Methods of Gold and Silver Nanoparticles Preparation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
19-02482S
Grantová Agentura České Republiky
18-07619S
Grantová Agentura České Republiky
PubMed
31861259
PubMed Central
PMC6981963
DOI
10.3390/ma13010001
PII: ma13010001
Knihovny.cz E-zdroje
- Klíčová slova
- nanoparticle, noble metal, preparation, surface,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The versatile family of nanoparticles is considered to have a huge impact on the different fields of materials research, mostly nanoelectronics, catalytic chemistry and in study of cytocompatibility, targeted drug delivery and tissue engineering. Different approaches for nanoparticle preparation have been developed, not only based on "bottom up" and "top down" techniques, but also several procedures of effective nanoparticle modifications have been successfully used. This paper is focused on different techniques of nanoparticles' preparation, with primary focus on metal nanoparticles. Dispergation methods such as laser ablation and vacuum sputtering are introduced. Condensation methods such as reduction with sodium citrate, the Brust-Schiffrin method and approaches based on ultraviolet light or biosynthesis of silver and gold are also discussed. Basic properties of colloidal solutions are described. Also a historical overview of nanoparticles are briefly introduced together with short introduction to specific properties of nanoparticles and their solutions.
Zobrazit více v PubMed
Zhou J., Ralston J., Sedef R., Beattie D.A. Functionalized gold nanoparticles: Synthesis, structure and colloid stability. J. Colloid Interface Sci. 2009;331:251–262. doi: 10.1016/j.jcis.2008.12.002. PubMed DOI
Zhang L., Wang E. Metal nanoclusters: New fluorescent probes for sensors and bioimaging. Nano Today. 2014;9:132–157. doi: 10.1016/j.nantod.2014.02.010. DOI
Ghosh P., Han G., De M., Kim C.K., Rotello V.M. Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev. 2008;60:1307–1315. doi: 10.1016/j.addr.2008.03.016. PubMed DOI
Kamat P.V. Photophysical, Photochemical and Photocatalytic Aspects of Metal Nanoparticles. J. Phys. Chem. B. 2002;106:7729–7744. doi: 10.1021/jp0209289. DOI
Mingos D.M.P. Historical Introduction to Gold Colloids, Clusters and Nanoparticles. Springer Nature Switzerland AG; Basel, Switzerland: 2014.
Sahoo G.P., Basu S., Samanta S., Misra A. Microwave-assisted synthesis of anisotropic gold nanocrystals in polymer matrix and their catalytic activities. J. Exp. Nanosci. 2014;10:690–702. doi: 10.1080/17458080.2013.877163. DOI
Fajstavr D., Slepička P., Švorčík V. LIPSS with gold nanoclusters prepared by combination of heat treatment and KrF exposure. Appl. Surf. Sci. 2019;465:919–928. doi: 10.1016/j.apsusc.2018.09.167. DOI
Scholl J.A., Koh A.L., Dionne J.A. Quantum plasmon resonances of individual metallic nanoparticles. Nature. 2012;483:421–427. doi: 10.1038/nature10904. PubMed DOI
Sun Y., Xia Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science. 2002;298:2176–2179. doi: 10.1126/science.1077229. PubMed DOI
Naidu K.B., Govender P., Adam J.K. Biomedical applications and toxicity of nanosilver: A review. Med. Technol. SA. 2015;29:13–19.
Yu S.J., Yin Y.G., Liu J.F. Silver nanoparticles in the environment. Environ. Sci. Proc. Impacts. 2013;15:78–92. doi: 10.1039/C2EM30595J. PubMed DOI
Edwards-Jones V. The benefits of silver in hygiene, personal care and healthcare. Lett. Appl. Microbiol. 2009;49:147–152. doi: 10.1111/j.1472-765X.2009.02648.x. PubMed DOI
Chernousova S., Epple M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem. Int. Ed. Engl. 2013;52:1636–1653. doi: 10.1002/anie.201205923. PubMed DOI
Simon-Deckers A., Gouget B., Mayne-L’hermite M., Herlin-Boime N., Reynaud C., Carriere M. In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicology. 2008;253:137–146. doi: 10.1016/j.tox.2008.09.007. PubMed DOI
Cho J.-G., Kim K.-T., Ryu T.-K., Lee J.-W., Kim J.-E., Kim J. Stepwise embryonic toxicity of silver nanoparticles on Oryzias latipes. BioMed. Res. Int. 2013;2013:1–7. PubMed PMC
Gaillet S., Rouanet J.M. Silver nanoparticles: Their potential toxic effects after oral exposureand underlying mechanisms–A review. Food Chem. Toxicol. 2015;77:58–63. doi: 10.1016/j.fct.2014.12.019. PubMed DOI
Hornyak G.L., Tibbals H., Dutta J. Introduction to Nanoscience. CRC Press; Boca Raton, FL, USA: 2009.
