Sputtering onto liquids: a critical review

. 2022 ; 13 () : 10-53. [epub] 20220104

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35059275

Sputter deposition of atoms onto liquid substrates aims at producing colloidal dispersions of small monodisperse ultrapure nanoparticles (NPs). Since sputtering onto liquids combines the advantages of the physical vapor deposition technique and classical colloidal synthesis, the review contains chapters explaining the basics of (magnetron) sputter deposition and the formation of NPs in solution. This review article covers more than 132 papers published on this topic from 1996 to September 2021 and aims at providing a critical analysis of most of the reported data; we will address the influence of the sputtering parameters (sputter power, current, voltage, sputter time, working gas pressure, and the type of sputtering plasma) and host liquid properties (composition, temperature, viscosity, and surface tension) on the NP formation as well as a detailed overview of the properties and applications of the produced NPs.

Zobrazit více v PubMed

Jeevanandam J, Barhoum A, Chan Y S, Dufresne A, Danquah M K. Beilstein J Nanotechnol. 2018;9:1050–1074. doi: 10.3762/bjnano.9.98. PubMed DOI PMC

Liz-Marzán L, editor. Colloidal Synthesis of Plasmonic Nanometals. New York City, NY, U.S.A.: Jenny Stanford Publishing; 2020. DOI

Stark W J, Stoessel P R, Wohlleben W, Hafner A. Chem Soc Rev. 2015;44:5793–5805. doi: 10.1039/c4cs00362d. PubMed DOI

Liz-Marzán L M, Kagan C R, Millstone J E. ACS Nano. 2020;14:6359–6361. doi: 10.1021/acsnano.0c04709. PubMed DOI

Sebastian V, Arruebo M, Santamaria J. Small. 2014;10:835–853. doi: 10.1002/smll.201301641. PubMed DOI

Mattox D M. Arc Vapor Deposition. Amsterdam, Netherlands: Elsevier; 2010. pp. 287–300. ((Handbook of Physical Vapor Deposition (PVD) Processing)). DOI

Greene J E. J Vac Sci Technol, A. 2017;35:05C204. doi: 10.1116/1.4998940. DOI

Sigmund P. Thin Solid Films. 2012;520:6031–6049. doi: 10.1016/j.tsf.2012.06.003. DOI

Yatsuya S, Mihama K, Uyeda R. Jpn J Appl Phys. 1974;13:749–750. doi: 10.1143/jjap.13.749. DOI

Ye G-x, Zhang Q-r, Feng C-m, Ge H-l, Jiao Z-k. Phys Rev B. 1996;54(20):14754–14757. doi: 10.1103/physrevb.54.14754. PubMed DOI

Wagener M, Murty B S, Günther B. MRS Online Proc Libr. 1996;457:149. doi: 10.1557/proc-457-149. DOI

Torimoto T, Okazaki K-i, Kiyama T, Hirahara K, Tanaka N, Kuwabata S. Appl Phys Lett. 2006;89(24):243117. doi: 10.1063/1.2404975. DOI

Wender H, Migowski P, Feil A F, Teixeira S R, Dupont J. Coord Chem Rev. 2013;257:2468–2483. doi: 10.1016/j.ccr.2013.01.013. DOI

Nguyen M T, Yonezawa T. Adv Mater (Weinheim, Ger) 2018;19:883–898. doi: 10.1080/14686996.2018.1542926. DOI

Stavis S M, Fagan J A, Stopa M, Liddle J A. ACS Appl Nano Mater. 2018;1:4358–4385. doi: 10.1021/acsanm.8b01239. DOI

Dhand C, Dwivedi N, Loh X J, Jie Ying A N, Verma N K, Beuerman R W, Lakshminarayanan R, Ramakrishna S. RSC Adv. 2015;5:105003–105037. doi: 10.1039/c5ra19388e. DOI

Khan I, Saeed K, Khan I. Arabian J Chem. 2019;12:908–931. doi: 10.1016/j.arabjc.2017.05.011. DOI

Iravani S, Korbekandi H, Mirmohammadi S V, Zolfaghari B. Res Pharm Sci. 2014;9:385–406. PubMed PMC

Fu X, Cai J, Zhang X, Li W-D, Ge H, Hu Y. Adv Drug Delivery Rev. 2018;132:169–187. doi: 10.1016/j.addr.2018.07.006. PubMed DOI

Shanker U, Jassal V, Rani M, Kaith B S. Int J Environ Anal Chem. 2016;96:801–835.

Pedone D, Moglianetti M, De Luca E, Bardi G, Pompa P P. Chem Soc Rev. 2017;46:4951–4975. doi: 10.1039/c7cs00152e. PubMed DOI

Thakkar K N, Mhatre S S, Parikh R Y. Nanomedicine (N Y, NY, U S) 2010;6:257–262. doi: 10.1016/j.nano.2009.07.002. PubMed DOI

Iravani S. Green Chem. 2011;13:2638–2650. doi: 10.1039/c1gc15386b. DOI

Dolique V, Thomann A-L, Brault P. IEEE Trans Plasma Sci. 2011;39:2478–2479. doi: 10.1109/tps.2011.2157942. DOI

Braeckman B R, Boydens F, Hidalgo H, Dutheil P, Jullien M, Thomann A-L, Depla D. Thin Solid Films. 2015;580:71–76. doi: 10.1016/j.tsf.2015.02.070. DOI

Ohring M. Materials Science of Thin Films. Elsevier; 2002. DOI

Wasa K, Kitabatake M, Adachi H. Thin Films Material Technology. Berlin Heidelberg, Germany: Springer; 2004.

