Stability and biological response of PEGylated gold nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38742054
PubMed Central
PMC11089375
DOI
10.1016/j.heliyon.2024.e30601
PII: S2405-8440(24)06632-5
Knihovny.cz E-zdroje
- Klíčová slova
- Antiviral activity, Cytotoxicity, Gold, Nanoparticle, Polyethylene glycol, Stability,
- Publikační typ
- časopisecké články MeSH
Stability and cytotoxicity of PEGylated Au NPs is crucial for biomedical application. In this study, we have focused on thermal stability of PEGylated Au NPs at 4 and 37 °C and after sterilization in autoclave. Gold nanoparticles were prepared by direct sputtering of gold into PEG and PEG-NH2. Transmission electron microscopy revealed that NPs exhibit a spherical shape with average dimensions 3.8 nm for both AuNP_PEG and AuNP_PEG-NH2. The single LSPR band at wavelength of 509 nm also confirmed presence of spherical Au NPs in both cases. Moreover, according to UV-Vis spectra, the Au NPs were overall stable during aging or thermal stressing and even after sterilization in autoclave. Based on gel electrophoresis results, the higher density of functionalizing ligands and the higher stability is assumed on AuNP_PEG-NH2. Changes in concentration of gold did not occur after thermal stress or with aging. pH values have to be adjusted to be suitable for bioapplications - original pH values are either too alkaline (AuNP_PEG-NH2, pH 10) or too acidic (AuNP_PEG, pH 5). Cytotoxicity was tested on human osteoblasts and fibroblasts. Overall, both Au NPs have shown good cytocompatibility either freshly prepared or even after Au NPs' sterilization in the autoclave. Prepared Au NP dispersions were also examined for their antiviral activity, however no significant effect was observed. We have synthesized highly stable, non-cytotoxic PEGylated Au NPs, which are ready for preclinical testing.
CENAB Faculty of Science J E Purkyne University 400 96 Usti nad Labem Czech Republic
Faculty of Health Studies Technical University of Liberec Liberec Czech Republic
Zobrazit více v PubMed
Zhou J.F., Ralston J., Sedev R., Beattie D.A. Functionalized gold nanoparticles: synthesis, structure and colloid stability. J. Colloid Interface Sci. 2009;331:251–262. doi: 10.1016/j.jcis.2008.12.002. PubMed DOI
Ramalingam V. Multifunctionality of gold nanoparticles: plausible and convincing properties. Adv Colloid Interfac. 2019;271 doi: 10.1016/j.cis.2019.101989. PubMed DOI
Pissuwan D., Valenzuela S.M., Killingsworth M.C., Xu X.D., Cortie M.B. Targeted destruction of murine macrophage cells with bioconjugated gold nanorods. J. Nanoparticle Res. 2007;9:1109–1124. doi: 10.1007/s11051-007-9212-z. DOI
Sharma P., Brown S.C., Bengtsson N., Zhang Q.Z., Walter G.A., Grobmyer S.R., Santra S., Jiang H.B., Scott E.W., Moudgil B.M. Gold-speckled multimodal nanoparticles for noninvasive bioimaging. Chem. Mater. 2008;20:6087–6094. doi: 10.1021/cm801020s. PubMed DOI PMC
Coughlin B.P., Lawrence P.T., Lui I.R., Luby C.J., Spencer D.J., Sykes E.C.H., Mace C.R. Evidence for biological effects in the radiosensitization of leukemia cell lines by PEGylated gold nanoparticles. J. Nanoparticle Res. 2020;22(2) doi: 10.1007/s11051-020-4765-1. DOI
Ahmed S., Baijal G., Somashekar R., Iyer S., Nayak V. Comparative study of one pot synthesis of PEGylated gold and silver nanoparticles for imaging and radiosensitization of oral cancers. Radiat. Phys. Chem. 2022;194 doi: 10.1016/j.radphyschem.2022.109990. PubMed DOI PMC
Babaei A., Mousavi S.M., Ghasemi M., Pirbonyeh N., Soleimani M., Moattari A. Gold nanoparticles show potential in vitro antiviral and anticancer activity. Life Sci. 2021;284 doi: 10.1016/j.lfs.2021.119652. PubMed DOI
Abate C., Carnamucio F., Giuffre O., Foti C. Metal-based compounds in antiviral therapy. Biomolecules. 2022;12(7) doi: 10.3390/biom12070933. PubMed DOI PMC