Barber D., Freestone I. An investigation of the origin of the colour of the Lycurgus Cup by analytical transmission electron microscopy. Archaeometry. 1990;32:33–45. doi: 10.1111/j.1475-4754.1990.tb01079.x. DOI
Mehlman F. Phaidon Guide to Glass. Phaidon Press LTD; London, UK: 1982.
Kumar N., Kumar R. Nanotechnology and Nanomaterials in the Treatment of Life-Threatening Diseases. Elsevier; Amsterdam, The Netherlands: 2014. pp. 1–51.
Daniel M.C., Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis and nanotechnology. Chem. Rev. 2004;104:293–346. doi: 10.1021/cr030698+. PubMed DOI
Tweney R.D. Discovering discovery: How Faraday found the first metallic colloid. Perspect. Sci. 2006;14:97–121. doi: 10.1162/posc.2006.14.1.97. DOI
Rayavarapu R.G., Petersen W., Ungureanu C., Post J.N., van Leeuwen T.G., Manohar S. Synthesis and bioconjugation of gold nanoparticles as potential molecular probes for light-based imaging techniques. Int. J. Biomed. Imaging. 2007;2007:29817. doi: 10.1155/2007/29817. PubMed DOI PMC
Mehrotra P. Biosensors and their applications–A review. J. Oral Biol. Craniofacial Res. 2016;6:153–159. doi: 10.1016/j.jobcr.2015.12.002. PubMed DOI PMC
Sawant S.N. Development of Biosensors from Biopolymer Composites. In: Sadasivuni K.K., Cabibihan J.J., Ponnamma D., AlMaadeed M.A.A., Kim J., editors. Biopolymer Composites in Electronics. Elsevier; Amsterdam, The Netherlands: 2017.
Liedberg B., Johansen K. Affinity biosensing based on surface plasmon resonance detection. In: Rogers K.R., Mulchandani A., editors. Affinity Biosensors. Springer; Berlin, Germany: 1998. pp. 31–53.
Slepickova Kasalkova N., Žáková P., Stibor I., Slepička P., Kolská Z., Karpíšková J., Švorčík V. Carbon nanostructures grafted biopolymers for medical applications. Mater. Technol. 2019;34:376–385. doi: 10.1080/10667857.2019.1573943. DOI
Žáková P., Slepičková Kasálková N., Slepička P., Kolská Z., Karpíšková J., Stibor I., Švorčík V. Cytocompatibility of polyethylene grafted with triethylenetetramine functionalized carbon nanoparticles. Appl. Surf. Sci. 2017;422:809–816. doi: 10.1016/j.apsusc.2017.06.089. PubMed DOI
Lu J., Elam J.W., Stair P. Atomic layer deposition-Sequential self-limiting surface reactions for advanced catalyst “bottom-up” synthesis. Surf. Sci. Rep. 2016;71:410–472. doi: 10.1016/j.surfrep.2016.03.003. DOI
Schmid G. Large clusters and colloids. Metals in the embryonic state. Chem. Rev. 1992;92:1709–1727. doi: 10.1021/cr00016a002. DOI
Hosokawa M., Nogi K., Naito M., Yokoyama T. Nanoparticle Technology Handbook. Elsevier; Amsterdam, The Netherlands: 2007.
Eustis S., El-Sayed M.A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 2006;35:209–217. doi: 10.1039/B514191E. PubMed DOI
Slepička P., Elashnikov R., Ulbrich P., Staszek M., Kolská Z., Švorčík V. Stabilization of sputtered gold and silver nanoparticles in PEG colloid solutions. J. Nanopart. Res. 2015;17:11–26. doi: 10.1007/s11051-014-2850-z. DOI
Unser S., Bruzas I., He J., Sagle L. Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches. Sensors. 2015;15:15684–15716. doi: 10.3390/s150715684. PubMed DOI PMC
Kelly K.L., Coronado E., Zhao L.L., Schatz G.C. The Optical Properties of Metal Nanoparticles? The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B. 2002;107:668–677. doi: 10.1021/jp026731y. DOI
Cao G., Wang Y. Nanostructures and Nanomaterials: Synthesis, Properties, and Applications. Volume 2 World Scientific Co. Pte Ltd.; Singapore: 2011. (World Scientific Series in Nanoscience and Nanotechnology).