Chapman B, Vossen J L. Glow Discharge Processes: Sputtering and Plasma Etching. Vol. 34. AIP Publishing; 1981. p. 62. ((Physics Today)). DOI

Anders A. Handbook of Plasma Immersion Ion Implantation and Deposition. Wiley; 2000.

Lieberman M A, Lichtenberg A J. Principles of Plasma Discharges and Materials Processing. Hoboken, NJ, U.S.A.: John Wiley & Sons, Inc.; 2005. DOI

Depla D, Mahieu S, editors. Reactive Sputter Deposition. Vol. 109. Berlin, Heidelberg: Springer Berlin Heidelberg; 2008. ((Springer Series in Materials Science)). DOI

De Gryse R, Haemers J, Leroy W P, Depla D. Thin Solid Films. 2012;520:5833–5845. doi: 10.1016/j.tsf.2012.04.065. DOI

Escrivão M L, Moutinho A M C, Maneira M J P. J Nucl Mater. 1993;200:300–304. doi: 10.1016/0022-3115(93)90299-e. DOI

Thornton J A. J Vac Sci Technol (N Y, NY, U S) 1978;15(2):171–177. doi: 10.1116/1.569448. DOI

Ziegler J F, Ziegler M D, Biersack J P. Nucl Instrum Methods Phys Res, Sect B. 2010;268:1818–1823. doi: 10.1016/j.nimb.2010.02.091. DOI

Möller W, Eckstein W. Nucl Instrum Methods Phys Res, Sect B. 1984;2:814–818. doi: 10.1016/0168-583x(84)90321-5. DOI

Depla D, Leroy W P. Thin Solid Films. 2012;520:6337–6354. doi: 10.1016/j.tsf.2012.06.032. DOI

Lucas S, Moskovkin P. Thin Solid Films. 2010;518:5355–5361. doi: 10.1016/j.tsf.2010.04.064. DOI

Thompson M W. Nucl Instrum Methods Phys Res, Sect B. 1986;18:411–429. doi: 10.1016/s0168-583x(86)80067-2. DOI

Brizzolara R A, Cooper C B, Olson T K. Nucl Instrum Methods Phys Res, Sect B. 1988;35:36–42. doi: 10.1016/0168-583x(88)90095-x. DOI

Lu J, Lee C G. Vacuum. 2012;86:1134–1140. doi: 10.1016/j.vacuum.2011.10.018. DOI

Thomann A-L, Caillard A, Raza M, El Mokh M, Cormier P A, Konstantinidis S. Surf Coat Technol. 2019;377:124887. doi: 10.1016/j.surfcoat.2019.08.016. DOI

Cormier P-A, Thomann A-L, Dolique V, Balhamri A, Dussart R, Semmar N, Lecas T, Brault P, Snyders R, Konstantinidis S. Thin Solid Films. 2013;545:44–49. doi: 10.1016/j.tsf.2013.07.025. DOI

Thornton J A. Thin Solid Films. 1978;54:23–31. doi: 10.1016/0040-6090(78)90273-0. DOI

Thornton J A. Annu Rev Mater Sci. 1977;7(1):239–260. doi: 10.1146/annurev.ms.07.080177.001323. DOI

Anders A. Thin Solid Films. 2010;518(15):4087–4090. doi: 10.1016/j.tsf.2009.10.145. DOI

Kersten H, Deutsch H, Steffen H, Kroesen G M W, Hippler R. Vacuum. 2001;63:385–431. doi: 10.1016/s0042-207x(01)00350-5. DOI

Patel K, Sergievskaya A, Chauhan S, Konstantinidis S. J Phys D: Appl Phys. 2022

Tillmann W, Fehr A, Stangier D. Thin Solid Films. 2019;687:137465. doi: 10.1016/j.tsf.2019.137465. DOI

Boydens F, Leroy W, Persoons R, Depla D. Phys Status Solidi A. 2012;209:524–530. doi: 10.1002/pssa.201127490. DOI

Petrov P K, Volpyas V A, Chakalov R A. Vacuum. 1999;52:427–434. doi: 10.1016/s0042-207x(98)00326-1. DOI

O'Kane C, Duffy H, Meenan B J, Boyd A R. Surf Coat Technol. 2008;203(1-2):121–128. doi: 10.1016/j.surfcoat.2008.08.007. DOI

Boyd A R, Duffy H, McCann R, Cairns M L, Meenan B J. Nucl Instrum Methods Phys Res, Sect B. 2007;258:421–428. doi: 10.1016/j.nimb.2007.02.072. DOI

Kumari S, Helt L, Junqueira J R C, Kostka A, Zhang S, Sarker S, Mehta A, Scheu C, Schuhmann W, Ludwig A. Int J Hydrogen Energy. 2020;45:12037–12047. doi: 10.1016/j.ijhydene.2020.02.154. DOI

Mongstad T, You C C, Thogersen A, Maehlen J P, Platzer-Björkman C, Hauback B C, Karazhanov S Z. J Alloys Compd. 2012;527:76–83. doi: 10.1016/j.jallcom.2012.02.155. DOI

Cormier P-A, Snyders R. Acta Mater. 2015;96:80–88. doi: 10.1016/j.actamat.2015.06.001. DOI

Berg S, Blom H-O, Larsson T, Nender C. J Vac Sci Technol, A. 1987;5(2):202–207. doi: 10.1116/1.574104. DOI

Depla D, De Gryse R. Surf Coat Technol. 2004;183(2-3):184–189. doi: 10.1016/j.surfcoat.2003.10.006. DOI