Sengupta A., Azharuddin M., Al-Otaibi N., Hinkula J. Efficacy and immune response elicited by gold nanoparticle-based nanovaccines against infectious diseases. Vaccines-Basel. 2022;10(4) doi: 10.3390/vaccines10040505. PubMed DOI PMC
Zhou J.L., Hu Z.X., Zabihi F., Chen Z.G., Zhu M.F. Progress and perspective of antiviral protective material. Adv Fiber Mater. 2020;2(3):123–139. doi: 10.1007/s42765-020-00047-7. PubMed DOI PMC
Papp I., Sieben C., Ludwig K., Roskamp M., Böttcher C., Schlecht S., Herrmann A., Haag R. Inhibition of influenza virus infection by multivalent sialic-acid-functionalized gold nanoparticles. Small. 2010;6(24):2900–2906. doi: 10.1002/smll.201001349. PubMed DOI
Halder A., Das S., Ojha D., Chattopadhyay D., Mukherjee A. Highly monodispersed gold nanoparticles synthesis and inhibition of herpes simplex virus infections. Mater. Sci. Eng. C. 2018;89:413–421. doi: 10.1016/j.msec.2018.04.005. PubMed DOI
El-Sheekh M.M., Shabaan M.T., Hassan L., Morsi H.H. Antiviral activity of algae biosynthesized silver and gold nanoparticles against Herps Simplex (HSV-1) virus in vitro using cell-line culture technique. Int. J. Environ. Health Res. 2022;32(3):616–627. doi: 10.1080/09603123.2020.1789946. PubMed DOI
Suganya P., Vaseeharan B., Vijayakumar S., Balan B., Govindarajan M., Alharbi N.S., Kadaikunnan S., Khaled J.M., Benelli G. Biopolymer zein-coated gold nanoparticles: synthesis, antibacterial potential, toxicity and histopathological effects against the Zika virus vector. J. Photochem. Photobiol., B. 2017;173:404–411. doi: 10.1016/j.jphotobiol.2017.06.004. PubMed DOI
Cagno V., Andreozzi P., D'Alicarnasso M., Silva P.J., Mueller M., Galloux M., Le Goffic R., Jones S.T., Vallino M., Hodek J., et al. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nat. Mater. 2018;17(2):195–204. doi: 10.1038/Nmat5053. PubMed DOI
Meléndez-Villanueva M.A., Morán-Santibañez K., Martínez-Sanmiguel J.J., Rangel-López R., Garza-Navarro M.A., Rodríguez-Padilla C., Zarate-Triviño D.G., Trejo-Avila L.M. Virucidal activity of gold nanoparticles synthesized by green chemistry using garlic extract. Viruses-Basel. 2019;11(12) doi: 10.3390/v11121111. PubMed DOI PMC
Roduner E. Size matters: why nanomaterials are different. Chem. Soc. Rev. 2006;35(7):583–592. doi: 10.1039/b502142c. PubMed DOI
Dong J.Z., Zhang X.L., Cao Y.A., Yang W.S., Tian J.G. Shape dependence of nonlinear optical behaviors of gold nanoparticles. Mater. Lett. 2011;65(17–18):2665–2668. doi: 10.1016/j.matlet.2011.05.066. DOI
Dhand C., Dwivedi N., Loh X.J., Ying A.N.J., Verma N.K., Beuerman R.W., Lakshminarayanan R., Ramakrishna S. Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Adv. 2015;5(127):105003–105037. doi: 10.1039/c5ra19388e. DOI
Slepicka P., Kasalkova N.S., Siegel J., Kolska Z., Svorcik V. Methods of gold and silver nanoparticles preparation. Materials. 2020;13(1) doi: 10.3390/ma13010001. PubMed DOI PMC
Kumari Y., Kaur G., Kumar R., Singh S.K., Gulati M., Khursheed R., Clarisse A., Gowthamarajan K., Karri V.V.S.N.R., Mahalingam R., et al. Gold nanoparticles: new routes across old boundaries. Adv Colloid Interfac. 2019;274 doi: 10.1016/j.cis.2019.102037. PubMed DOI
Sergievskaya A., Chauvin A., Konstantinidis S. Sputtering onto liquids: a critical review. Beilstein J. Nanotechnol. 2022;13:10–53. doi: 10.3762/bjnano.13.2. PubMed DOI PMC
Wender H., Migowski P., Feil A.F., Teixeira S.R., Dupont J. Sputtering deposition of nanoparticles onto liquid substrates: recent advances and future trends. Coord. Chem. Rev. 2013;257(17–18):2468–2483. doi: 10.1016/j.ccr.2013.01.013. DOI
Hatakeyama Y., Morita T., Takahashi S., Onishi K., Nishikawa K. Synthesis of gold nanoparticles in liquid polyethylene glycol by sputter deposition and temperature effects on their size and shape. J. Phys. Chem. C. 2011;115(8):3279–3285. doi: 10.1021/jp110455k. DOI
