Sputtering onto liquids: a critical review
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
35059275
PubMed Central
PMC8744456
DOI
10.3762/bjnano.13.2
Knihovny.cz E-zdroje
- Klíčová slova
- low-pressure plasmas, magnetron, nanoparticle formation, nanoparticles, sputtering, sputtering onto liquids,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Sputter deposition of atoms onto liquid substrates aims at producing colloidal dispersions of small monodisperse ultrapure nanoparticles (NPs). Since sputtering onto liquids combines the advantages of the physical vapor deposition technique and classical colloidal synthesis, the review contains chapters explaining the basics of (magnetron) sputter deposition and the formation of NPs in solution. This review article covers more than 132 papers published on this topic from 1996 to September 2021 and aims at providing a critical analysis of most of the reported data; we will address the influence of the sputtering parameters (sputter power, current, voltage, sputter time, working gas pressure, and the type of sputtering plasma) and host liquid properties (composition, temperature, viscosity, and surface tension) on the NP formation as well as a detailed overview of the properties and applications of the produced NPs.
Zobrazit více v PubMed
Jeevanandam J, Barhoum A, Chan Y S, Dufresne A, Danquah M K. Beilstein J Nanotechnol. 2018;9:1050–1074. doi: 10.3762/bjnano.9.98. PubMed DOI PMC
Liz-Marzán L, editor. Colloidal Synthesis of Plasmonic Nanometals. New York City, NY, U.S.A.: Jenny Stanford Publishing; 2020. DOI
Stark W J, Stoessel P R, Wohlleben W, Hafner A. Chem Soc Rev. 2015;44:5793–5805. doi: 10.1039/c4cs00362d. PubMed DOI
Liz-Marzán L M, Kagan C R, Millstone J E. ACS Nano. 2020;14:6359–6361. doi: 10.1021/acsnano.0c04709. PubMed DOI
Sebastian V, Arruebo M, Santamaria J. Small. 2014;10:835–853. doi: 10.1002/smll.201301641. PubMed DOI
Mattox D M. Arc Vapor Deposition. Amsterdam, Netherlands: Elsevier; 2010. pp. 287–300. ((Handbook of Physical Vapor Deposition (PVD) Processing)). DOI
Greene J E. J Vac Sci Technol, A. 2017;35:05C204. doi: 10.1116/1.4998940. DOI
Sigmund P. Thin Solid Films. 2012;520:6031–6049. doi: 10.1016/j.tsf.2012.06.003. DOI
Yatsuya S, Mihama K, Uyeda R. Jpn J Appl Phys. 1974;13:749–750. doi: 10.1143/jjap.13.749. DOI
Ye G-x, Zhang Q-r, Feng C-m, Ge H-l, Jiao Z-k. Phys Rev B. 1996;54(20):14754–14757. doi: 10.1103/physrevb.54.14754. PubMed DOI
Wagener M, Murty B S, Günther B. MRS Online Proc Libr. 1996;457:149. doi: 10.1557/proc-457-149. DOI
Torimoto T, Okazaki K-i, Kiyama T, Hirahara K, Tanaka N, Kuwabata S. Appl Phys Lett. 2006;89(24):243117. doi: 10.1063/1.2404975. DOI
Wender H, Migowski P, Feil A F, Teixeira S R, Dupont J. Coord Chem Rev. 2013;257:2468–2483. doi: 10.1016/j.ccr.2013.01.013. DOI
Nguyen M T, Yonezawa T. Adv Mater (Weinheim, Ger) 2018;19:883–898. doi: 10.1080/14686996.2018.1542926. DOI
Stavis S M, Fagan J A, Stopa M, Liddle J A. ACS Appl Nano Mater. 2018;1:4358–4385. doi: 10.1021/acsanm.8b01239. DOI
Dhand C, Dwivedi N, Loh X J, Jie Ying A N, Verma N K, Beuerman R W, Lakshminarayanan R, Ramakrishna S. RSC Adv. 2015;5:105003–105037. doi: 10.1039/c5ra19388e. DOI
Khan I, Saeed K, Khan I. Arabian J Chem. 2019;12:908–931. doi: 10.1016/j.arabjc.2017.05.011. DOI
Iravani S, Korbekandi H, Mirmohammadi S V, Zolfaghari B. Res Pharm Sci. 2014;9:385–406. PubMed PMC
Fu X, Cai J, Zhang X, Li W-D, Ge H, Hu Y. Adv Drug Delivery Rev. 2018;132:169–187. doi: 10.1016/j.addr.2018.07.006. PubMed DOI
Shanker U, Jassal V, Rani M, Kaith B S. Int J Environ Anal Chem. 2016;96:801–835.
Pedone D, Moglianetti M, De Luca E, Bardi G, Pompa P P. Chem Soc Rev. 2017;46:4951–4975. doi: 10.1039/c7cs00152e. PubMed DOI
Thakkar K N, Mhatre S S, Parikh R Y. Nanomedicine (N Y, NY, U S) 2010;6:257–262. doi: 10.1016/j.nano.2009.07.002. PubMed DOI
Iravani S. Green Chem. 2011;13:2638–2650. doi: 10.1039/c1gc15386b. DOI
Dolique V, Thomann A-L, Brault P. IEEE Trans Plasma Sci. 2011;39:2478–2479. doi: 10.1109/tps.2011.2157942. DOI
Braeckman B R, Boydens F, Hidalgo H, Dutheil P, Jullien M, Thomann A-L, Depla D. Thin Solid Films. 2015;580:71–76. doi: 10.1016/j.tsf.2015.02.070. DOI
Ohring M. Materials Science of Thin Films. Elsevier; 2002. DOI
Wasa K, Kitabatake M, Adachi H. Thin Films Material Technology. Berlin Heidelberg, Germany: Springer; 2004.
Chapman B, Vossen J L. Glow Discharge Processes: Sputtering and Plasma Etching. Vol. 34. AIP Publishing; 1981. p. 62. ((Physics Today)). DOI
Anders A. Handbook of Plasma Immersion Ion Implantation and Deposition. Wiley; 2000.