Depla D, De Gryse R. Surf Coat Technol. 2004;183(2-3):190–195. doi: 10.1016/j.surfcoat.2003.10.007. DOI

Depla D, De Gryse R. Surf Coat Technol. 2004;183(2-3):196–203. doi: 10.1016/j.surfcoat.2003.10.008. DOI

Schiller S, Heisig U, Korndörfer C, Beister G, Reschke J, Steinfelder K, Strümpfel J. Surf Coat Technol. 1987;33:405–423. doi: 10.1016/0257-8972(87)90206-4. DOI

Britun N, Konstantinidis S, Belosludtsev A, Silva T, Snyders R. J Appl Phys. 2017;121(17):171905. doi: 10.1063/1.4977819. DOI

Konstantinidis S, Nouvellon C, Dauchot J-P, Wautelet M, Hecq M. Surf Coat Technol. 2003;174–175:100–106. doi: 10.1016/s0257-8972(03)00528-0. DOI

Vancoppenolle V, Jouan P-Y, Wautelet M, Dauchot J-P, Hecq M. J Vac Sci Technol, A. 1999;17:3317. doi: 10.1116/1.582059. DOI

Hecq A, Vandy M, Hecq M. J Chem Phys. 1980;72:2876–2878. doi: 10.1063/1.439388. DOI

Schiller S, Goedicke K, Reschke J, Kirchhoff V, Schneider S, Milde F. Surf Coat Technol. 1993;61:331–337. doi: 10.1016/0257-8972(93)90248-m. DOI

Kelly P J, Arnell R D. Vacuum. 2000;56(3):159–172. doi: 10.1016/s0042-207x(99)00189-x. DOI

Alami J, Sarakinos K, Uslu F, Wuttig M. J Phys D: Appl Phys. 2009;42:015304. doi: 10.1088/0022-3727/42/1/015304. DOI

Keraudy J, Viloan R P B, Raadu M A, Brenning N, Lundin D, Helmersson U. Surf Coat Technol. 2019;359:433–437. doi: 10.1016/j.surfcoat.2018.12.090. DOI

Sarakinos K, Alami J, Konstantinidis S. Surf Coat Technol. 2010;204:1661–1684. doi: 10.1016/j.surfcoat.2009.11.013. DOI

Helmersson U, Lattemann M, Bohlmark J, Ehiasarian A P, Gudmundsson J T. Thin Solid Films. 2006;513:1–24. doi: 10.1016/j.tsf.2006.03.033. DOI

Gudmundsson J T, Brenning N, Lundin D, Helmersson U. J Vac Sci Technol, A. 2012;30:030801. doi: 10.1116/1.3691832. DOI

Thornton J A. J Vac Sci Technol (N Y, NY, U S) 1978;15(2):188–192. doi: 10.1116/1.569452. DOI

Konstantinidis S, Gaboriau F, Gaillard M, Hecq M, Ricard A. Optical Plasma Diagnostics During Reactive Magnetron Sputtering. In: Depla D, Mahieu S, editors. Reactive Sputter Deposition. Berlin, Germany: Springer; 2008. pp. 301–335. ((Springer Series in Materials Science)). DOI

Han J G. J Phys D: Appl Phys. 2009;42:043001. doi: 10.1088/0022-3727/42/4/043001. DOI

Britun N, Minea T, Konstantinidis S, Snyders R. J Phys D: Appl Phys. 2014;47:224001. doi: 10.1088/0022-3727/47/22/224001. DOI

Finney E E, Finke R G. J Colloid Interface Sci. 2008;317:351–374. doi: 10.1016/j.jcis.2007.05.092. PubMed DOI

Cha I Y, Yoo S J, Jang J H. J Electrochem Sci Technol. 2016;7:13–26. doi: 10.5229/jecst.2016.7.1.19. DOI

Ott L S, Finke R G. Coord Chem Rev. 2007;251:1075–1100. doi: 10.1016/j.ccr.2006.08.016. DOI

Thanh N T K, Maclean N, Mahiddine S. Chem Rev. 2014;114(15):7610–7630. doi: 10.1021/cr400544s. PubMed DOI

Martin J D. Chem Mater. 2020;32(8):3651–3656. doi: 10.1021/acs.chemmater.9b02839. DOI

Finke R G, Watzky M A, Whitehead C B. Chem Mater. 2020;32(8):3657–3672. doi: 10.1021/acs.chemmater.0c00780. DOI

Polte J. CrystEngComm. 2015;17(36):6809–6830. doi: 10.1039/c5ce01014d. DOI

Whitehead C B, Watzky M A, Finke R G. J Phys Chem C. 2020;124(45):24543–24554. doi: 10.1021/acs.jpcc.0c06875. DOI

Whitehead C B, Özkar S, Finke R G. Mater Adv. 2021;2(1):186–235. doi: 10.1039/d0ma00439a. DOI

LaMer V K, Dinegar R H. J Am Chem Soc. 1950;72(11):4847–4854. doi: 10.1021/ja01167a001. DOI

La Mer V K. Ind Eng Chem. 1952;44:1270–1277. doi: 10.1021/ie50510a027. DOI

Becker R, Döring W. Ann Phys (Berlin, Ger) 1935;416:719–752. doi: 10.1002/andp.19354160806. DOI

Watzky M A, Finke R G. J Am Chem Soc. 1997;119:10382–10400. doi: 10.1021/ja9705102. DOI

Matijevic E. Chem Mater. 1993;5:412–426. doi: 10.1021/cm00028a004. DOI

Sugimoto T. J Colloid Interface Sci. 2007;309:106–118. doi: 10.1016/j.jcis.2007.01.036. PubMed DOI