Knop K., Hoogenboom R., Fischer D., Schubert U.S. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem., Int. Ed. 2010;49(36):6288–6308. doi: 10.1002/anie.200902672. PubMed DOI
Liu G.Y., Luo Q.Q., Wang H.B., Zhuang W.H., Wang Y.B. In situ synthesis of multidentate PEGylated chitosan modified gold nanoparticles with good stability and biocompatibility. RSC Adv. 2015;5(86):70109–70116. doi: 10.1039/c5ra11600g. DOI
Sapsford K.E., Algar W.R., Berti L., Gemmill K.B., Casey B.J., Oh E., Stewart M.H., Medintz I.L. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem. Rev. 2013;113(3):1904–2074. doi: 10.1021/cr300143v. PubMed DOI
Suk J.S., Xu Q.G., Kim N., Hanes J., Ensign L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016;99:28–51. doi: 10.1016/j.addr.2015.09.012. PubMed DOI PMC
Albanese A., Tang P.S., Chan W.C.W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012;14:1–16. doi: 10.1146/annurev-bioeng-071811-150124. PubMed DOI
Alkilany A.M., Murphy C.J. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J. Nanoparticle Res. 2010;12(7):2313–2333. doi: 10.1007/s11051-010-9911-8. PubMed DOI PMC
Adewale O.B., Davids H., Cairncross L., Roux S. Toxicological behavior of gold nanoparticles on various models: influence of physicochemical properties and other factors. Int. J. Toxicol. 2019;38(5):357–384. doi: 10.1177/1091581819863130. PubMed DOI
Jang G.J., Jeong J.Y., Kang J., Cho W., Han S.Y. Size dependence unveiling the adsorption interaction of high-density lipoprotein particles with PEGylated gold nanoparticles in biomolecular corona formation. Langmuir. 2021;37(32):9755–9763. doi: 10.1021/acs.langmuir.1c01182. PubMed DOI
Schrand A.M., Rahman M.F., Hussain S.M., Schlager J.J., Smith D.A., Ali S.F. Metal-based nanoparticles and their toxicity assessment. Wires Nanomed Nanobi. 2010;2(5):544–568. doi: 10.1002/wnan.103. PubMed DOI
Pan Y., Neuss S., Leifert A., Fischler M., Wen F., Simon U., Schmid G., Brandau W., Jahnen-Dechent W. Size-dependent cytotoxicity of gold nanoparticles. Small. 2007;3(11):1941–1949. doi: 10.1002/smll.200700378. PubMed DOI
Goodman C.M., McCusker C.D., Yilmaz T., Rotello V.M. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chem. 2004;15(4):897–900. doi: 10.1021/bc049951i. PubMed DOI
Lu F., Doane T.L., Zhu J.J., Burda C. A method for separating PEGylated Au nanoparticle ensembles as a function of grafting density and core size. Chem. Commun. 2014;50(6):642–644. doi: 10.1039/c3cc47124a. PubMed DOI
Reznickova A., Slepicka P., Slavikova N., Staszek M., Svorcik V. Preparation, aging and temperature stability of PEGylated gold nanoparticles. Colloid. Surface. 2017;523:91–97. doi: 10.1016/j.colsurfa.2017.04.005. DOI
Reznickova A., Slavikova N., Kolska Z., Kolarova K., Belinova T., Kalbacova M.H., Cieslar M., Svorcik V. PEGylated gold nanoparticles: stability, cytotoxicity and antibacterial activity. Colloid. Surface. 2019;560:26–34. doi: 10.1016/j.colsurfa.2018.09.083. DOI
Liz-Marzan L.M. Nanometals formation and color. Mater. Today. 2004;7(2):26–31. doi: 10.1016/S1369-7021(04)00080-X. DOI
Worsch C., Wisniewski W., Kracker M., Russel C. Gold nano-particles fixed on glass. Appl. Surf. Sci. 2012;258(22):8506–8513. doi: 10.1016/j.apsusc.2012.05.010. DOI
Cruz-Rodríguez J.C., Camacho-López M.ó., Torres-García E., Aranda-Lara L., Morales-Avila E., Díaz-Sánchez L.E., Jiménez-Mancilla N.P., Isaac-Olivé K. Characterization of the absorption properties of 5 nm spherical gold nanoparticles functionalized with dodecanothiol and without functionalization with potential therapeutic applications. Phys. Scripta. 2023;98(5) doi: 10.1088/1402-4896/acc701. DOI
Omping J., Unabia R., Reazo R.L., Lapening M., Lumod R., Ruda A., Rivera R.B., Sayson N.L., Latayada F., Capangpangan R., et al. Facile synthesis of PEGylated gold nanoparticles for enhanced colorimetric detection of histamine. ACS Omega. 2024;9(12):14269–14278. doi: 10.1021/acsomega.3c10050. PubMed DOI PMC
