Stability and biological response of PEGylated gold nanoparticles

. 2024 May 15 ; 10 (9) : e30601. [epub] 20240501

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38742054
Odkazy

PubMed 38742054
PubMed Central PMC11089375
DOI 10.1016/j.heliyon.2024.e30601
PII: S2405-8440(24)06632-5
Knihovny.cz E-zdroje

Stability and cytotoxicity of PEGylated Au NPs is crucial for biomedical application. In this study, we have focused on thermal stability of PEGylated Au NPs at 4 and 37 °C and after sterilization in autoclave. Gold nanoparticles were prepared by direct sputtering of gold into PEG and PEG-NH2. Transmission electron microscopy revealed that NPs exhibit a spherical shape with average dimensions 3.8 nm for both AuNP_PEG and AuNP_PEG-NH2. The single LSPR band at wavelength of 509 nm also confirmed presence of spherical Au NPs in both cases. Moreover, according to UV-Vis spectra, the Au NPs were overall stable during aging or thermal stressing and even after sterilization in autoclave. Based on gel electrophoresis results, the higher density of functionalizing ligands and the higher stability is assumed on AuNP_PEG-NH2. Changes in concentration of gold did not occur after thermal stress or with aging. pH values have to be adjusted to be suitable for bioapplications - original pH values are either too alkaline (AuNP_PEG-NH2, pH 10) or too acidic (AuNP_PEG, pH 5). Cytotoxicity was tested on human osteoblasts and fibroblasts. Overall, both Au NPs have shown good cytocompatibility either freshly prepared or even after Au NPs' sterilization in the autoclave. Prepared Au NP dispersions were also examined for their antiviral activity, however no significant effect was observed. We have synthesized highly stable, non-cytotoxic PEGylated Au NPs, which are ready for preclinical testing.

Zobrazit více v PubMed

Zhou J.F., Ralston J., Sedev R., Beattie D.A. Functionalized gold nanoparticles: synthesis, structure and colloid stability. J. Colloid Interface Sci. 2009;331:251–262. doi: 10.1016/j.jcis.2008.12.002. PubMed DOI

Ramalingam V. Multifunctionality of gold nanoparticles: plausible and convincing properties. Adv Colloid Interfac. 2019;271 doi: 10.1016/j.cis.2019.101989. PubMed DOI

Pissuwan D., Valenzuela S.M., Killingsworth M.C., Xu X.D., Cortie M.B. Targeted destruction of murine macrophage cells with bioconjugated gold nanorods. J. Nanoparticle Res. 2007;9:1109–1124. doi: 10.1007/s11051-007-9212-z. DOI

Sharma P., Brown S.C., Bengtsson N., Zhang Q.Z., Walter G.A., Grobmyer S.R., Santra S., Jiang H.B., Scott E.W., Moudgil B.M. Gold-speckled multimodal nanoparticles for noninvasive bioimaging. Chem. Mater. 2008;20:6087–6094. doi: 10.1021/cm801020s. PubMed DOI PMC

Coughlin B.P., Lawrence P.T., Lui I.R., Luby C.J., Spencer D.J., Sykes E.C.H., Mace C.R. Evidence for biological effects in the radiosensitization of leukemia cell lines by PEGylated gold nanoparticles. J. Nanoparticle Res. 2020;22(2) doi: 10.1007/s11051-020-4765-1. DOI

Ahmed S., Baijal G., Somashekar R., Iyer S., Nayak V. Comparative study of one pot synthesis of PEGylated gold and silver nanoparticles for imaging and radiosensitization of oral cancers. Radiat. Phys. Chem. 2022;194 doi: 10.1016/j.radphyschem.2022.109990. PubMed DOI PMC

Babaei A., Mousavi S.M., Ghasemi M., Pirbonyeh N., Soleimani M., Moattari A. Gold nanoparticles show potential in vitro antiviral and anticancer activity. Life Sci. 2021;284 doi: 10.1016/j.lfs.2021.119652. PubMed DOI

Abate C., Carnamucio F., Giuffre O., Foti C. Metal-based compounds in antiviral therapy. Biomolecules. 2022;12(7) doi: 10.3390/biom12070933. PubMed DOI PMC

Sengupta A., Azharuddin M., Al-Otaibi N., Hinkula J. Efficacy and immune response elicited by gold nanoparticle-based nanovaccines against infectious diseases. Vaccines-Basel. 2022;10(4) doi: 10.3390/vaccines10040505. PubMed DOI PMC

Zhou J.L., Hu Z.X., Zabihi F., Chen Z.G., Zhu M.F. Progress and perspective of antiviral protective material. Adv Fiber Mater. 2020;2(3):123–139. doi: 10.1007/s42765-020-00047-7. PubMed DOI PMC