Turkevich J, Stevenson P C, Hillier J. Discuss Faraday Soc. 1951;11:55–75. doi: 10.1039/df9511100055. DOI

Takiyama K. Bull Chem Soc Jpn. 1958;31:944–950. doi: 10.1246/bcsj.31.944. DOI

Ershov B G, Janata E, Henglein A, Fojtik A. J Phys Chem. 1993;97:4589–4594. doi: 10.1021/j100120a006. DOI

Ershov B G, Henglein A. J Phys Chem B. 1998;102:10667–10671. doi: 10.1021/jp981907a. DOI

Huang Z Y, Mills G, Hajek B. J Phys Chem. 1993;97:11542–11550. doi: 10.1021/j100146a031. DOI

Zsigmondy R. The Chemistry of Colloids. Part I. Kolloidchemie [1917] Cornell University Library; 2019.

Tatarchuk V V, Sergievskaya A P, Druzhinina I A, Zaikovsky V I. J Nanopart Res. 2011;13:4997–5007. doi: 10.1007/s11051-011-0481-1. DOI

Sergievskaya A P, Tatarchuk V V, Makotchenko E V, Mironov I V. J Mater Res. 2015;30:1925–1933. doi: 10.1557/jmr.2015.121. DOI

Streszewski B, Jaworski W, Pacławski K, Csapó E, Dékány I, Fitzner K. Colloids Surf, A. 2012;397:63–72. doi: 10.1016/j.colsurfa.2012.01.031. DOI

Pacławski K, Streszewski B, Jaworski W, Luty-Błocho M, Fitzner K. Colloids Surf, A. 2012;413:208–215. doi: 10.1016/j.colsurfa.2012.02.050. DOI

Tatarchuk V V, Sergievskaya A P, Korda T M, Druzhinina I A, Zaikovsky V I. Chem Mater. 2013;25:3570–3579. doi: 10.1021/cm304115j. DOI

Harada M, Saijo K, Sakamoto N, Ito K. J Colloid Interface Sci. 2010;343:423–432. doi: 10.1016/j.jcis.2009.12.006. PubMed DOI

Harada M, Inada Y, Nomura M. J Colloid Interface Sci. 2009;337:427–438. doi: 10.1016/j.jcis.2009.05.035. PubMed DOI

Harada M, Tamura N, Takenaka M. J Phys Chem C. 2011;115:14081–14092. doi: 10.1021/jp203119a. DOI

Aiken J D, Finke R G. J Am Chem Soc. 1998;120:9545–9554. doi: 10.1021/ja9719485. DOI

Watzky M A, Finke R G. ACS Omega. 2018;3:1555–1563. doi: 10.1021/acsomega.7b01772. PubMed DOI PMC

Bentea L, Watzky M A, Finke R G. J Phys Chem C. 2017;121:5302–5312. doi: 10.1021/acs.jpcc.6b12021. DOI

Watzky M A, Finney E E, Finke R G. J Am Chem Soc. 2008;130:11959–11969. doi: 10.1021/ja8017412. PubMed DOI

Wang F, Richards V N, Shields S P, Buhro W E. Chem Mater. 2014;26:5–21. doi: 10.1021/cm402139r. DOI

Finney E E, Finke R G. Chem Mater. 2008;20:1956–1970. doi: 10.1021/cm071088j. DOI

Handwerk D R, Shipman P D, Özkar S, Finke R G. Langmuir. 2020;36:1496–1506. doi: 10.1021/acs.langmuir.9b03193. PubMed DOI

Suzuki T, Okazaki K-i, Kiyama T, Kuwabata S, Torimoto T. Electrochemistry. 2009;77(8):636–638. doi: 10.5796/electrochemistry.77.636. DOI

Hatakeyama Y, Onishi K, Nishikawa K. RSC Adv. 2011;1:1815–1821. doi: 10.1039/c1ra00688f. DOI

Vanecht E, Binnemans K, Seo J W, Stappers L, Fransaer J. Phys Chem Chem Phys. 2011;13:13565–13571. doi: 10.1039/c1cp20552h. PubMed DOI

Qadir M I, Kauling A, Ebeling G, Fartmann M, Grehl T, Dupont J. Aust J Chem. 2019;72:49. doi: 10.1071/ch18183. DOI

Nakagawa K, Narushima T, Udagawa S, Yonezawa T. J Phys: Conf Ser. 2013;417:012038. doi: 10.1088/1742-6596/417/1/012038. DOI

Slepička P, Elashnikov R, Ulbrich P, Staszek M, Kolská Z, Švorčík V. J Nanopart Res. 2015;17(1):11. doi: 10.1007/s11051-014-2850-z. DOI

Corpuz R D, Ishida Y, Nguyen M T, Yonezawa T. Langmuir. 2017;33(36):9144–9150. doi: 10.1021/acs.langmuir.7b02011. PubMed DOI

Sumi T, Motono S, Ishida Y, Shirahata N, Yonezawa T. Langmuir. 2015;31:4323–4329. doi: 10.1021/acs.langmuir.5b00294. PubMed DOI

Deng L, Nguyen M T, Yonezawa T. Langmuir. 2018;34:2876–2881. doi: 10.1021/acs.langmuir.7b04274. PubMed DOI

Lee S H, Jung H K, Kim T C, Kim C H, Shin C H, Yoon T-S, Hong A-R, Jang H S, Kim D H. Appl Surf Sci. 2018;434:1001–1006. doi: 10.1016/j.apsusc.2017.11.008. DOI