Lieberman M A, Lichtenberg A J. Principles of Plasma Discharges and Materials Processing. Hoboken, NJ, U.S.A.: John Wiley & Sons, Inc.; 2005. DOI
Depla D, Mahieu S, editors. Reactive Sputter Deposition. Vol. 109. Berlin, Heidelberg: Springer Berlin Heidelberg; 2008. ((Springer Series in Materials Science)). DOI
De Gryse R, Haemers J, Leroy W P, Depla D. Thin Solid Films. 2012;520:5833–5845. doi: 10.1016/j.tsf.2012.04.065. DOI
Escrivão M L, Moutinho A M C, Maneira M J P. J Nucl Mater. 1993;200:300–304. doi: 10.1016/0022-3115(93)90299-e. DOI
Thornton J A. J Vac Sci Technol (N Y, NY, U S) 1978;15(2):171–177. doi: 10.1116/1.569448. DOI
Ziegler J F, Ziegler M D, Biersack J P. Nucl Instrum Methods Phys Res, Sect B. 2010;268:1818–1823. doi: 10.1016/j.nimb.2010.02.091. DOI
Möller W, Eckstein W. Nucl Instrum Methods Phys Res, Sect B. 1984;2:814–818. doi: 10.1016/0168-583x(84)90321-5. DOI
Depla D, Leroy W P. Thin Solid Films. 2012;520:6337–6354. doi: 10.1016/j.tsf.2012.06.032. DOI
Lucas S, Moskovkin P. Thin Solid Films. 2010;518:5355–5361. doi: 10.1016/j.tsf.2010.04.064. DOI
Thompson M W. Nucl Instrum Methods Phys Res, Sect B. 1986;18:411–429. doi: 10.1016/s0168-583x(86)80067-2. DOI
Brizzolara R A, Cooper C B, Olson T K. Nucl Instrum Methods Phys Res, Sect B. 1988;35:36–42. doi: 10.1016/0168-583x(88)90095-x. DOI
Lu J, Lee C G. Vacuum. 2012;86:1134–1140. doi: 10.1016/j.vacuum.2011.10.018. DOI
Thomann A-L, Caillard A, Raza M, El Mokh M, Cormier P A, Konstantinidis S. Surf Coat Technol. 2019;377:124887. doi: 10.1016/j.surfcoat.2019.08.016. DOI
Cormier P-A, Thomann A-L, Dolique V, Balhamri A, Dussart R, Semmar N, Lecas T, Brault P, Snyders R, Konstantinidis S. Thin Solid Films. 2013;545:44–49. doi: 10.1016/j.tsf.2013.07.025. DOI
Thornton J A. Thin Solid Films. 1978;54:23–31. doi: 10.1016/0040-6090(78)90273-0. DOI
Thornton J A. Annu Rev Mater Sci. 1977;7(1):239–260. doi: 10.1146/annurev.ms.07.080177.001323. DOI
Anders A. Thin Solid Films. 2010;518(15):4087–4090. doi: 10.1016/j.tsf.2009.10.145. DOI
Kersten H, Deutsch H, Steffen H, Kroesen G M W, Hippler R. Vacuum. 2001;63:385–431. doi: 10.1016/s0042-207x(01)00350-5. DOI
Patel K, Sergievskaya A, Chauhan S, Konstantinidis S. J Phys D: Appl Phys. 2022
Tillmann W, Fehr A, Stangier D. Thin Solid Films. 2019;687:137465. doi: 10.1016/j.tsf.2019.137465. DOI
Boydens F, Leroy W, Persoons R, Depla D. Phys Status Solidi A. 2012;209:524–530. doi: 10.1002/pssa.201127490. DOI
Petrov P K, Volpyas V A, Chakalov R A. Vacuum. 1999;52:427–434. doi: 10.1016/s0042-207x(98)00326-1. DOI
O'Kane C, Duffy H, Meenan B J, Boyd A R. Surf Coat Technol. 2008;203(1-2):121–128. doi: 10.1016/j.surfcoat.2008.08.007. DOI
Boyd A R, Duffy H, McCann R, Cairns M L, Meenan B J. Nucl Instrum Methods Phys Res, Sect B. 2007;258:421–428. doi: 10.1016/j.nimb.2007.02.072. DOI
Kumari S, Helt L, Junqueira J R C, Kostka A, Zhang S, Sarker S, Mehta A, Scheu C, Schuhmann W, Ludwig A. Int J Hydrogen Energy. 2020;45:12037–12047. doi: 10.1016/j.ijhydene.2020.02.154. DOI
Mongstad T, You C C, Thogersen A, Maehlen J P, Platzer-Björkman C, Hauback B C, Karazhanov S Z. J Alloys Compd. 2012;527:76–83. doi: 10.1016/j.jallcom.2012.02.155. DOI
Cormier P-A, Snyders R. Acta Mater. 2015;96:80–88. doi: 10.1016/j.actamat.2015.06.001. DOI
Berg S, Blom H-O, Larsson T, Nender C. J Vac Sci Technol, A. 1987;5(2):202–207. doi: 10.1116/1.574104. DOI
Depla D, De Gryse R. Surf Coat Technol. 2004;183(2-3):184–189. doi: 10.1016/j.surfcoat.2003.10.006. DOI
Depla D, De Gryse R. Surf Coat Technol. 2004;183(2-3):190–195. doi: 10.1016/j.surfcoat.2003.10.007. DOI
Depla D, De Gryse R. Surf Coat Technol. 2004;183(2-3):196–203. doi: 10.1016/j.surfcoat.2003.10.008. DOI
Schiller S, Heisig U, Korndörfer C, Beister G, Reschke J, Steinfelder K, Strümpfel J. Surf Coat Technol. 1987;33:405–423. doi: 10.1016/0257-8972(87)90206-4. DOI
Britun N, Konstantinidis S, Belosludtsev A, Silva T, Snyders R. J Appl Phys. 2017;121(17):171905. doi: 10.1063/1.4977819. DOI
Konstantinidis S, Nouvellon C, Dauchot J-P, Wautelet M, Hecq M. Surf Coat Technol. 2003;174–175:100–106. doi: 10.1016/s0257-8972(03)00528-0. DOI
Vancoppenolle V, Jouan P-Y, Wautelet M, Dauchot J-P, Hecq M. J Vac Sci Technol, A. 1999;17:3317. doi: 10.1116/1.582059. DOI
Hecq A, Vandy M, Hecq M. J Chem Phys. 1980;72:2876–2878. doi: 10.1063/1.439388. DOI
Schiller S, Goedicke K, Reschke J, Kirchhoff V, Schneider S, Milde F. Surf Coat Technol. 1993;61:331–337. doi: 10.1016/0257-8972(93)90248-m. DOI
