711. doi: 10.1016/j.ijpharm.2013.05.031. PubMed DOI

Xu J., Han X., Liu H., Hu Y. Synthesis and optical properties of silver nanoparticles stabilized by gemini surfactant. Colloid Surf. A. 2006;273:179–183. doi: 10.1016/j.colsurfa.2005.08.019. DOI

Zana R. Dimeric (gemini) surfactants: Effect of the spacer group on the association behavior in aqueous solution. J. Colloid Interface Sci. 2002;248:203–220. doi: 10.1006/jcis.2001.8104. PubMed DOI

Malik M.A., Wani M.Y., Hashim M.A. Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials: 1st Nano Update. Arab. J. Chem. 2012;5:397–417. doi: 10.1016/j.arabjc.2010.09.027. DOI

Yan J.M., Zhang X.B., Akita T., Haruta M., Xu Q. One-Step Seeding Growth of Magnetically Recyclable Au@Co Core−Shell Nanoparticles: Highly Efficient Catalyst for Hydrolytic Dehydrogenation of Ammonia Borane. J. Am. Chem. Soc. 2010;132:5326–5327. doi: 10.1021/ja910513h. PubMed DOI

Henglein A. Radiolytic preparation of ultrafine colloidal gold particles in aqueous solution: Optical spectrum, controlled growth, and some chemical reactions. Langmuir. 1999;15:6738–6744. doi: 10.1021/la9901579. DOI

Radoń A., Łukowiec D. Silver nanoparticles synthesized by UV-irradiation method using chloramine T as modifier: Structure, formation mechanism and catalytic activity. Cryst. Eng. Commun. 2018;20:7130. doi: 10.1039/C8CE01379A. DOI

Mittelman A.M., Fortner J.D., Pennell K.D. Effects of ultraviolet light on silver nanoparticle mobility and dissolution. Environ. Sci. Nano. 2015;2:683–691. doi: 10.1039/C5EN00145E. DOI

Maity A., Panda S.K. Colloidal silver nanoparticles prepared by UV-light induced citrate reduction technique for the quantitative detection of uric acid. AIP Conf. Proc. 2018;1942:050057.

Khan M.J., Kumari S., Shameli K., Selamat J., Sazili A.Q. Green Synthesis and Characterization of Pullulan Mediated Silver Nanoparticles through Ultraviolet Irradiation. Materials. 2019;12:2382. doi: 10.3390/ma12152382. PubMed DOI PMC

Klaus T., Joerger R., Olsson E., Granqvist C.G. Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. USA. 1999;96:13611–13614. doi: 10.1073/pnas.96.24.13611. PubMed DOI PMC

Mukherjee P., Ahmad A., Mandal D., Senapati S., Sainkar S.R., Khan M.I., Parishcha R., Ajaykumar P., Alam M., Kumar R. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett. 2001;1:515–519. doi: 10.1021/nl0155274. DOI

Ahmad A., Mukherjee P., Senapati S., Mandal D., Khan M.I., Kumar R., Sastry M. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloid Surf. B. 2003;28:313–318. doi: 10.1016/S0927-7765(02)00174-1. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...