Ishida Y, Udagawa S, Yonezawa T. Colloids Surf, A. 2016;498:106–111. doi: 10.1016/j.colsurfa.2016.03.044. DOI

Wender H, Gonçalves R V, Feil A F, Migowski P, Poletto F S, Pohlmann A R, Dupont J, Teixeira S R. J Phys Chem C. 2011;115(33):16362–16367. doi: 10.1021/jp205390d. DOI

Wender H, de Oliveira L F, Feil A F, Lissner E, Migowski P, Meneghetti M R, Teixeira S R, Dupont J. Chem Commun. 2010;46:7019–7021. doi: 10.1039/c0cc01353f. PubMed DOI

Sugioka D, Kameyama T, Kuwabata S, Torimoto T. Phys Chem Chem Phys. 2015;17:13150–13159. doi: 10.1039/c5cp01602a. PubMed DOI

Deng L, Nguyen M T, Mei S, Tokunaga T, Kudo M, Matsumura S, Yonezawa T. Langmuir. 2019;35:8418–8427. doi: 10.1021/acs.langmuir.9b01112. PubMed DOI

Wender H, Migowski P, Feil A F, de Oliveira L F, Prechtl M H G, Leal R, Machado G, Teixeira S R, Dupont J. Phys Chem Chem Phys. 2011;13(30):13552. doi: 10.1039/c1cp21406c. PubMed DOI

Wender H, de Oliveira L F, Migowski P, Feil A F, Lissner E, Prechtl M H G, Teixeira S R, Dupont J. J Phys Chem C. 2010;114(27):11764–11768. doi: 10.1021/jp102231x. DOI

Yu S-J, Zhang Y-J, Chen J-X, Ge H-L. Surf Rev Lett. 2006;13:779–784. doi: 10.1142/s0218625x06008840. DOI

Sergievskaya A, O’Reilly A, Chauvin A, Veselý J, Panepinto A, De Winter J, Cornil D, Cornil J, Konstantinidis S. Colloids Surf, A. 2021;615:126286. doi: 10.1016/j.colsurfa.2021.126286. DOI

Sergievskaya A, O’Reilly A, Alem H, De Winter J, Cornil D, Cornil J, Konstantinidis S. Front Nanotechnol. 2021;3:57. doi: 10.3389/fnano.2021.710612. DOI

Tsuda T, Yoshii K, Torimoto T, Kuwabata S. J Power Sources. 2010;195:5980–5985. doi: 10.1016/j.jpowsour.2009.11.027. DOI

Hatakeyama Y, Okamoto M, Torimoto T, Kuwabata S, Nishikawa K. J Phys Chem C. 2009;113:3917–3922. doi: 10.1021/jp807046u. DOI

Cigáň A, Lobotka P, Dvurečenskij A, Škrátek M, Radnóczi G, Majerová M, Czigány Z, Maňka J, Vávra I, Mičušík M. J Alloys Compd. 2018;768:625–634. doi: 10.1016/j.jallcom.2018.07.205. DOI

Liu C, Chen N, Li J, Gao X, Sham T-K, Wang S-D. J Phys Chem C. 2017;121:28385–28394. doi: 10.1021/acs.jpcc.7b10470. DOI

Porta M, Nguyen M T, Yonezawa T, Tokunaga T, Ishida Y, Tsukamoto H, Shishino Y, Hatakeyama Y. New J Chem. 2016;40:9337–9343. doi: 10.1039/c6nj01624c. DOI

Reznickova A, Slepicka P, Slavikova N, Staszek M, Svorcik V. Colloids Surf, A. 2017;523:91–97. doi: 10.1016/j.colsurfa.2017.04.005. DOI

Reznickova A, Slavikova N, Kolska Z, Kolarova K, Belinova T, Hubalek Kalbacova M, Cieslar M, Svorcik V. Colloids Surf, A. 2019;560:26–34. doi: 10.1016/j.colsurfa.2018.09.083. DOI

Deng L, Nguyen M T, Shi J, Chau Y-t R, Tokunaga T, Kudo M, Matsumura S, Hashimoto N, Yonezawa T. Langmuir. 2020;36(12):3004–3015. doi: 10.1021/acs.langmuir.0c00152. PubMed DOI

Zhang Y-J, Yu S-J. Int J Mod Phys B. 2009;23:3147–3157. doi: 10.1142/s0217979209049772. DOI

Shishino Y, Yonezawa T, Kawai K, Nishihara H. Chem Commun. 2010;46:7211. doi: 10.1039/c0cc01702g. PubMed DOI

Shishino Y, Yonezawa T, Udagawa S, Hase K, Nishihara H. Angew Chem, Int Ed. 2011;50(3):703–705. doi: 10.1002/anie.201005723. PubMed DOI

Raghuwanshi V S, Ochmann M, Hoell A, Polzer F, Rademann K. Langmuir. 2014;30(21):6038–6046. doi: 10.1021/la500979p. PubMed DOI

Raghuwanshi V S, Ochmann M, Polzer F, Hoell A, Rademann K. Chem Commun. 2014;50(63):8693–8696. doi: 10.1039/c4cc02588a. PubMed DOI

O'Neill M, Raghuwanshi V S, Wendt R, Wollgarten M, Hoell A, Rademann K. Z Phys Chem. 2015;229(1-2):221–234. doi: 10.1515/zpch-2014-0644. DOI

Yoshida H, Kawamoto K, Kubo H, Tsuda T, Fujii A, Kuwabata S, Ozaki M. Adv Mater (Weinheim, Ger) 2010;22(5):622–626. doi: 10.1002/adma.200902831. PubMed DOI