Amendola V., Meneghetti M. Size Evaluation of Gold Nanoparticles by UV−vis Spectroscopy. J. Phys. Chem. C. 2009;113:4277–4285. doi: 10.1021/jp8082425. DOI
Niskanen I., Forsberg V., Zakrisson D., Reza S., Hummelgård M., Andres B., Fedorov I., Suopajärvi T., Liimatainen H., Thungström G. Determination of nanoparticle size using Rayleigh approximation and Mie theory. Chem. Eng. Sci. 2019;201:222–229. doi: 10.1016/j.ces.2019.02.020. DOI
Liu Y., Zhao Y., Zhang L., Yan Y., Jiang Y. Controllable plasmon-induced catalytic reaction by surface-enhanced and tip-enhanced Raman spectroscopy. Spectrochim. Acta A. 2019;219:539–546. doi: 10.1016/j.saa.2019.04.086. PubMed DOI
Lok C.N., Ho C.M., Chen R., He Q.Y., Yu W.Y., Sun H., Tam P.H., Chiu J.F., Che C.M. Silver nanoparticles: Partial oxidation and antibacterial activities. J. Biol. Inorg. Chem. 2007;12:527–534. doi: 10.1007/s00775-007-0208-z. PubMed DOI
Krutyakov Y.A., Kudrinskiy A.A., Olenin A.Y., Lisichkin G.V. Synthesis and properties of silver nanoparticles: Advances and prospects. Russ. Chem. Rev. 2008;77:233. doi: 10.1070/RC2008v077n03ABEH003751. DOI
Schmid G., Corain B. Nanoparticulated gold: Syntheses, structures, electronics, and reactivities. Eur. J. Inorg. Chem. 2003;2003:3081–3098. doi: 10.1002/ejic.200300187. DOI
Valueva S.V., Kipper A.I., Borovikova L.N., Matveeva N.A. The influence of the nature of a nanoparticle and polymer matrix on the morphological characteristics of polymeric nanostructures. Russ. J. Phys. Chem. 2010;84:2110–2115. doi: 10.1134/S0036024410120186. DOI
Xia Y., Xiong Y., Lim B., Skrabalak S.E. Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angew. Chem. Int. Ed. 2008;48:60–103. doi: 10.1002/anie.200802248. PubMed DOI PMC
Yu D., Yam V.W.-W. Controlled Synthesis of Monodisperse Silver Nanocubes in Water. J. Am. Chem. Soc. 2004;126:13200–13201. doi: 10.1021/ja046037r. PubMed DOI
Reznickova A., Slepicka P., Slavikova N., Staszek M., Svorcik V. Preparation, aging and temperature stability of PEGylated gold nanoparticles. Colloid. Surf. A. 2017;523:91–97. doi: 10.1016/j.colsurfa.2017.04.005. DOI
Deori K., Gupta D., Saha B., Deka S. Design of 3-Dimensionally Self-Assembled CeO2 Nanocube as a Breakthrough Catalyst for Efficient Alkylarene Oxidation in Water. ACS Catal. 2014;4:3169–3179. doi: 10.1021/cs500644j. DOI
Dykman L., Bogatyrev V., Shchegolev S.Y., Khlebtsov N. Gold Nanoparticles: Synthesis, Proper Ties, and Biomedical Applications. Nauka; Moscow, Russia: 2008.
Panáček A., Kvítek L., Prucek R., Kolář M., Večeřová R., Pizúrová N., Sharma V.K., Nevěcná T., Zbořil R. Silver Colloid Nanoparticles? Synthesis, Characterization, and Their Antibacterial Activity. J. Phys. Chem. B. 2006;110:16248–16253. doi: 10.1021/jp063826h. PubMed DOI
Tran Q.H., Nguyen V.Q., Le A.T. Silver nanoparticles: Synthesis, properties, toxicology, applications and perspectives. Adv. Nat. Sci. Nanosci. 2013;4:033001. doi: 10.1088/2043-6262/4/3/033001. DOI
Dibrov P., Dzioba J., Gosink K.K., Häse C.C. Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrob. Agents Chemother. 2002;46:2668–2670. doi: 10.1128/AAC.46.8.2668-2670.2002. PubMed DOI PMC
Pal S., Tak Y.K., Song J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microb. 2007;73:1712–1720. doi: 10.1128/AEM.02218-06. PubMed DOI PMC
Singaravelu G., Arockiamary J., Kumar V.G., Govindaraju K. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloid Surf. B. 2007;57:97–101. doi: 10.1016/j.colsurfb.2007.01.010. PubMed DOI
Arockiya Aarthi Rajathi F., Parthiban C., Ganesh Kumar V., Anantharaman P. Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (kützing) Spectrochim. Acta A. 2012;99:166–173. doi: 10.1016/j.saa.2012.08.081. PubMed DOI
Nguyenova H.Y., Vokata B., Zaruba K., Siegel J., Kolska Z., Svorcik V., Slepicka P., Reznickova A. Silver nanoparticles grafted onto PET: Effect of preparation method on antibacterial activity. React. Funct. Polym. 2019;145:104376. doi: 10.1016/j.reactfunctpolym.2019.104376. DOI