Kelly P J, Arnell R D. Vacuum. 2000;56(3):159–172. doi: 10.1016/s0042-207x(99)00189-x. DOI
Alami J, Sarakinos K, Uslu F, Wuttig M. J Phys D: Appl Phys. 2009;42:015304. doi: 10.1088/0022-3727/42/1/015304. DOI
Keraudy J, Viloan R P B, Raadu M A, Brenning N, Lundin D, Helmersson U. Surf Coat Technol. 2019;359:433–437. doi: 10.1016/j.surfcoat.2018.12.090. DOI
Sarakinos K, Alami J, Konstantinidis S. Surf Coat Technol. 2010;204:1661–1684. doi: 10.1016/j.surfcoat.2009.11.013. DOI
Helmersson U, Lattemann M, Bohlmark J, Ehiasarian A P, Gudmundsson J T. Thin Solid Films. 2006;513:1–24. doi: 10.1016/j.tsf.2006.03.033. DOI
Gudmundsson J T, Brenning N, Lundin D, Helmersson U. J Vac Sci Technol, A. 2012;30:030801. doi: 10.1116/1.3691832. DOI
Thornton J A. J Vac Sci Technol (N Y, NY, U S) 1978;15(2):188–192. doi: 10.1116/1.569452. DOI
Konstantinidis S, Gaboriau F, Gaillard M, Hecq M, Ricard A. Optical Plasma Diagnostics During Reactive Magnetron Sputtering. In: Depla D, Mahieu S, editors. Reactive Sputter Deposition. Berlin, Germany: Springer; 2008. pp. 301–335. ((Springer Series in Materials Science)). DOI
Han J G. J Phys D: Appl Phys. 2009;42:043001. doi: 10.1088/0022-3727/42/4/043001. DOI
Britun N, Minea T, Konstantinidis S, Snyders R. J Phys D: Appl Phys. 2014;47:224001. doi: 10.1088/0022-3727/47/22/224001. DOI
Finney E E, Finke R G. J Colloid Interface Sci. 2008;317:351–374. doi: 10.1016/j.jcis.2007.05.092. PubMed DOI
Cha I Y, Yoo S J, Jang J H. J Electrochem Sci Technol. 2016;7:13–26. doi: 10.5229/jecst.2016.7.1.19. DOI
Ott L S, Finke R G. Coord Chem Rev. 2007;251:1075–1100. doi: 10.1016/j.ccr.2006.08.016. DOI
Thanh N T K, Maclean N, Mahiddine S. Chem Rev. 2014;114(15):7610–7630. doi: 10.1021/cr400544s. PubMed DOI
Martin J D. Chem Mater. 2020;32(8):3651–3656. doi: 10.1021/acs.chemmater.9b02839. DOI
Finke R G, Watzky M A, Whitehead C B. Chem Mater. 2020;32(8):3657–3672. doi: 10.1021/acs.chemmater.0c00780. DOI
Polte J. CrystEngComm. 2015;17(36):6809–6830. doi: 10.1039/c5ce01014d. DOI
Whitehead C B, Watzky M A, Finke R G. J Phys Chem C. 2020;124(45):24543–24554. doi: 10.1021/acs.jpcc.0c06875. DOI
Whitehead C B, Özkar S, Finke R G. Mater Adv. 2021;2(1):186–235. doi: 10.1039/d0ma00439a. DOI
LaMer V K, Dinegar R H. J Am Chem Soc. 1950;72(11):4847–4854. doi: 10.1021/ja01167a001. DOI
La Mer V K. Ind Eng Chem. 1952;44:1270–1277. doi: 10.1021/ie50510a027. DOI
Becker R, Döring W. Ann Phys (Berlin, Ger) 1935;416:719–752. doi: 10.1002/andp.19354160806. DOI
Watzky M A, Finke R G. J Am Chem Soc. 1997;119:10382–10400. doi: 10.1021/ja9705102. DOI
Matijevic E. Chem Mater. 1993;5:412–426. doi: 10.1021/cm00028a004. DOI
Sugimoto T. J Colloid Interface Sci. 2007;309:106–118. doi: 10.1016/j.jcis.2007.01.036. PubMed DOI
Turkevich J, Stevenson P C, Hillier J. Discuss Faraday Soc. 1951;11:55–75. doi: 10.1039/df9511100055. DOI
Takiyama K. Bull Chem Soc Jpn. 1958;31:944–950. doi: 10.1246/bcsj.31.944. DOI
Ershov B G, Janata E, Henglein A, Fojtik A. J Phys Chem. 1993;97:4589–4594. doi: 10.1021/j100120a006. DOI
Ershov B G, Henglein A. J Phys Chem B. 1998;102:10667–10671. doi: 10.1021/jp981907a. DOI
Huang Z Y, Mills G, Hajek B. J Phys Chem. 1993;97:11542–11550. doi: 10.1021/j100146a031. DOI
Zsigmondy R. The Chemistry of Colloids. Part I. Kolloidchemie [1917] Cornell University Library; 2019.
Tatarchuk V V, Sergievskaya A P, Druzhinina I A, Zaikovsky V I. J Nanopart Res. 2011;13:4997–5007. doi: 10.1007/s11051-011-0481-1. DOI
Sergievskaya A P, Tatarchuk V V, Makotchenko E V, Mironov I V. J Mater Res. 2015;30:1925–1933. doi: 10.1557/jmr.2015.121. DOI
Streszewski B, Jaworski W, Pacławski K, Csapó E, Dékány I, Fitzner K. Colloids Surf, A. 2012;397:63–72. doi: 10.1016/j.colsurfa.2012.01.031. DOI
Pacławski K, Streszewski B, Jaworski W, Luty-Błocho M, Fitzner K. Colloids Surf, A. 2012;413:208–215. doi: 10.1016/j.colsurfa.2012.02.050. DOI
Tatarchuk V V, Sergievskaya A P, Korda T M, Druzhinina I A, Zaikovsky V I. Chem Mater. 2013;25:3570–3579. doi: 10.1021/cm304115j. DOI
Harada M, Saijo K, Sakamoto N, Ito K. J Colloid Interface Sci. 2010;343:423–432. doi: 10.1016/j.jcis.2009.12.006. PubMed DOI
Harada M, Inada Y, Nomura M. J Colloid Interface Sci. 2009;337:427–438. doi: 10.1016/j.jcis.2009.05.035. PubMed DOI
Harada M, Tamura N, Takenaka M. J Phys Chem C. 2011;115:14081–14092. doi: 10.1021/jp203119a. DOI
Aiken J D, Finke R G. J Am Chem Soc. 1998;120:9545–9554. doi: 10.1021/ja9719485. DOI
Watzky M A, Finke R G. ACS Omega. 2018;3:1555–1563. doi: 10.1021/acsomega.7b01772. PubMed DOI PMC