Michels F S, Gonçalves P J, Nascimento V A, Oliveira S L, Wender H, Caires A R L. Nanomaterials. 2021;11(7):1668. doi: 10.3390/nano11071668. PubMed DOI PMC

Fajstavr D, Karasová A, Michalcová A, Ulbrich P, Slepičková Kasálková N, Siegel J, Švorčík V, Slepička P. Nanomaterials. 2021;11(6):1434. doi: 10.3390/nano11061434. PubMed DOI PMC

Meischein M, Ludwig A. J Nanopart Res. 2021;23(6):129. doi: 10.1007/s11051-021-05248-8. DOI

Sugioka D, Kameyama T, Kuwabata S, Yamamoto T, Torimoto T. ACS Appl Mater Interfaces. 2016;8(17):10874–10883. doi: 10.1021/acsami.6b01978. PubMed DOI

Torimoto T, Ohta Y, Enokida K, Sugioka D, Kameyama T, Yamamoto T, Shibayama T, Yoshii K, Tsuda T, Kuwabata S. J Mater Chem A. 2015;3(11):6177–6186. doi: 10.1039/c4ta06643j. DOI

Okazaki K-i, Kiyama T, Suzuki T, Kuwabata S, Torimoto T. Chem Lett. 2009;38(4):330–331. doi: 10.1246/cl.2009.330. DOI

Yatsuya S, Tsukasaki Y, Mihama K, Uyeda R. J Cryst Growth. 1978;45:490–494. doi: 10.1016/0022-0248(78)90481-5. DOI

Porta M, Nguyen M T, Tokunaga T, Ishida Y, Liu W-R, Yonezawa T. Langmuir. 2016;32(46):12159–12165. doi: 10.1021/acs.langmuir.6b03017. PubMed DOI

Tsuda T, Kurihara T, Hoshino Y, Kiyama T, Okazaki K-i, Torimoto T, Kuwabata S. Electrochemistry. 2009;77:693–695. doi: 10.5796/electrochemistry.77.693. DOI

Okazaki K-i, Sakuma J, Yasui J-i, Kuwabata S, Hirahara K, Tanaka N, Torimoto T. Chem Lett. 2011;40(1):84–86. doi: 10.1246/cl.2011.84. DOI

Mientus R, Ellmer K. Surf Coat Technol. 1999;116-119:1093–1101. doi: 10.1016/s0257-8972(99)00124-3. DOI

Wucher A, Garrison B J. J Chem Phys. 1996;105(14):5999–6007. doi: 10.1063/1.472451. DOI

Henriksson K O E, Nordlund K, Keinonen J. Phys Rev B. 2005;71(1):014117. doi: 10.1103/physrevb.71.014117. DOI

Wagener M, Günther B. J Magn Magn Mater. 1999;201(1-3):41–44. doi: 10.1016/s0304-8853(99)00055-4. DOI

Wagener M, Günther B. High Pressure DC-Magnetron Sputtering on Liquids: A New Process for the Production of Metal Nanosuspensions. In: Rehage H, Peschel G, editors. Structure, Dynamics and Properties of Disperse Colloidal Systems. Vol. 111. Darmstadt, Germany: Steinkopff; 1998. pp. 78–81. DOI

Orozco-Montes V, Caillard A, Brault P, Chamorro-Coral W, Bigarre J, Sauldubois A, Andreazza P, Cuynet S, Baranton S, Coutanceau C. J Phys Chem C. 2021;125:3169–3179. doi: 10.1021/acs.jpcc.0c09746. DOI

Choukourov A, Nikitin D, Pleskunov P, Vaidulych M, Shelemin A, Hanu J. Direct Deposition of Nanoparticles into a Liquid Polymer by a Gas Aggregation Cluster Source; The 23rd International Symposium on Plasma Chemistry (ISPC 23); 2017. pp. 355–357.

Choukourov A, Nikitin D, Pleskunov P, Tafiichuk R, Biliak K, Protsak M, Kishenina K, Hanuš J, Dopita M, Cieslar M, et al. J Mol Liq. 2021;336:116319. doi: 10.1016/j.molliq.2021.116319. DOI

Brault P, Chamorro-Coral W, Chuon S, Caillard A, Bauchire J-M, Baranton S, Coutanceau C, Neyts E. Front Chem Sci Eng. 2019;13:324–329. doi: 10.1007/s11705-019-1792-5. DOI

Hamm S C, Basuray S, Mukherjee S, Sengupta S, Mathai J C, Baker G A, Gangopadhyay S. J Mater Chem A. 2014;2:792–803. doi: 10.1039/c3ta13431h. DOI

Cha I Y, Kim H T, Ahn M, Jang J H, Kim Y G, Sung Y-E, Yoo S J. Appl Surf Sci. 2019;471:1083–1087. doi: 10.1016/j.apsusc.2018.12.144. DOI

Cha I Y, Ahn M, Yoo S J, Sung Y-E. RSC Adv. 2014;4:38575–38580. doi: 10.1039/c4ra05213g. DOI

Feng C-M, Ge H-L, Tong M-R, Ye G-X, Jiao Z-K. Thin Solid Films. 1999;342(1-2):30–34. doi: 10.1016/s0040-6090(98)01151-1. DOI

Ye G-x, Feng C-m, Zhang Q-r, Ge H-l, Zhang X-j. Chin Phys Lett. 1996;13(10):772–774. doi: 10.1088/0256-307x/13/10/016. DOI

Ge H, Feng C, Ye G, Ren Y, Jiao Z. J Appl Phys. 1997;82(11):5469–5471. doi: 10.1063/1.365574. DOI