Neděla O., Slepička P., Slepickova Kasalkova N., Sajdl P., Kolská Z., Rimpelová S., Švorčík V. Antibacterial properties of angle-dependent nanopatterns on polystyrene. React. Funct. Polym. 2019;136:173–180. doi: 10.1016/j.reactfunctpolym.2019.01.007. DOI
Neděla O., Slepička P., Švorčík V. Surface Modification of Polymer Substrates for Biomedical Applications. Materials. 2017;10:1115. doi: 10.3390/ma10101115. PubMed DOI PMC
Kimling J., Maier M., Okenve B., Kotaidis V., Ballot H., Plech A. Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B. 2006;110:15700–15707. doi: 10.1021/jp061667w. PubMed DOI
Pillai Z.S., Kamat P.V. What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J. Phys. Chem. B. 2004;108:945–951. doi: 10.1021/jp037018r. DOI
Panigrahi S., Kundu S., Ghosh S., Nath S., Pal T. General method of synthesis for metal nanoparticles. J. Nanopart. Res. 2004;6:411–414. doi: 10.1007/s11051-004-6575-2. DOI
Mikhlin Y., Karacharov A., Likhatski M., Podlipskaya T., Zubavichus Y., Veligzhanin A., Zaikovski V. Submicrometer intermediates in the citrate synthesis of gold nanoparticles: New insights into the nucleation and crystal growth mechanisms. J. Colloid Interface Sci. 2011;362:330–336. doi: 10.1016/j.jcis.2011.06.077. PubMed DOI
Wagner J., Kohler J.M. Continuous synthesis of gold nanoparticles in a microreactor. Nano Lett. 2005;5:685591. doi: 10.1021/nl050097t. PubMed DOI
Siegel J., Kvítek O., Ulbrich P., Kolská Z., Slepička P., Švorčík V. Progressive approach for metal nanoparticle synthesis. Mater. Lett. 2012;89:47–50. doi: 10.1016/j.matlet.2012.08.048. DOI
Staszek M., Siegel J., Kolarova K., Rimpelova S., Svorcik V. Formation and antibacterial action of Pt and Pd nanoparticles sputtered into liquid. Micro Nano Lett. 2014;9:778–781. doi: 10.1049/mnl.2014.0345. DOI
Zhang A., Liu M., Liu M., Xiao Y., Li Z., Chen J., Sun Y., Zhao J., Fang S., Jia D., et al. Homogeneous Pd nanoparticles produced in direct reactions: Green synthesis, formation mechanism and catalysis properties. J. Mater. Chem. A. 2014;2:1369–1374. doi: 10.1039/C3TA14299J. DOI
Brust M., Walker M., Bethell D., Schiffrin D.J., Whyman R. Synthesis of thiol-derivatized gold nanoparticles in a 1994, 2-phase liquid-liquid system. J. Chem. Soc. Chem. Commun. 1994:801–802. doi: 10.1039/C39940000801. DOI
Liu Y., Liu L., Yuan M., Guo R. Preparation and characterization of casein-stabilized gold nanoparticles for catalytic applications. Colloid Surf. A. 2013;417:18–25. doi: 10.1016/j.colsurfa.2012.08.050. DOI
Doyen M., Bartik K., Bruylants G. UV-Vis and NMR study of the formation of gold nanoparticles by citrate reduction: Observation of gold-citrate aggregates. J. Colloid Interface Sci. 2013;399:1–5. doi: 10.1016/j.jcis.2013.02.040. PubMed DOI
De S., Kundu R., Biswas A. Synthesis of gold nanoparticles in niosomes. J. Colloid Interface Sci. 2012;386:9–15. doi: 10.1016/j.jcis.2012.06.073. PubMed DOI
Wangoo N., Bhasin K.K., Mehta S.K., Suri C.R. Synthesis and capping of water-dispersed gold nanoparticles by an amino acid: Bioconjugation and binding studies. J. Colloid Interface Sci. 2008;323:247–254. doi: 10.1016/j.jcis.2008.04.043. PubMed DOI
Hori T., Nagata K., Iwase A., Hori F. Synthesis of Cu nanoparticles using gamma-ray irradiation reduction method. Jpn. J. Appl. Phys. 2014;53:05FC05. doi: 10.7567/JJAP.53.05FC05. DOI
Yokoyama S., Takahashi H., Itoh T., Motomiya K., Tohji K. Synthesis of metallic Cu nanoparticles by controlling Cu complexes in aqueous solution. Adv. Powder Technol. 2014;25:999–1006. doi: 10.1016/j.apt.2014.01.024. DOI
Bankar A., Joshi B., Kumar A.R., Zinjarde S. Banana peel extract mediated synthesis of gold nanoparticles. Colloids Surf. B. 2010;80:45–50. doi: 10.1016/j.colsurfb.2010.05.029. PubMed DOI