Papp I., Sieben C., Ludwig K., Roskamp M., Böttcher C., Schlecht S., Herrmann A., Haag R. Inhibition of influenza virus infection by multivalent sialic-acid-functionalized gold nanoparticles. Small. 2010;6(24):2900–2906. doi: 10.1002/smll.201001349. PubMed DOI

Halder A., Das S., Ojha D., Chattopadhyay D., Mukherjee A. Highly monodispersed gold nanoparticles synthesis and inhibition of herpes simplex virus infections. Mater. Sci. Eng. C. 2018;89:413–421. doi: 10.1016/j.msec.2018.04.005. PubMed DOI

El-Sheekh M.M., Shabaan M.T., Hassan L., Morsi H.H. Antiviral activity of algae biosynthesized silver and gold nanoparticles against Herps Simplex (HSV-1) virus in vitro using cell-line culture technique. Int. J. Environ. Health Res. 2022;32(3):616–627. doi: 10.1080/09603123.2020.1789946. PubMed DOI

Suganya P., Vaseeharan B., Vijayakumar S., Balan B., Govindarajan M., Alharbi N.S., Kadaikunnan S., Khaled J.M., Benelli G. Biopolymer zein-coated gold nanoparticles: synthesis, antibacterial potential, toxicity and histopathological effects against the Zika virus vector. J. Photochem. Photobiol., B. 2017;173:404–411. doi: 10.1016/j.jphotobiol.2017.06.004. PubMed DOI

Cagno V., Andreozzi P., D'Alicarnasso M., Silva P.J., Mueller M., Galloux M., Le Goffic R., Jones S.T., Vallino M., Hodek J., et al. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nat. Mater. 2018;17(2):195–204. doi: 10.1038/Nmat5053. PubMed DOI

Meléndez-Villanueva M.A., Morán-Santibañez K., Martínez-Sanmiguel J.J., Rangel-López R., Garza-Navarro M.A., Rodríguez-Padilla C., Zarate-Triviño D.G., Trejo-Avila L.M. Virucidal activity of gold nanoparticles synthesized by green chemistry using garlic extract. Viruses-Basel. 2019;11(12) doi: 10.3390/v11121111. PubMed DOI PMC

Roduner E. Size matters: why nanomaterials are different. Chem. Soc. Rev. 2006;35(7):583–592. doi: 10.1039/b502142c. PubMed DOI

Dong J.Z., Zhang X.L., Cao Y.A., Yang W.S., Tian J.G. Shape dependence of nonlinear optical behaviors of gold nanoparticles. Mater. Lett. 2011;65(17–18):2665–2668. doi: 10.1016/j.matlet.2011.05.066. DOI

Dhand C., Dwivedi N., Loh X.J., Ying A.N.J., Verma N.K., Beuerman R.W., Lakshminarayanan R., Ramakrishna S. Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Adv. 2015;5(127):105003–105037. doi: 10.1039/c5ra19388e. DOI

Slepicka P., Kasalkova N.S., Siegel J., Kolska Z., Svorcik V. Methods of gold and silver nanoparticles preparation. Materials. 2020;13(1) doi: 10.3390/ma13010001. PubMed DOI PMC

Kumari Y., Kaur G., Kumar R., Singh S.K., Gulati M., Khursheed R., Clarisse A., Gowthamarajan K., Karri V.V.S.N.R., Mahalingam R., et al. Gold nanoparticles: new routes across old boundaries. Adv Colloid Interfac. 2019;274 doi: 10.1016/j.cis.2019.102037. PubMed DOI

Sergievskaya A., Chauvin A., Konstantinidis S. Sputtering onto liquids: a critical review. Beilstein J. Nanotechnol. 2022;13:10–53. doi: 10.3762/bjnano.13.2. PubMed DOI PMC

Wender H., Migowski P., Feil A.F., Teixeira S.R., Dupont J. Sputtering deposition of nanoparticles onto liquid substrates: recent advances and future trends. Coord. Chem. Rev. 2013;257(17–18):2468–2483. doi: 10.1016/j.ccr.2013.01.013. DOI

Hatakeyama Y., Morita T., Takahashi S., Onishi K., Nishikawa K. Synthesis of gold nanoparticles in liquid polyethylene glycol by sputter deposition and temperature effects on their size and shape. J. Phys. Chem. C. 2011;115(8):3279–3285. doi: 10.1021/jp110455k. DOI

Knop K., Hoogenboom R., Fischer D., Schubert U.S. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem., Int. Ed. 2010;49(36):6288–6308. doi: 10.1002/anie.200902672. PubMed DOI