Bentea L, Watzky M A, Finke R G. J Phys Chem C. 2017;121:5302–5312. doi: 10.1021/acs.jpcc.6b12021. DOI
Watzky M A, Finney E E, Finke R G. J Am Chem Soc. 2008;130:11959–11969. doi: 10.1021/ja8017412. PubMed DOI
Wang F, Richards V N, Shields S P, Buhro W E. Chem Mater. 2014;26:5–21. doi: 10.1021/cm402139r. DOI
Finney E E, Finke R G. Chem Mater. 2008;20:1956–1970. doi: 10.1021/cm071088j. DOI
Handwerk D R, Shipman P D, Özkar S, Finke R G. Langmuir. 2020;36:1496–1506. doi: 10.1021/acs.langmuir.9b03193. PubMed DOI
Suzuki T, Okazaki K-i, Kiyama T, Kuwabata S, Torimoto T. Electrochemistry. 2009;77(8):636–638. doi: 10.5796/electrochemistry.77.636. DOI
Hatakeyama Y, Onishi K, Nishikawa K. RSC Adv. 2011;1:1815–1821. doi: 10.1039/c1ra00688f. DOI
Vanecht E, Binnemans K, Seo J W, Stappers L, Fransaer J. Phys Chem Chem Phys. 2011;13:13565–13571. doi: 10.1039/c1cp20552h. PubMed DOI
Qadir M I, Kauling A, Ebeling G, Fartmann M, Grehl T, Dupont J. Aust J Chem. 2019;72:49. doi: 10.1071/ch18183. DOI
Nakagawa K, Narushima T, Udagawa S, Yonezawa T. J Phys: Conf Ser. 2013;417:012038. doi: 10.1088/1742-6596/417/1/012038. DOI
Slepička P, Elashnikov R, Ulbrich P, Staszek M, Kolská Z, Švorčík V. J Nanopart Res. 2015;17(1):11. doi: 10.1007/s11051-014-2850-z. DOI
Corpuz R D, Ishida Y, Nguyen M T, Yonezawa T. Langmuir. 2017;33(36):9144–9150. doi: 10.1021/acs.langmuir.7b02011. PubMed DOI
Sumi T, Motono S, Ishida Y, Shirahata N, Yonezawa T. Langmuir. 2015;31:4323–4329. doi: 10.1021/acs.langmuir.5b00294. PubMed DOI
Deng L, Nguyen M T, Yonezawa T. Langmuir. 2018;34:2876–2881. doi: 10.1021/acs.langmuir.7b04274. PubMed DOI
Lee S H, Jung H K, Kim T C, Kim C H, Shin C H, Yoon T-S, Hong A-R, Jang H S, Kim D H. Appl Surf Sci. 2018;434:1001–1006. doi: 10.1016/j.apsusc.2017.11.008. DOI
Ishida Y, Udagawa S, Yonezawa T. Colloids Surf, A. 2016;498:106–111. doi: 10.1016/j.colsurfa.2016.03.044. DOI
Wender H, Gonçalves R V, Feil A F, Migowski P, Poletto F S, Pohlmann A R, Dupont J, Teixeira S R. J Phys Chem C. 2011;115(33):16362–16367. doi: 10.1021/jp205390d. DOI
Wender H, de Oliveira L F, Feil A F, Lissner E, Migowski P, Meneghetti M R, Teixeira S R, Dupont J. Chem Commun. 2010;46:7019–7021. doi: 10.1039/c0cc01353f. PubMed DOI
Sugioka D, Kameyama T, Kuwabata S, Torimoto T. Phys Chem Chem Phys. 2015;17:13150–13159. doi: 10.1039/c5cp01602a. PubMed DOI
Deng L, Nguyen M T, Mei S, Tokunaga T, Kudo M, Matsumura S, Yonezawa T. Langmuir. 2019;35:8418–8427. doi: 10.1021/acs.langmuir.9b01112. PubMed DOI
Wender H, Migowski P, Feil A F, de Oliveira L F, Prechtl M H G, Leal R, Machado G, Teixeira S R, Dupont J. Phys Chem Chem Phys. 2011;13(30):13552. doi: 10.1039/c1cp21406c. PubMed DOI
Wender H, de Oliveira L F, Migowski P, Feil A F, Lissner E, Prechtl M H G, Teixeira S R, Dupont J. J Phys Chem C. 2010;114(27):11764–11768. doi: 10.1021/jp102231x. DOI
Yu S-J, Zhang Y-J, Chen J-X, Ge H-L. Surf Rev Lett. 2006;13:779–784. doi: 10.1142/s0218625x06008840. DOI
Sergievskaya A, O’Reilly A, Chauvin A, Veselý J, Panepinto A, De Winter J, Cornil D, Cornil J, Konstantinidis S. Colloids Surf, A. 2021;615:126286. doi: 10.1016/j.colsurfa.2021.126286. DOI
Sergievskaya A, O’Reilly A, Alem H, De Winter J, Cornil D, Cornil J, Konstantinidis S. Front Nanotechnol. 2021;3:57. doi: 10.3389/fnano.2021.710612. DOI
Tsuda T, Yoshii K, Torimoto T, Kuwabata S. J Power Sources. 2010;195:5980–5985. doi: 10.1016/j.jpowsour.2009.11.027. DOI
Hatakeyama Y, Okamoto M, Torimoto T, Kuwabata S, Nishikawa K. J Phys Chem C. 2009;113:3917–3922. doi: 10.1021/jp807046u. DOI
Cigáň A, Lobotka P, Dvurečenskij A, Škrátek M, Radnóczi G, Majerová M, Czigány Z, Maňka J, Vávra I, Mičušík M. J Alloys Compd. 2018;768:625–634. doi: 10.1016/j.jallcom.2018.07.205. DOI
Liu C, Chen N, Li J, Gao X, Sham T-K, Wang S-D. J Phys Chem C. 2017;121:28385–28394. doi: 10.1021/acs.jpcc.7b10470. DOI
Porta M, Nguyen M T, Yonezawa T, Tokunaga T, Ishida Y, Tsukamoto H, Shishino Y, Hatakeyama Y. New J Chem. 2016;40:9337–9343. doi: 10.1039/c6nj01624c. DOI
Reznickova A, Slepicka P, Slavikova N, Staszek M, Svorcik V. Colloids Surf, A. 2017;523:91–97. doi: 10.1016/j.colsurfa.2017.04.005. DOI
Reznickova A, Slavikova N, Kolska Z, Kolarova K, Belinova T, Hubalek Kalbacova M, Cieslar M, Svorcik V. Colloids Surf, A. 2019;560:26–34. doi: 10.1016/j.colsurfa.2018.09.083. DOI
Deng L, Nguyen M T, Shi J, Chau Y-t R, Tokunaga T, Kudo M, Matsumura S, Hashimoto N, Yonezawa T. Langmuir. 2020;36(12):3004–3015. doi: 10.1021/acs.langmuir.0c00152. PubMed DOI