Bankar A., Joshi B., Kumar A.R., Zinjarde S. Banana peel extract mediated novel route for the synthesis of palladium nanoparticles. Mater. Lett. 2010;64:1951–1953. doi: 10.1016/j.matlet.2010.06.021. DOI
Bankar A., Joshi B., Kumar A.R., Zinjarde S. Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloid Surf. A. 2010;368:58–63. doi: 10.1016/j.colsurfa.2010.07.024. PubMed DOI
Das R.K., Sharma P., Nahar P., Bora U. Synthesis of gold nanoparticles using aqueous extract of Calotropis procera latex. Mater. Lett. 2011;65:610–613. doi: 10.1016/j.matlet.2010.11.040. DOI
Ren F., He X., Wang K., Yin J. Biosynthesis of gold nanoparticles using catclaw buttercup (Radix Ranunculi Ternati) and evaluation of its colloidal stability. J. Biomed. Nanotechnol. 2012;8:586–593. doi: 10.1166/jbn.2012.1417. PubMed DOI
Im H.-J., Lee B.C., Yeon J.-W. Preparation and characterization of Ag nanoparticle-embedded blank and ligand-anchored silica gels. J. Nanosci. Nanotechnol. 2013;13:7643–7647. doi: 10.1166/jnn.2013.7824. PubMed DOI
Sarkar P., Bhui D.K., Bar H., Sahoo G.P., De S.P., Misra A. Synthesis and photophysical study of silver nanoparticles stabilized by unsaturated dicarboxylates. J. Lumin. 2009;129:704–709. doi: 10.1016/j.jlumin.2009.02.002. DOI
Mafune F., Kohno J.-Y., Takeda Y., Kondow T., Sawabe H. Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J. Phys. Chem. B. 2000;104:9111–9117. doi: 10.1021/jp001336y. DOI
Hatakeyama Y., Morita T., Takahashi S., Onishi K., Nishikawa K. Synthesis of Gold Nanoparticles in Liquid Polyethylene Glycol by Sputter Deposition and Temperature Effects on their Size and Shape. J. Phys. Chem. C. 2011;115:3279–3285. doi: 10.1021/jp110455k. DOI
Gracia R., Vijayakrishna K., Mecerreyes D. Poly (ionic liquid) s with redox active counter-anions: All-in-one reactants and stabilizers for the synthesis of functional colloids. React. Funct. Polym. 2014;79:54–58. doi: 10.1016/j.reactfunctpolym.2014.03.005. DOI
Torimoto T., Okazaki K.-I., Kiyama T., Hirahara K., Tanaka N., Kuwabata S. Sputter deposition onto ionic liquids: Simple and clean synthesis of highly dispersed ultrafine metal nanoparticles. Appl. Phys. Lett. 2006;89:243117. doi: 10.1063/1.2404975. DOI
Wender H., de Oliveira L.F., Feil A.F., Lissner E., Migowski P., Meneghetti M.R., Teixeira S.R., Dupont J. Synthesis of gold nanoparticles in a biocompatible fluid from sputtering deposition onto castor oil. Chem. Commun. 2010;46:7019–7021. doi: 10.1039/c0cc01353f. PubMed DOI
Vanecht E., Binnemans K., Patskovsky S., Meunier M., Seo J.W., Stappers L., Fransaer J. Stability of sputter-deposited gold nanoparticles in imidazolium ionic liquids. Phys. Chem. Chem. Phys. 2012;14:5662–5671. doi: 10.1039/c2cp23677j. PubMed DOI
Hatakeyama Y., Onishi K., Nishikawa K. Effects of sputtering conditions on formation of gold nanoparticles in sputter deposition technique. RSC Adv. 2011;1:1815–1821. doi: 10.1039/c1ra00688f. DOI
Hatakeyama Y., Takahashi S., Nishikawa K. Can Temperature Control the Size of Au Nanoparticles Prepared in Ionic Liquids by the Sputter Deposition Technique? J. Phys. Chem. C. 2010;114:11098–11102. doi: 10.1021/jp102763n. DOI
Ye G.X., Zhang Q.R., Feng C.M., Ge H.L., Jiao Z.K. Structural and electrical properties of a metallic rough-thin-film system deposited on liquid substrates. Phys. Rev. B. 1996;54:14754–14757. doi: 10.1103/PhysRevB.54.14754. PubMed DOI
Ye G.X., Geng C.M., Zhang Z.R., Ge H.L., Zhang X.J. Structural and critical behaviors of ag rough films deposited on liquid substrates. Chin. Phys. Lett. 1996;13:772–774. doi: 10.1088/0256-307X/13/10/016. DOI
Da Silva E.C., da Silva MG A., Meneghetti S.M.P., Machado G., Alencar M.A.R.C., Hickmann J.M., Meneghetti M.R. Synthesis of colloids based on gold nanoparticles dispersed in castor oil. J. Nanopart. Res. 2008;10:201–208. doi: 10.1007/s11051-008-9483-z. DOI
Wender H., Goncalves R.V., Feil A.F., Migowski P., Poletto F.S., Pohlmann A.R., Dupont J., Teixeira S.R. Sputtering onto liquids: From thin films to nanoparticles. J. Phys. Chem. C. 2011;115:16362–16367. doi: 10.1021/jp205390d. DOI