Liu G.Y., Luo Q.Q., Wang H.B., Zhuang W.H., Wang Y.B. In situ synthesis of multidentate PEGylated chitosan modified gold nanoparticles with good stability and biocompatibility. RSC Adv. 2015;5(86):70109–70116. doi: 10.1039/c5ra11600g. DOI

Sapsford K.E., Algar W.R., Berti L., Gemmill K.B., Casey B.J., Oh E., Stewart M.H., Medintz I.L. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem. Rev. 2013;113(3):1904–2074. doi: 10.1021/cr300143v. PubMed DOI

Suk J.S., Xu Q.G., Kim N., Hanes J., Ensign L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016;99:28–51. doi: 10.1016/j.addr.2015.09.012. PubMed DOI PMC

Albanese A., Tang P.S., Chan W.C.W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012;14:1–16. doi: 10.1146/annurev-bioeng-071811-150124. PubMed DOI

Alkilany A.M., Murphy C.J. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J. Nanoparticle Res. 2010;12(7):2313–2333. doi: 10.1007/s11051-010-9911-8. PubMed DOI PMC

Adewale O.B., Davids H., Cairncross L., Roux S. Toxicological behavior of gold nanoparticles on various models: influence of physicochemical properties and other factors. Int. J. Toxicol. 2019;38(5):357–384. doi: 10.1177/1091581819863130. PubMed DOI

Jang G.J., Jeong J.Y., Kang J., Cho W., Han S.Y. Size dependence unveiling the adsorption interaction of high-density lipoprotein particles with PEGylated gold nanoparticles in biomolecular corona formation. Langmuir. 2021;37(32):9755–9763. doi: 10.1021/acs.langmuir.1c01182. PubMed DOI

Schrand A.M., Rahman M.F., Hussain S.M., Schlager J.J., Smith D.A., Ali S.F. Metal-based nanoparticles and their toxicity assessment. Wires Nanomed Nanobi. 2010;2(5):544–568. doi: 10.1002/wnan.103. PubMed DOI

Pan Y., Neuss S., Leifert A., Fischler M., Wen F., Simon U., Schmid G., Brandau W., Jahnen-Dechent W. Size-dependent cytotoxicity of gold nanoparticles. Small. 2007;3(11):1941–1949. doi: 10.1002/smll.200700378. PubMed DOI

Goodman C.M., McCusker C.D., Yilmaz T., Rotello V.M. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chem. 2004;15(4):897–900. doi: 10.1021/bc049951i. PubMed DOI

Lu F., Doane T.L., Zhu J.J., Burda C. A method for separating PEGylated Au nanoparticle ensembles as a function of grafting density and core size. Chem. Commun. 2014;50(6):642–644. doi: 10.1039/c3cc47124a. PubMed DOI

Reznickova A., Slepicka P., Slavikova N., Staszek M., Svorcik V. Preparation, aging and temperature stability of PEGylated gold nanoparticles. Colloid. Surface. 2017;523:91–97. doi: 10.1016/j.colsurfa.2017.04.005. DOI

Reznickova A., Slavikova N., Kolska Z., Kolarova K., Belinova T., Kalbacova M.H., Cieslar M., Svorcik V. PEGylated gold nanoparticles: stability, cytotoxicity and antibacterial activity. Colloid. Surface. 2019;560:26–34. doi: 10.1016/j.colsurfa.2018.09.083. DOI

Liz-Marzan L.M. Nanometals formation and color. Mater. Today. 2004;7(2):26–31. doi: 10.1016/S1369-7021(04)00080-X. DOI

Worsch C., Wisniewski W., Kracker M., Russel C. Gold nano-particles fixed on glass. Appl. Surf. Sci. 2012;258(22):8506–8513. doi: 10.1016/j.apsusc.2012.05.010. DOI

Cruz-Rodríguez J.C., Camacho-López M.ó., Torres-García E., Aranda-Lara L., Morales-Avila E., Díaz-Sánchez L.E., Jiménez-Mancilla N.P., Isaac-Olivé K. Characterization of the absorption properties of 5 nm spherical gold nanoparticles functionalized with dodecanothiol and without functionalization with potential therapeutic applications. Phys. Scripta. 2023;98(5) doi: 10.1088/1402-4896/acc701. DOI

Omping J., Unabia R., Reazo R.L., Lapening M., Lumod R., Ruda A., Rivera R.B., Sayson N.L., Latayada F., Capangpangan R., et al. Facile synthesis of PEGylated gold nanoparticles for enhanced colorimetric detection of histamine. ACS Omega. 2024;9(12):14269–14278. doi: 10.1021/acsomega.3c10050. PubMed DOI PMC

Link S., El-Sayed M.A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B. 1999;103(21):4212–4217. doi: 10.1021/jp984796o. DOI

Boisselier E., Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 2009;38(6):1759–1782. doi: 10.1039/b806051g. PubMed DOI