Zhang Y-J, Yu S-J. Int J Mod Phys B. 2009;23:3147–3157. doi: 10.1142/s0217979209049772. DOI
Shishino Y, Yonezawa T, Kawai K, Nishihara H. Chem Commun. 2010;46:7211. doi: 10.1039/c0cc01702g. PubMed DOI
Shishino Y, Yonezawa T, Udagawa S, Hase K, Nishihara H. Angew Chem, Int Ed. 2011;50(3):703–705. doi: 10.1002/anie.201005723. PubMed DOI
Raghuwanshi V S, Ochmann M, Hoell A, Polzer F, Rademann K. Langmuir. 2014;30(21):6038–6046. doi: 10.1021/la500979p. PubMed DOI
Raghuwanshi V S, Ochmann M, Polzer F, Hoell A, Rademann K. Chem Commun. 2014;50(63):8693–8696. doi: 10.1039/c4cc02588a. PubMed DOI
O'Neill M, Raghuwanshi V S, Wendt R, Wollgarten M, Hoell A, Rademann K. Z Phys Chem. 2015;229(1-2):221–234. doi: 10.1515/zpch-2014-0644. DOI
Yoshida H, Kawamoto K, Kubo H, Tsuda T, Fujii A, Kuwabata S, Ozaki M. Adv Mater (Weinheim, Ger) 2010;22(5):622–626. doi: 10.1002/adma.200902831. PubMed DOI
Michels F S, Gonçalves P J, Nascimento V A, Oliveira S L, Wender H, Caires A R L. Nanomaterials. 2021;11(7):1668. doi: 10.3390/nano11071668. PubMed DOI PMC
Fajstavr D, Karasová A, Michalcová A, Ulbrich P, Slepičková Kasálková N, Siegel J, Švorčík V, Slepička P. Nanomaterials. 2021;11(6):1434. doi: 10.3390/nano11061434. PubMed DOI PMC
Meischein M, Ludwig A. J Nanopart Res. 2021;23(6):129. doi: 10.1007/s11051-021-05248-8. DOI
Sugioka D, Kameyama T, Kuwabata S, Yamamoto T, Torimoto T. ACS Appl Mater Interfaces. 2016;8(17):10874–10883. doi: 10.1021/acsami.6b01978. PubMed DOI
Torimoto T, Ohta Y, Enokida K, Sugioka D, Kameyama T, Yamamoto T, Shibayama T, Yoshii K, Tsuda T, Kuwabata S. J Mater Chem A. 2015;3(11):6177–6186. doi: 10.1039/c4ta06643j. DOI
Okazaki K-i, Kiyama T, Suzuki T, Kuwabata S, Torimoto T. Chem Lett. 2009;38(4):330–331. doi: 10.1246/cl.2009.330. DOI
Yatsuya S, Tsukasaki Y, Mihama K, Uyeda R. J Cryst Growth. 1978;45:490–494. doi: 10.1016/0022-0248(78)90481-5. DOI
Porta M, Nguyen M T, Tokunaga T, Ishida Y, Liu W-R, Yonezawa T. Langmuir. 2016;32(46):12159–12165. doi: 10.1021/acs.langmuir.6b03017. PubMed DOI
Tsuda T, Kurihara T, Hoshino Y, Kiyama T, Okazaki K-i, Torimoto T, Kuwabata S. Electrochemistry. 2009;77:693–695. doi: 10.5796/electrochemistry.77.693. DOI
Okazaki K-i, Sakuma J, Yasui J-i, Kuwabata S, Hirahara K, Tanaka N, Torimoto T. Chem Lett. 2011;40(1):84–86. doi: 10.1246/cl.2011.84. DOI
Mientus R, Ellmer K. Surf Coat Technol. 1999;116-119:1093–1101. doi: 10.1016/s0257-8972(99)00124-3. DOI
Wucher A, Garrison B J. J Chem Phys. 1996;105(14):5999–6007. doi: 10.1063/1.472451. DOI
Henriksson K O E, Nordlund K, Keinonen J. Phys Rev B. 2005;71(1):014117. doi: 10.1103/physrevb.71.014117. DOI
Wagener M, Günther B. J Magn Magn Mater. 1999;201(1-3):41–44. doi: 10.1016/s0304-8853(99)00055-4. DOI
Wagener M, Günther B. High Pressure DC-Magnetron Sputtering on Liquids: A New Process for the Production of Metal Nanosuspensions. In: Rehage H, Peschel G, editors. Structure, Dynamics and Properties of Disperse Colloidal Systems. Vol. 111. Darmstadt, Germany: Steinkopff; 1998. pp. 78–81. DOI
Orozco-Montes V, Caillard A, Brault P, Chamorro-Coral W, Bigarre J, Sauldubois A, Andreazza P, Cuynet S, Baranton S, Coutanceau C. J Phys Chem C. 2021;125:3169–3179. doi: 10.1021/acs.jpcc.0c09746. DOI
Choukourov A, Nikitin D, Pleskunov P, Vaidulych M, Shelemin A, Hanu J. Direct Deposition of Nanoparticles into a Liquid Polymer by a Gas Aggregation Cluster Source; The 23rd International Symposium on Plasma Chemistry (ISPC 23); 2017. pp. 355–357.
Choukourov A, Nikitin D, Pleskunov P, Tafiichuk R, Biliak K, Protsak M, Kishenina K, Hanuš J, Dopita M, Cieslar M, et al. J Mol Liq. 2021;336:116319. doi: 10.1016/j.molliq.2021.116319. DOI
Brault P, Chamorro-Coral W, Chuon S, Caillard A, Bauchire J-M, Baranton S, Coutanceau C, Neyts E. Front Chem Sci Eng. 2019;13:324–329. doi: 10.1007/s11705-019-1792-5. DOI
Hamm S C, Basuray S, Mukherjee S, Sengupta S, Mathai J C, Baker G A, Gangopadhyay S. J Mater Chem A. 2014;2:792–803. doi: 10.1039/c3ta13431h. DOI
Cha I Y, Kim H T, Ahn M, Jang J H, Kim Y G, Sung Y-E, Yoo S J. Appl Surf Sci. 2019;471:1083–1087. doi: 10.1016/j.apsusc.2018.12.144. DOI
Cha I Y, Ahn M, Yoo S J, Sung Y-E. RSC Adv. 2014;4:38575–38580. doi: 10.1039/c4ra05213g. DOI
Feng C-M, Ge H-L, Tong M-R, Ye G-X, Jiao Z-K. Thin Solid Films. 1999;342(1-2):30–34. doi: 10.1016/s0040-6090(98)01151-1. DOI
Ye G-x, Feng C-m, Zhang Q-r, Ge H-l, Zhang X-j. Chin Phys Lett. 1996;13(10):772–774. doi: 10.1088/0256-307x/13/10/016. DOI