Dupont J., de Souza R.F., Suarez P.A.Z. Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev. 2002;102:3667–3691. doi: 10.1021/cr010338r. PubMed DOI
Wender H., Migowski P., Feil A.F., Teixeira S.R., Dupont J. Sputtering deposition of nanoparticles onto liquid substrates: Recent advances and future trends. Coord. Chem. Rev. 2013;257:2468–2483. doi: 10.1016/j.ccr.2013.01.013. DOI
Antonietti M., Kuang D.B., Smarsly B., Yong Z. Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angew. Chem. Int. Ed. 2004;43:4988–4992. doi: 10.1002/anie.200460091. PubMed DOI
Migowski P., Dupont J. Catalytic applications of metal nanoparticles in imidazolium ionic liquids. Chem. Eur. J. 2007;13:32–39. doi: 10.1002/chem.200601438. PubMed DOI
Wender H., de Oliveira L.F., Migowski P., Feil A.F., Lissner E., Prechtl M.H.G., Teixeira S.R., Dupont J. Ionic liquid surface composition controls the size of gold nanoparticles prepared by sputtering deposition. J. Phys. Chem. C. 2010;114:11764–11768. doi: 10.1021/jp102231x. DOI
Migowski P., Zanchet D., Machado G., Gelesky M.A., Teixeira S.R., Dupont J. Nanostructures in ionic liquids: Correlation of iridium nanoparticles’ size and shape with imidazolium salts’ structural organization and catalytic properties. Phys. Chem. Chem. Phys. 2010;12:6826–6833. doi: 10.1039/b925834e. PubMed DOI
Redel E., Thomann R., Janiak C. Use of ionic liquids (ILs) for the IL-anion size-dependent formation of Cr, Mo and W nanoparticles from metal carbonyl M(CO)6 precursors. Chem. Commun. 2008;15:1789–1791. doi: 10.1039/b718055a. PubMed DOI
Redel E., Thomann R., Janiak C. First correlation of nanoparticle size-dependent formation with the ionic liquid anion molecular volume. Inorg. Chem. 2008;47:14–16. doi: 10.1021/ic702071w. PubMed DOI
Švorčík V., Kolská Z., Siegel J., Slepička P. “Short” Dithiol and Au Nanoparticles Grafting on Plasma Treated Polyethyleneterephthalate. J. Nano Res. 2013;25:40–48. doi: 10.4028/www.scientific.net/JNanoR.25.40. PubMed DOI PMC
Kalachyova Y., Lyutakov O., Solovyev A., Slepička P., Švorčík V. Surface morphology and optical properties of porphyrin/Au and Au/porphyrin/Au systems. Nanoscale Res. Lett. 2013;8:547. PubMed PMC
Slepičková Kasálková N., Stýblová Š., Slepička P., Rimpelová S., Švorčík V. Surface changes of polymer modified by gold nanoparticles. Int. J. Nanotechnol. 2017;14:120–132. doi: 10.1504/IJNT.2017.082451. DOI
Slepička P., Přibyl M., Fajstavr D., Ulbrich P., Siegel J., Řezníčková A., Švorčík V. Grafting of platinum nanostructures on biopolymer at elevated temperature. Colloids Surf. A. 2018;546:316–325.
Slepička P., Michaljaničová I., Slepičková Kasálková N., Kolská Z., Rimpelová S., Ruml T., Švorčík V. Poly-l -lactic acid modified by etching and grafting with gold nanoparticles. J. Mater. Sci. 2013;48:5871–5879. doi: 10.1007/s10853-013-7383-9. DOI
Reznickova A., Slepicka P., Nguyenova H.Y., Kolska Z., Dendisova M., Svorcik V. Copper-gold sandwich structures on PE and PET and their SERS enhancement effect. RSC Adv. 2017;7:23055–23064. doi: 10.1039/C7RA01010A. DOI
Slepicka P., Slepickova Kasalkova N., Siegel J., Kolska Z., Bacakova Z., Svorcik V. Nano-structured and functionalized surfaces for cytocompatibility improvement and bactericidal action. Biotechnol. Adv. 2015;33:1120–1129. doi: 10.1016/j.biotechadv.2015.01.001. PubMed DOI
Slepicka P., Siegel J., Lyutakov O., Slepickova Kasalkova N., Kolska Z., Bacakova L., Svorcik V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. doi: 10.1016/j.biotechadv.2017.12.011. PubMed DOI
Slepička P., Malá Z., Rimpelová S., Švorčík V. Antibacterial properties of modified biodegradable PHB non-woven fabric. Mater. Sci. Eng. C. 2016;65:364–368. doi: 10.1016/j.msec.2016.04.052. PubMed DOI
Hayat M.A. Colloidal Gold: Principles, Methods, and Applications. Elsevier; Amsterdam, The Netherlands: 2012.