Kaur P., Rajput J.K., Singh K., Khullar P., Bakshi M.S. Ag and Au nanoparticles as color indicators for monomer/micelle-nanoparticle interactions. Langmuir. 2022;38(25):7802–7814. doi: 10.1021/acs.langmuir.2c00853. PubMed DOI

Larson T.A., Joshi P.R., Sokolov K. Preventing protein adsorption and macrophage uptake of gold nanoparticles via a hydrophobic shield. ACS Nano. 2012;6(10):9182–9190. doi: 10.1021/nn3035155. PubMed DOI PMC

Doane T.L., Cheng Y., Babar A., Hill R.J., Burda C. Electrophoretic mobilities of PEGylated gold NPs. J. Am. Chem. Soc. 2010;132(44):15624–15631. doi: 10.1021/ja1049093. PubMed DOI

Liu H.Y., Doane T.L., Cheng Y., Lu F., Srinivasan S., Zhu J.J., Burda C. Control of surface ligand density on PEGylated gold nanoparticles for optimized cancer cell uptake. Part. Part. Syst. Char. 2015;32(2):197–204. doi: 10.1002/ppsc.201400067. DOI

Leitzen S., Vogel M., Steffens M., Zapf T., Mueller C.E., Brandl M. Quantification of degradation products formed during heat sterilization of glucose solutions by LC-MS/MS: impact of autoclaving temperature and duration on degradation. Pharmaceuticals-Base. 2021;14(11):1121. doi: 10.3390/ph14111121. PubMed DOI PMC

Yang H.Y.T., Erdos E.G. Second kininase in human blood plasma. Nature. 1967;215(5108):1402–1403. doi: 10.1038/2151402a0. PubMed DOI

Rozenberg M., Loewenschuss A., Marcus Y. IR spectra and hydration of short-chain polyethyleneglycols. Spectrochim. Acta. 1998;54(12):1819–1826. doi: 10.1016/S1386-1425(98)00062-6. DOI

Vrandecic N.S., Erceg M., Jakic M., Klaric I. Kinetic analysis of thermal degradation of poly(ethylene glycol) and poly(ethylene oxide)s of different molecular weight. Thermochim. Acta. 2010;498(1–2):71–80. doi: 10.1016/j.tca.2009.10.005. DOI

Doane T.L., Chuang C.H., Hill R.J., Burda C. Nanoparticle zeta-Potentials. Accounts Chem. Res. 2012;45(3):317–326. doi: 10.1021/ar200113c. PubMed DOI

Uskokovic V. Dynamic light scattering based microelectrophoresis: main prospects and limitations. J. Dispersion Sci. Technol. 2012;33(12):1762–1786. doi: 10.1080/01932691.2011.625523. PubMed DOI PMC

Kolska Z., Reznickova A., Nagyova M., Kasalkova N.S., Sajdl P., Slepicka P., Svorcik V. Plasma activated polymers grafted with cysteamine improving surfaces cytocompatibility. Polym. Degrad. Stabil. 2014;101:1–9. doi: 10.1016/j.polymdegradstab.2014.01.024. DOI

Bhattacharjee S. DLS and zeta potential - what they are and what they are not? J. Contr. Release. 2016;235:337–351. doi: 10.1016/j.jconrel.2016.06.017. PubMed DOI

Flahaut E., Durrieu M.C., Remy-Zolghadri M., Bareille R., Baquey C. Study of the cytotoxicity of CCVD carbon nanotubes. J. Mater. Sci. 2006;41(8):2411–2416. doi: 10.1007/s10853-006-7069-7. DOI

Belinova T., Javorova P., Nguyenova H.Y., Reznickova A., Humlova Z., Kalbacova M.H. Ultra-small gold nanoparticles with mild immunomodulatory activity as a potential tool for bio-applications. Folia Biol-Prague. 2022;68(4):142–152. doi: 10.14712/fb2022068040142. PubMed DOI

Khullar P., Singh V., Mahal A., Dave P.N., Thakur S., Kaur G., Singh J., Kamboj S.S., Bakshi M.S. Bovine serum albumin bioconjugated gold nanoparticles: synthesis, hemolysis, and cytotoxicity toward cancer cell lines. J. Phys. Chem. C. 2012;116(15):8834–8843. doi: 10.1021/jp300585d. DOI

Gonçalves J.P., da Cruz A.F., de Barros H.R., Borges B.S., de Medeiros L.C.A.S., Soares M.J., dos Santos M.P., Grassi M.T., Chandra A., del Mercato L.L., et al. Beyond gold nanoparticles cytotoxicity: potential to impair metastasis hallmarks. Eur. J. Pharm. Biopharm. 2020;157:221–232. doi: 10.1016/j.ejpb.2020.10.019. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...