Ge H, Feng C, Ye G, Ren Y, Jiao Z. J Appl Phys. 1997;82(11):5469–5471. doi: 10.1063/1.365574. DOI
Garzón-Manjón A, Meyer H, Grochla D, Löffler T, Schuhmann W, Ludwig A, Scheu C. Nanomaterials. 2018;8(11):903. doi: 10.3390/nano8110903. PubMed DOI PMC
Chauvin A, Sergievskaya A, El Mel A-A, Fucikova A, Antunes Corrêa C, Vesely J, Duverger-Nédellec E, Cornil D, Cornil J, Tessier P-Y, et al. Nanotechnology. 2020;31(45):455303. doi: 10.1088/1361-6528/abaa75. PubMed DOI
Chauvin A, Sergievskaya A, Fucikova A, Corrêa C A, Vesely J, Cornil J, Cornil D, Dopita M, Konstantinidis S. Nanoscale Adv. 2021;3(16):4780–4789. doi: 10.1039/d1na00222h. PubMed DOI PMC
Kameyama T, Ohno Y, Kurimoto T, Okazaki K-i, Uematsu T, Kuwabata S, Torimoto T. Phys Chem Chem Phys. 2010;12(8):1804–1811. doi: 10.1039/b914230d. PubMed DOI
Sidelev D V, Bleykher G A, Bestetti M, Krivobokov V P, Vicenzo A, Franz S, Brunella M F. Vacuum. 2017;143:479–485. doi: 10.1016/j.vacuum.2017.03.020. DOI
Graillot-Vuillecot R, Thomann A-L, Lecas T, Cachoncinlle C, Millon E, Caillard A. Vacuum. 2020;181:109734. doi: 10.1016/j.vacuum.2020.109734. DOI
Carette X, Debièvre B, Cornil D, Cornil J, Leclère P, Maes B, Gautier N, Gautron E, El Mel A-A, Raquez J-M, et al. J Phys Chem C. 2018;122(46):26605–26612. doi: 10.1021/acs.jpcc.8b06987. DOI
Suzuki S, Ohta Y, Kurimoto T, Kuwabata S, Torimoto T. Phys Chem Chem Phys. 2011;13:13585–13593. doi: 10.1039/c1cp20814d. PubMed DOI
Calabria L, Fernandes J A, Migowski P, Bernardi F, Baptista D L, Leal R, Grehl T, Dupont J. Nanoscale. 2017;9:18753–18758. doi: 10.1039/c7nr06167f. PubMed DOI
Hatakeyama Y, Judai K, Onishi K, Takahashi S, Kimura S, Nishikawa K. Phys Chem Chem Phys. 2016;18:2339–2349. doi: 10.1039/c5cp04123f. PubMed DOI
Vanecht E, Binnemans K, Patskovsky S, Meunier M, Seo J W, Stappers L, Fransaer J. Phys Chem Chem Phys. 2012;14:5662. doi: 10.1039/c2cp23677j. PubMed DOI
Qadir M I, Kauling A, Calabria L, Grehl T, Dupont J. Nano-Struct Nano-Objects. 2018;14:92–97. doi: 10.1016/j.nanoso.2018.01.015. DOI
Meyer H, Meischein M, Ludwig A. ACS Comb Sci. 2018;20:243–250. doi: 10.1021/acscombsci.8b00017. PubMed DOI
Yoshii K, Tsuda T, Arimura T, Imanishi A, Torimoto T, Kuwabata S. RSC Adv. 2012;2:8262–8264. doi: 10.1039/c2ra21243a. DOI
Suzuki T, Okazaki K-i, Suzuki S, Shibayama T, Kuwabata S, Torimoto T. Chem Mater. 2010;22(18):5209–5215. doi: 10.1021/cm101164r. DOI
Meischein M, Fork M, Ludwig A. Nanomaterials. 2020;10(3):525. doi: 10.3390/nano10030525. PubMed DOI PMC
Nguyen M T, Wongrujipairoj K, Tsukamoto H, Kheawhom S, Mei S, Aupama V, Yonezawa T. ACS Sustainable Chem Eng. 2020;8(49):18167–18176. doi: 10.1021/acssuschemeng.0c06549. DOI
Hirano M, Enokida K, Okazaki K-i, Kuwabata S, Yoshida H, Torimoto T. Phys Chem Chem Phys. 2013;15(19):7286. doi: 10.1039/c3cp50816a. PubMed DOI
Hamada T, Sugioka D, Kameyama T, Kuwabata S, Torimoto T. Chem Lett. 2017;46(7):956–959. doi: 10.1246/cl.170242. DOI
Chang J-B, Liu C-H, Liu J, Zhou Y-Y, Gao X, Wang S-D. Nano-Micro Lett. 2015;7(3):307–315. doi: 10.1007/s40820-015-0044-6. PubMed DOI PMC
Liu C, Cai X, Wang J, Liu J, Riese A, Chen Z, Sun X, Wang S-D. Int J Hydrogen Energy. 2016;41(31):13476–13484. doi: 10.1016/j.ijhydene.2016.05.194. DOI
Okazaki K-i, Kiyama T, Hirahara K, Tanaka N, Kuwabata S, Torimoto T. Chem Commun. 2008;(6):691–693. doi: 10.1039/b714761a. PubMed DOI
Fujita A, Matsumoto Y, Takeuchi M, Ryuto H, Takaoka G H. Phys Chem Chem Phys. 2016;18(7):5464–5470. doi: 10.1039/c5cp07323e. PubMed DOI
Ishida Y, Udagawa S, Yonezawa T. Colloids Surf, A. 2016;504:437–441. doi: 10.1016/j.colsurfa.2016.05.035. DOI
Suzuki T, Suzuki S, Tomita Y, Okazaki K-i, Shibayama T, Kuwabata S, Torimoto T. Chem Lett. 2010;39(10):1072–1074. doi: 10.1246/cl.2010.1072. DOI
Chau Y-t R, Deng L, Nguyen M T, Yonezawa T. MRS Adv. 2019;4(5-6):305–309. doi: 10.1557/adv.2019.55. DOI
Chau Y-t R, Nguyen M T, Zhu M, Romier A, Tokunaga T, Yonezawa T. New J Chem. 2020;44(12):4704–4712. doi: 10.1039/d0nj00288g. DOI
Schmitz A, Meyer H, Meischein M, Garzón Manjón A, Schmolke L, Giesen B, Schlüsener C, Simon P, Grin Y, Fischer R A, et al. RSC Adv. 2020;10(22):12891–12899. doi: 10.1039/d0ra01111h. PubMed DOI PMC
Akiyoshi K, Kameyama T, Yamamoto T, Kuwabata S, Tatsuma T, Torimoto T. RSC Adv. 2020;10(48):28516–28522. doi: 10.1039/d0ra05165a. PubMed DOI PMC
Ishida Y, Sumi T, Yonezawa T. New J Chem. 2015;39(8):5895–5897. doi: 10.1039/c5nj01011j. DOI