Yi Z., Xu X., Luo J., Li X., Yi Y., Jiang X., Yi Y., Tang Y. Size controllable synthesis of ultrafine spherical gold particles and their simulation of plasmonic and SERS behaviors. Phys. B. 2014;438:22–28. doi: 10.1016/j.physb.2013.12.043. DOI
Reetz M.T., Helbig W. Size-Selective Synthesis of Nanostructured Transition Metal Clusters. J. Am. Chem. Soc. 1994;116:7401–7402. doi: 10.1021/ja00095a051. DOI
Khaydarov R.A., Khaydarov R.R., Gapurova O., Estrin Y., Scheper T. Electrochemical method for the synthesis of silver nanoparticles. J. Nanopart. Res. 2008;11:1193–1200. doi: 10.1007/s11051-008-9513-x. DOI
Turkevich J., Cooperá Stevenson P., Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951;11:55–75. doi: 10.1039/df9511100055. DOI
Ojea-Jiménez I., Romero F.M., Bastús N.G., Puntes V. Small gold nanoparticles synthesized with sodium citrate and heavy water: Insights into the reaction mechanism. J. Phys. Chem. C. 2010;114:1800–1804. doi: 10.1021/jp9091305. DOI
Dykman L.A., Bogatyrev V.A. Gold nanoparticles: Preparation, functionalisation and applications in biochemistry and immunochemistry. Russ. Chem. Rev. 2007;76:181. doi: 10.1070/RC2007v076n02ABEH003673. DOI
Weiser H.B., Reyerson L. Inorganic colloid chemistry. J. Phys. Chem. 1935;39:305–306. doi: 10.1021/j150362a018. DOI
Henglein A., Giersig M. Formation of colloidal silver nanoparticles: Capping action of citrate. J. Phys. Chem. B. 1999;103:9533–9539. doi: 10.1021/jp9925334. DOI
Nishimoto M., Abe S., Yonezawa T. Preparation of Ag nanoparticles using hydrogen peroxide as a reducing agent. New J. Chem. 2018;42:14493–14501. doi: 10.1039/C8NJ01747F. DOI
Rashid M.U., Bhuiyan K.H., Quayum M.E. Synthesis of silver nano particles(Ag-NPs) and their uses for quantitative analysis of vitamin C tablets. Dhaka Univ. J. Pharm. Sci. 2013;12:2933. doi: 10.3329/dujps.v12i1.16297. DOI
Ghorbani R.H., Safekordi A.A., Attar H., Sorkhabadi S.M.R. Biological and nonbiological methods for silver nanoparticles synthesis. Chem. Biochem. Eng. 2011;25:317–326.