Garzón-Manjón A, Meyer H, Grochla D, Löffler T, Schuhmann W, Ludwig A, Scheu C. Nanomaterials. 2018;8(11):903. doi: 10.3390/nano8110903. PubMed DOI PMC

Chauvin A, Sergievskaya A, El Mel A-A, Fucikova A, Antunes Corrêa C, Vesely J, Duverger-Nédellec E, Cornil D, Cornil J, Tessier P-Y, et al. Nanotechnology. 2020;31(45):455303. doi: 10.1088/1361-6528/abaa75. PubMed DOI

Chauvin A, Sergievskaya A, Fucikova A, Corrêa C A, Vesely J, Cornil J, Cornil D, Dopita M, Konstantinidis S. Nanoscale Adv. 2021;3(16):4780–4789. doi: 10.1039/d1na00222h. PubMed DOI PMC

Kameyama T, Ohno Y, Kurimoto T, Okazaki K-i, Uematsu T, Kuwabata S, Torimoto T. Phys Chem Chem Phys. 2010;12(8):1804–1811. doi: 10.1039/b914230d. PubMed DOI

Sidelev D V, Bleykher G A, Bestetti M, Krivobokov V P, Vicenzo A, Franz S, Brunella M F. Vacuum. 2017;143:479–485. doi: 10.1016/j.vacuum.2017.03.020. DOI

Graillot-Vuillecot R, Thomann A-L, Lecas T, Cachoncinlle C, Millon E, Caillard A. Vacuum. 2020;181:109734. doi: 10.1016/j.vacuum.2020.109734. DOI

Carette X, Debièvre B, Cornil D, Cornil J, Leclère P, Maes B, Gautier N, Gautron E, El Mel A-A, Raquez J-M, et al. J Phys Chem C. 2018;122(46):26605–26612. doi: 10.1021/acs.jpcc.8b06987. DOI

Suzuki S, Ohta Y, Kurimoto T, Kuwabata S, Torimoto T. Phys Chem Chem Phys. 2011;13:13585–13593. doi: 10.1039/c1cp20814d. PubMed DOI

Calabria L, Fernandes J A, Migowski P, Bernardi F, Baptista D L, Leal R, Grehl T, Dupont J. Nanoscale. 2017;9:18753–18758. doi: 10.1039/c7nr06167f. PubMed DOI

Hatakeyama Y, Judai K, Onishi K, Takahashi S, Kimura S, Nishikawa K. Phys Chem Chem Phys. 2016;18:2339–2349. doi: 10.1039/c5cp04123f. PubMed DOI

Vanecht E, Binnemans K, Patskovsky S, Meunier M, Seo J W, Stappers L, Fransaer J. Phys Chem Chem Phys. 2012;14:5662. doi: 10.1039/c2cp23677j. PubMed DOI

Qadir M I, Kauling A, Calabria L, Grehl T, Dupont J. Nano-Struct Nano-Objects. 2018;14:92–97. doi: 10.1016/j.nanoso.2018.01.015. DOI

Meyer H, Meischein M, Ludwig A. ACS Comb Sci. 2018;20:243–250. doi: 10.1021/acscombsci.8b00017. PubMed DOI

Yoshii K, Tsuda T, Arimura T, Imanishi A, Torimoto T, Kuwabata S. RSC Adv. 2012;2:8262–8264. doi: 10.1039/c2ra21243a. DOI

Suzuki T, Okazaki K-i, Suzuki S, Shibayama T, Kuwabata S, Torimoto T. Chem Mater. 2010;22(18):5209–5215. doi: 10.1021/cm101164r. DOI

Meischein M, Fork M, Ludwig A. Nanomaterials. 2020;10(3):525. doi: 10.3390/nano10030525. PubMed DOI PMC

Nguyen M T, Wongrujipairoj K, Tsukamoto H, Kheawhom S, Mei S, Aupama V, Yonezawa T. ACS Sustainable Chem Eng. 2020;8(49):18167–18176. doi: 10.1021/acssuschemeng.0c06549. DOI

Hirano M, Enokida K, Okazaki K-i, Kuwabata S, Yoshida H, Torimoto T. Phys Chem Chem Phys. 2013;15(19):7286. doi: 10.1039/c3cp50816a. PubMed DOI

Hamada T, Sugioka D, Kameyama T, Kuwabata S, Torimoto T. Chem Lett. 2017;46(7):956–959. doi: 10.1246/cl.170242. DOI

Chang J-B, Liu C-H, Liu J, Zhou Y-Y, Gao X, Wang S-D. Nano-Micro Lett. 2015;7(3):307–315. doi: 10.1007/s40820-015-0044-6. PubMed DOI PMC

Liu C, Cai X, Wang J, Liu J, Riese A, Chen Z, Sun X, Wang S-D. Int J Hydrogen Energy. 2016;41(31):13476–13484. doi: 10.1016/j.ijhydene.2016.05.194. DOI

Okazaki K-i, Kiyama T, Hirahara K, Tanaka N, Kuwabata S, Torimoto T. Chem Commun. 2008;(6):691–693. doi: 10.1039/b714761a. PubMed DOI

Fujita A, Matsumoto Y, Takeuchi M, Ryuto H, Takaoka G H. Phys Chem Chem Phys. 2016;18(7):5464–5470. doi: 10.1039/c5cp07323e. PubMed DOI

Ishida Y, Udagawa S, Yonezawa T. Colloids Surf, A. 2016;504:437–441. doi: 10.1016/j.colsurfa.2016.05.035. DOI