Ishida Y, Lee C, Yonezawa T. Sci Rep. 2015;5(1):15372. doi: 10.1038/srep15372. PubMed DOI PMC
Akita I, Ishida Y, Yonezawa T. Bull Chem Soc Jpn. 2016;89:1054–1056. doi: 10.1246/bcsj.20160187. DOI
Ishida Y, Nakabayashi R, Matsubara M, Yonezawa T. New J Chem. 2015;39:4227–4230. doi: 10.1039/c5nj00294j. DOI
Ishida Y, Nakabayashi R, Corpuz R D, Yonezawa T. Colloids Surf, A. 2017;518:25–29. doi: 10.1016/j.colsurfa.2017.01.022. DOI
Ishida Y, Akita I, Sumi T, Matsubara M, Yonezawa T. Sci Rep. 2016;6(1):29928. doi: 10.1038/srep29928. PubMed DOI PMC
Ishida Y, Morita A, Tokunaga T, Yonezawa T. Langmuir. 2018;34:4024–4030. doi: 10.1021/acs.langmuir.8b00067. PubMed DOI
Porta M, Nguyen M T, Ishida Y, Yonezawa T. RSC Adv. 2016;6:105030–105034. doi: 10.1039/c6ra17291a. DOI
Corpuz R D, Ishida Y, Yonezawa T. New J Chem. 2017;41:6828–6833. doi: 10.1039/c7nj01369h. DOI
Ishida Y, Corpuz R D, Yonezawa T. Acc Chem Res. 2017;50:2986–2995. doi: 10.1021/acs.accounts.7b00470. PubMed DOI
Liu C-H, Liu J, Zhou Y-Y, Cai X-L, Lu Y, Gao X, Wang S-D. Carbon. 2015;94:295–300. doi: 10.1016/j.carbon.2015.07.003. DOI
Cai X-L, Liu C-H, Liu J, Lu Y, Zhong Y-N, Nie K-Q, Xu J-L, Gao X, Sun X-H, Wang S-D. Nano-Micro Lett. 2017;9(4):48. doi: 10.1007/s40820-017-0149-1. PubMed DOI PMC
Hatakeyama Y, Takahashi S, Nishikawa K. J Phys Chem C. 2010;114(25):11098–11102. doi: 10.1021/jp102763n. DOI
Suzuki S, Tomita Y, Kuwabata S, Torimoto T. Dalton Trans. 2015;44(9):4186–4194. doi: 10.1039/c4dt03557g. PubMed DOI
Hatakeyama Y, Morita T, Takahashi S, Onishi K, Nishikawa K. J Phys Chem C. 2011;115:3279–3285. doi: 10.1021/jp110455k. DOI
Staszek M, Siegel J, Polívková M, Švorčík V. Mater Lett. 2017;186:341–344. doi: 10.1016/j.matlet.2016.10.036. DOI
De Luna M M, Gupta M. Appl Phys Lett. 2018;112:201605. doi: 10.1063/1.5026513. DOI
Meischein M, Wang X, Ludwig A. J Phys Chem C. 2021;125:24229–24239. doi: 10.1021/acs.jpcc.1c07621. DOI
Gutmann F, Simmons L M. J Appl Phys. 1952;23:977–978. doi: 10.1063/1.1702361. DOI
Ueno K, Tokuda H, Watanabe M. Phys Chem Chem Phys. 2010;12:1649. doi: 10.1039/b921462n. PubMed DOI
Luska K L, Moores A. Green Chem. 2012;14:1736. doi: 10.1039/c2gc35241a. DOI
Nguyen M T, Zhang H, Deng L, Tokunaga T, Yonezawa T. Langmuir. 2017;33:12389–12397. doi: 10.1021/acs.langmuir.7b03194. PubMed DOI
Nguyen M T, Yonezawa T, Wang Y, Tokunaga T. Mater Lett. 2016;171:75–78. doi: 10.1016/j.matlet.2016.02.047. DOI
Pišlová M, Kalbáčová M H, Vrabcová L, Slepička P, Kolská Z, Švorčík V. Dig J Nanomater Biostructures. 2018;13:1035–1044.
Borra E F, Seddiki O, Angel R, Eisenstein D, Hickson P, Seddon K R, Worden S P. Nature. 2007;447:979–981. doi: 10.1038/nature05909. PubMed DOI
Wegner S, Janiak C. Top Curr Chem. 2017;375:65. doi: 10.1007/s41061-017-0148-1. PubMed DOI
He Z, Alexandridis P. Phys Chem Chem Phys. 2015;17:18238–18261. doi: 10.1039/c5cp01620g. PubMed DOI
Khatri O P, Adachi K, Murase K, Okazaki K-i, Torimoto T, Tanaka N, Kuwabata S, Sugimura H. Langmuir. 2008;24(15):7785–7792. doi: 10.1021/la800678m. PubMed DOI
Richter K, Birkner A, Mudring A-V. Angew Chem, Int Ed. 2010;49(13):2431–2435. doi: 10.1002/anie.200901562. PubMed DOI
Liu C-H, Mao B-H, Gao J, Zhang S, Gao X, Liu Z, Lee S-T, Sun X-H, Wang S-D. Carbon. 2012;50(8):3008–3014. doi: 10.1016/j.carbon.2012.02.086. DOI
Siegel J, Kvítek O, Ulbrich P, Kolská Z, Slepička P, Švorčík V. Mater Lett. 2012;89:47–50. doi: 10.1016/j.matlet.2012.08.048. DOI
Siegel J, Kolářová K, Vosmanská V, Rimpelová S, Leitner J, Švorčík V. Mater Lett. 2013;113:59–62. doi: 10.1016/j.matlet.2013.09.047. DOI
Castro H P S, Wender H, Alencar M A R C, Teixeira S R, Dupont J, Hickmann J M. J Appl Phys. 2013;114(18):183104. doi: 10.1063/1.4831679. DOI
Iimori T, Hatakeyama Y, Nishikawa K, Kato M, Ohta N. Chem Phys Lett. 2013;586:100–103. doi: 10.1016/j.cplett.2013.09.010. DOI
Zhang C, Feng Y. J Phys Soc Jpn. 2015;84(7):074601. doi: 10.7566/jpsj.84.074601. DOI
Hatakeyama Y, Kimura S, Kameyama T, Agawa Y, Tanaka H, Judai K, Torimoto T, Nishikawa K. Chem Phys Lett. 2016;658:188–191. doi: 10.1016/j.cplett.2016.06.044. DOI
Yoda M, Takashima T, Akiyoshi K, Torimoto T, Irie H. J Chem Phys. 2020;153(1):014701. doi: 10.1063/5.0010100. PubMed DOI
Hamm S C, Shankaran R, Korampally V, Bok S, Praharaj S, Baker G A, Robertson J D, Lee B D, Sengupta S, Gangopadhyay K, et al. ACS Appl Mater Interfaces. 2012;4(1):178–184. doi: 10.1021/am2012273. PubMed DOI
Suzuki S, Morimoto A, Kuwabata S, Torimoto T. Jpn J Appl Phys. 2021;60(SA):SAAC01. doi: 10.35848/1347-4065/abb75a. DOI