Link S., El-Sayed M.A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B. 1999;103(21):4212–4217. doi: 10.1021/jp984796o. DOI
Boisselier E., Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 2009;38(6):1759–1782. doi: 10.1039/b806051g. PubMed DOI
Kaur P., Rajput J.K., Singh K., Khullar P., Bakshi M.S. Ag and Au nanoparticles as color indicators for monomer/micelle-nanoparticle interactions. Langmuir. 2022;38(25):7802–7814. doi: 10.1021/acs.langmuir.2c00853. PubMed DOI
Larson T.A., Joshi P.R., Sokolov K. Preventing protein adsorption and macrophage uptake of gold nanoparticles via a hydrophobic shield. ACS Nano. 2012;6(10):9182–9190. doi: 10.1021/nn3035155. PubMed DOI PMC
Doane T.L., Cheng Y., Babar A., Hill R.J., Burda C. Electrophoretic mobilities of PEGylated gold NPs. J. Am. Chem. Soc. 2010;132(44):15624–15631. doi: 10.1021/ja1049093. PubMed DOI
Liu H.Y., Doane T.L., Cheng Y., Lu F., Srinivasan S., Zhu J.J., Burda C. Control of surface ligand density on PEGylated gold nanoparticles for optimized cancer cell uptake. Part. Part. Syst. Char. 2015;32(2):197–204. doi: 10.1002/ppsc.201400067. DOI
Leitzen S., Vogel M., Steffens M., Zapf T., Mueller C.E., Brandl M. Quantification of degradation products formed during heat sterilization of glucose solutions by LC-MS/MS: impact of autoclaving temperature and duration on degradation. Pharmaceuticals-Base. 2021;14(11):1121. doi: 10.3390/ph14111121. PubMed DOI PMC
Yang H.Y.T., Erdos E.G. Second kininase in human blood plasma. Nature. 1967;215(5108):1402–1403. doi: 10.1038/2151402a0. PubMed DOI
Rozenberg M., Loewenschuss A., Marcus Y. IR spectra and hydration of short-chain polyethyleneglycols. Spectrochim. Acta. 1998;54(12):1819–1826. doi: 10.1016/S1386-1425(98)00062-6. DOI
Vrandecic N.S., Erceg M., Jakic M., Klaric I. Kinetic analysis of thermal degradation of poly(ethylene glycol) and poly(ethylene oxide)s of different molecular weight. Thermochim. Acta. 2010;498(1–2):71–80. doi: 10.1016/j.tca.2009.10.005. DOI
Doane T.L., Chuang C.H., Hill R.J., Burda C. Nanoparticle zeta-Potentials. Accounts Chem. Res. 2012;45(3):317–326. doi: 10.1021/ar200113c. PubMed DOI
Uskokovic V. Dynamic light scattering based microelectrophoresis: main prospects and limitations. J. Dispersion Sci. Technol. 2012;33(12):1762–1786. doi: 10.1080/01932691.2011.625523. PubMed DOI PMC
Kolska Z., Reznickova A., Nagyova M., Kasalkova N.S., Sajdl P., Slepicka P., Svorcik V. Plasma activated polymers grafted with cysteamine improving surfaces cytocompatibility. Polym. Degrad. Stabil. 2014;101:1–9. doi: 10.1016/j.polymdegradstab.2014.01.024. DOI
Bhattacharjee S. DLS and zeta potential - what they are and what they are not? J. Contr. Release. 2016;235:337–351. doi: 10.1016/j.jconrel.2016.06.017. PubMed DOI
Flahaut E., Durrieu M.C., Remy-Zolghadri M., Bareille R., Baquey C. Study of the cytotoxicity of CCVD carbon nanotubes. J. Mater. Sci. 2006;41(8):2411–2416. doi: 10.1007/s10853-006-7069-7. DOI
Belinova T., Javorova P., Nguyenova H.Y., Reznickova A., Humlova Z., Kalbacova M.H. Ultra-small gold nanoparticles with mild immunomodulatory activity as a potential tool for bio-applications. Folia Biol-Prague. 2022;68(4):142–152. doi: 10.14712/fb2022068040142. PubMed DOI
Khullar P., Singh V., Mahal A., Dave P.N., Thakur S., Kaur G., Singh J., Kamboj S.S., Bakshi M.S. Bovine serum albumin bioconjugated gold nanoparticles: synthesis, hemolysis, and cytotoxicity toward cancer cell lines. J. Phys. Chem. C. 2012;116(15):8834–8843. doi: 10.1021/jp300585d. DOI
Gonçalves J.P., da Cruz A.F., de Barros H.R., Borges B.S., de Medeiros L.C.A.S., Soares M.J., dos Santos M.P., Grassi M.T., Chandra A., del Mercato L.L., et al. Beyond gold nanoparticles cytotoxicity: potential to impair metastasis hallmarks. Eur. J. Pharm. Biopharm. 2020;157:221–232. doi: 10.1016/j.ejpb.2020.10.019. PubMed DOI