Boisselier E., Astruc D. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 2009;38:1759–1782. doi: 10.1039/b806051g. PubMed DOI
Krutyakov Y.A., Olenin A.Y., Kudrinskii A., Dzhurik P., Lisichkin G. Aggregative stability and polydispersity of silver nanoparticles prepared using two-phase aqueous organic systems. Nanotechnol. Russ. 2008;3:303–310. doi: 10.1134/S1995078008050054. DOI
El Roustom B., Foti G., Comninellis C. Preparation of gold nanoparticles by heat treatment of sputter deposited gold on boron-doped diamond film electrode. Electrochem. Commun. 2005;7:398–405. doi: 10.1016/j.elecom.2005.02.014. DOI
Kanninen P., Johans C., Merta J., Konttur K. Influence of ligand structure on the stability and oxidation of coppernanoparticles. J. Colloid Interface Sci. 2008;318:88–95. doi: 10.1016/j.jcis.2007.09.069. PubMed DOI
Felici S., Lavecchia T., Angjellari M., Micheli L., Orlanducci S., Terranova M.T., Palleschi G. Towards a model of electrochemical immunosensor using silver nanoparticles. Procedia Technol. 2017;27:155–156. doi: 10.1016/j.protcy.2017.04.133. DOI
Xu H., Xu J., Jiang X., Zhu Z., Rao J., Yin J., Wu T., Liu H., Liu S. Thermosensitive Unimolecular Micelles Surface-Decorated with Gold Nanoparticles of Tunable Spatial Distribution. Chem. Mater. 2007;19:2489–2494. doi: 10.1021/cm070088g. DOI
Farrusseng D., Tuel A. Perspectives on zeolite-encapsulated metal nanoparticles and their applications in catalysis. New J. Chem. 2016;40:3933–3949. doi: 10.1039/C5NJ02608C. DOI
Choi M., Wu Z., Iglesia E. Mercaptosilane-Assisted Synthesis of Metal Clusters within Zeolites and Catalytic Consequences of Encapsulation. J. Am. Chem. Soc. 2010;132:9129–9137. doi: 10.1021/ja102778e. PubMed DOI
Herrera A.P., Resto O., Briano J.G., Rinaldi C. Synthesis and agglomeration of gold nanoparticles in reverse micelles. Nanotechnology. 2005;16:S618. doi: 10.1088/0957-4484/16/7/040. PubMed DOI
de Oliveira R., Zhao P., Li N., de Santa Maria L.C., Vergnaud J., Ruiz J., Astruc D., Barratt G. Synthesis and in vitro studies of gold nanoparticles loaded with docetaxel. Int. J. Pharm. 2013;454:703–711. doi: 10.1016/j.ijpharm.2013.05.031. PubMed DOI
Xu J., Han X., Liu H., Hu Y. Synthesis and optical properties of silver nanoparticles stabilized by gemini surfactant. Colloid Surf. A. 2006;273:179–183. doi: 10.1016/j.colsurfa.2005.08.019. DOI
Zana R. Dimeric (gemini) surfactants: Effect of the spacer group on the association behavior in aqueous solution. J. Colloid Interface Sci. 2002;248:203–220. doi: 10.1006/jcis.2001.8104. PubMed DOI
Malik M.A., Wani M.Y., Hashim M.A. Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials: 1st Nano Update. Arab. J. Chem. 2012;5:397–417. doi: 10.1016/j.arabjc.2010.09.027. DOI
Yan J.M., Zhang X.B., Akita T., Haruta M., Xu Q. One-Step Seeding Growth of Magnetically Recyclable Au@Co Core−Shell Nanoparticles: Highly Efficient Catalyst for Hydrolytic Dehydrogenation of Ammonia Borane. J. Am. Chem. Soc. 2010;132:5326–5327. doi: 10.1021/ja910513h. PubMed DOI
Henglein A. Radiolytic preparation of ultrafine colloidal gold particles in aqueous solution: Optical spectrum, controlled growth, and some chemical reactions. Langmuir. 1999;15:6738–6744. doi: 10.1021/la9901579. DOI
Radoń A., Łukowiec D. Silver nanoparticles synthesized by UV-irradiation method using chloramine T as modifier: Structure, formation mechanism and catalytic activity. Cryst. Eng. Commun. 2018;20:7130. doi: 10.1039/C8CE01379A. DOI
Mittelman A.M., Fortner J.D., Pennell K.D. Effects of ultraviolet light on silver nanoparticle mobility and dissolution. Environ. Sci. Nano. 2015;2:683–691. doi: 10.1039/C5EN00145E. DOI
Maity A., Panda S.K. Colloidal silver nanoparticles prepared by UV-light induced citrate reduction technique for the quantitative detection of uric acid. AIP Conf. Proc. 2018;1942:050057.
Khan M.J., Kumari S., Shameli K., Selamat J., Sazili A.Q. Green Synthesis and Characterization of Pullulan Mediated Silver Nanoparticles through Ultraviolet Irradiation. Materials. 2019;12:2382. doi: 10.3390/ma12152382. PubMed DOI PMC
Klaus T., Joerger R., Olsson E., Granqvist C.G. Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. USA. 1999;96:13611–13614. doi: 10.1073/pnas.96.24.13611. PubMed DOI PMC
Mukherjee P., Ahmad A., Mandal D., Senapati S., Sainkar S.R., Khan M.I., Parishcha R., Ajaykumar P., Alam M., Kumar R. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett. 2001;1:515–519. doi: 10.1021/nl0155274. DOI
Ahmad A., Mukherjee P., Senapati S., Mandal D., Khan M.I., Kumar R., Sastry M. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloid Surf. B. 2003;28:313–318. doi: 10.1016/S0927-7765(02)00174-1. DOI
Stability and biological response of PEGylated gold nanoparticles
Biopolymer Composites with Ti/Au Nanostructures and Their Antibacterial Properties
PEGylated Gold Nanoparticles Grafted with N-Acetyl-L-Cysteine for Polymer Modification
Current Strategies for Noble Metal Nanoparticle Synthesis