Trajano M F, Franceschini D F, Silva E F, Correa M A, Bohn F, Alves S M. J Tribol. 2021;143(11):112101 . doi: 10.1115/1.4049790. DOI
Staszek M, Siegel J, Kolářová K, Rimpelová S, Švorčík V. Micro Nano Lett. 2014;9:778–781. doi: 10.1049/mnl.2014.0345. DOI
Yoshii K, Yamaji K, Tsuda T, Matsumoto H, Sato T, Izumi R, Torimoto T, Kuwabata S. J Mater Chem A. 2016;4:12152–12157. doi: 10.1039/c6ta04859e. DOI
Sasaki T, Inoue S, Kuwabata S. Electrochemistry. 2021;89:83–86. doi: 10.5796/electrochemistry.20-65149. DOI
Sasaki T, Izumi R, Tsuda T, Kuwabata S. ACS Appl Energy Mater. 2021;4:7298–7308. doi: 10.1021/acsaem.1c01410. DOI
Oda Y, Hirano K, Yoshii K, Kuwabata S, Torimoto T, Miura M. Chem Lett. 2010;39:1069–1071. doi: 10.1246/cl.2010.1069. DOI
Cano I, Weilhard A, Martin C, Pinto J, Lodge R W, Santos A R, Rance G A, Åhlgren E H, Jónsson E, Yuan J, et al. Nat Commun. 2021;12:4965. doi: 10.1038/s41467-021-25263-6. PubMed DOI PMC
Cuenya B R. Thin Solid Films. 2010;518:3127–3150. doi: 10.1016/j.tsf.2010.01.018. DOI
Narayan N, Meiyazhagan A, Vajtai R. Materials. 2019;12:3602. doi: 10.3390/ma12213602. PubMed DOI PMC
Lopez N. J Catal. 2004;223:232–235. doi: 10.1016/j.jcat.2004.01.001. DOI
Hvolbæk B, Janssens T V W, Clausen B S, Falsig H, Christensen C H, Nørskov J K. Nano Today. 2007;2:14–18. doi: 10.1016/s1748-0132(07)70113-5. DOI
Kang X, Zhu M. Chem Soc Rev. 2019;48:2422–2457. doi: 10.1039/c8cs00800k. PubMed DOI
Bhattacharya R, Mukherjee P. Adv Drug Delivery Rev. 2008;60:1289–1306. doi: 10.1016/j.addr.2008.03.013. PubMed DOI
Hajipour M J, Fromm K M, Akbar Ashkarran A, Jimenez de Aberasturi D, Ruiz de Larramendi I, Rojo T, Serpooshan V, Parak W J, Mahmoudi M. Trends Biotechnol. 2012;30:499–511. doi: 10.1016/j.tibtech.2012.06.004. PubMed DOI
Suzuki S, Suzuki T, Tomita Y, Hirano M, Okazaki K-i, Kuwabata S, Torimoto T. CrystEngComm. 2012;14(15):4922. doi: 10.1039/c2ce25235j. DOI
Liu C-H, Liu R-H, Sun Q-J, Chang J-B, Gao X, Liu Y, Lee S-T, Kang Z-H, Wang S-D. Nanoscale. 2015;7(14):6356–6362. doi: 10.1039/c4nr06855f. PubMed DOI
Zhou Y-Y, Liu C-H, Liu J, Cai X-L, Lu Y, Zhang H, Sun X-H, Wang S-D. Nano-Micro Lett. 2016;8(4):371–380. doi: 10.1007/s40820-016-0096-2. PubMed DOI PMC
Manjón A G, Löffler T, Meischein M, Meyer H, Lim J, Strotkötter V, Schuhmann W, Ludwig A, Scheu C. Nanoscale. 2020;12(46):23570–23577. doi: 10.1039/d0nr07632e. PubMed DOI
König D, Richter K, Siegel A, Mudring A-V, Ludwig A. Adv Funct Mater. 2014;24(14):2049–2056. doi: 10.1002/adfm.201303140. DOI
Meischein M, Garzón-Manjón A, Frohn T, Meyer H, Salomon S, Scheu C, Ludwig A. ACS Comb Sci. 2019;21(11):743–752. doi: 10.1021/acscombsci.9b00140. PubMed DOI
Zhu M, Nguyen M T, Chau Y-t R, Deng L, Yonezawa T. Langmuir. 2021;37(19):6096–6105. doi: 10.1021/acs.langmuir.1c00916. PubMed DOI
Löffler T, Meyer H, Savan A, Wilde P, Garzón Manjón A, Chen Y-T, Ventosa E, Scheu C, Ludwig A, Schuhmann W. Adv Energy Mater. 2018;8(34):1802269. doi: 10.1002/aenm.201802269. DOI
Liu X, Wang A, Wang X, Mou C-Y, Zhang T. Chem Commun. 2008;(27):3187. doi: 10.1039/b804362k. PubMed DOI
Chimentão R J, Medina F, Fierro J L G, Llorca J, Sueiras J E, Cesteros Y, Salagre P. J Mol Catal A: Chem. 2007;274(1-2):159–168. doi: 10.1016/j.molcata.2007.05.008. DOI
Llorca J, Dominguez M, Ledesma C, Chimentao R, Medina F, Sueiras J, Angurell I, Seco M, Rossell O. J Catal. 2008;258:187–198. doi: 10.1016/j.jcat.2008.06.010. DOI
Liu C-H, Chen X-Q, Hu Y-F, Sham T-K, Sun Q-J, Chang J-B, Gao X, Sun X-H, Wang S-D. ACS Appl Mater Interfaces. 2013;5(11):5072–5079. doi: 10.1021/am4008853. PubMed DOI
Kaito T, Mitsumoto H, Sugawara S, Shinohara K, Uehara H, Ariga H, Takakusagi S, Hatakeyama Y, Nishikawa K, Asakura K. J Phys Chem C. 2014;118(16):8481–8490. doi: 10.1021/jp501607f. DOI
El Mel A-A, Nakamura R, Bittencourt C. Beilstein J Nanotechnol. 2015;6:1348–1361. doi: 10.3762/bjnano.6.139. PubMed DOI PMC
Yang B, Xia A-G, Jin J-S, Ye Q-L, Lao Y-F, Jiao Z-K, Ye G-X. J Phys: Condens Matter. 2002;14(43):10051–10062. doi: 10.1088/0953-8984/14/43/304. DOI
Quan-Lin Y, Sen-Jiang Y, Jin-Sheng J, Gao-Xiang Y. Chin Phys Lett. 2003;20:1109–1111. doi: 10.1088/0256-307x/20/7/340. DOI
Ye Q-L, Xu X-J, Cai P-G, Xia A-G, Ye G-X. Phys Lett A. 2003;318(4-5):457–462. doi: 10.1016/j.physleta.2003.09.015. DOI
Xu X-J, Ye Q-L, Ye G-X. Phys Lett A. 2007;361(4-5):429–433. doi: 10.1016/j.physleta.2006.09.063. DOI
Tao X, Xuan W, Yang B. Mater Res Express. 2019;6(11):116446. doi: 10.1088/2053-1591/ab4d88. DOI