Suzuki T, Suzuki S, Tomita Y, Okazaki K-i, Shibayama T, Kuwabata S, Torimoto T. Chem Lett. 2010;39(10):1072–1074. doi: 10.1246/cl.2010.1072. DOI

Chau Y-t R, Deng L, Nguyen M T, Yonezawa T. MRS Adv. 2019;4(5-6):305–309. doi: 10.1557/adv.2019.55. DOI

Chau Y-t R, Nguyen M T, Zhu M, Romier A, Tokunaga T, Yonezawa T. New J Chem. 2020;44(12):4704–4712. doi: 10.1039/d0nj00288g. DOI

Schmitz A, Meyer H, Meischein M, Garzón Manjón A, Schmolke L, Giesen B, Schlüsener C, Simon P, Grin Y, Fischer R A, et al. RSC Adv. 2020;10(22):12891–12899. doi: 10.1039/d0ra01111h. PubMed DOI PMC

Akiyoshi K, Kameyama T, Yamamoto T, Kuwabata S, Tatsuma T, Torimoto T. RSC Adv. 2020;10(48):28516–28522. doi: 10.1039/d0ra05165a. PubMed DOI PMC

Ishida Y, Sumi T, Yonezawa T. New J Chem. 2015;39(8):5895–5897. doi: 10.1039/c5nj01011j. DOI

Ishida Y, Lee C, Yonezawa T. Sci Rep. 2015;5(1):15372. doi: 10.1038/srep15372. PubMed DOI PMC

Akita I, Ishida Y, Yonezawa T. Bull Chem Soc Jpn. 2016;89:1054–1056. doi: 10.1246/bcsj.20160187. DOI

Ishida Y, Nakabayashi R, Matsubara M, Yonezawa T. New J Chem. 2015;39:4227–4230. doi: 10.1039/c5nj00294j. DOI

Ishida Y, Nakabayashi R, Corpuz R D, Yonezawa T. Colloids Surf, A. 2017;518:25–29. doi: 10.1016/j.colsurfa.2017.01.022. DOI

Ishida Y, Akita I, Sumi T, Matsubara M, Yonezawa T. Sci Rep. 2016;6(1):29928. doi: 10.1038/srep29928. PubMed DOI PMC

Ishida Y, Morita A, Tokunaga T, Yonezawa T. Langmuir. 2018;34:4024–4030. doi: 10.1021/acs.langmuir.8b00067. PubMed DOI

Porta M, Nguyen M T, Ishida Y, Yonezawa T. RSC Adv. 2016;6:105030–105034. doi: 10.1039/c6ra17291a. DOI

Corpuz R D, Ishida Y, Yonezawa T. New J Chem. 2017;41:6828–6833. doi: 10.1039/c7nj01369h. DOI

Ishida Y, Corpuz R D, Yonezawa T. Acc Chem Res. 2017;50:2986–2995. doi: 10.1021/acs.accounts.7b00470. PubMed DOI

Liu C-H, Liu J, Zhou Y-Y, Cai X-L, Lu Y, Gao X, Wang S-D. Carbon. 2015;94:295–300. doi: 10.1016/j.carbon.2015.07.003. DOI

Cai X-L, Liu C-H, Liu J, Lu Y, Zhong Y-N, Nie K-Q, Xu J-L, Gao X, Sun X-H, Wang S-D. Nano-Micro Lett. 2017;9(4):48. doi: 10.1007/s40820-017-0149-1. PubMed DOI PMC

Hatakeyama Y, Takahashi S, Nishikawa K. J Phys Chem C. 2010;114(25):11098–11102. doi: 10.1021/jp102763n. DOI

Suzuki S, Tomita Y, Kuwabata S, Torimoto T. Dalton Trans. 2015;44(9):4186–4194. doi: 10.1039/c4dt03557g. PubMed DOI

Hatakeyama Y, Morita T, Takahashi S, Onishi K, Nishikawa K. J Phys Chem C. 2011;115:3279–3285. doi: 10.1021/jp110455k. DOI

Staszek M, Siegel J, Polívková M, Švorčík V. Mater Lett. 2017;186:341–344. doi: 10.1016/j.matlet.2016.10.036. DOI

De Luna M M, Gupta M. Appl Phys Lett. 2018;112:201605. doi: 10.1063/1.5026513. DOI

Meischein M, Wang X, Ludwig A. J Phys Chem C. 2021;125:24229–24239. doi: 10.1021/acs.jpcc.1c07621. DOI

Gutmann F, Simmons L M. J Appl Phys. 1952;23:977–978. doi: 10.1063/1.1702361. DOI

Ueno K, Tokuda H, Watanabe M. Phys Chem Chem Phys. 2010;12:1649. doi: 10.1039/b921462n. PubMed DOI

Luska K L, Moores A. Green Chem. 2012;14:1736. doi: 10.1039/c2gc35241a. DOI

Nguyen M T, Zhang H, Deng L, Tokunaga T, Yonezawa T. Langmuir. 2017;33:12389–12397. doi: 10.1021/acs.langmuir.7b03194. PubMed DOI

Nguyen M T, Yonezawa T, Wang Y, Tokunaga T. Mater Lett. 2016;171:75–78. doi: 10.1016/j.matlet.2016.02.047. DOI

Pišlová M, Kalbáčová M H, Vrabcová L, Slepička P, Kolská Z, Švorčík V. Dig J Nanomater Biostructures. 2018;13:1035–1044.

Borra E F, Seddiki O, Angel R, Eisenstein D, Hickson P, Seddon K R, Worden S P. Nature. 2007;447:979–981. doi: 10.1038/nature05909. PubMed DOI

Wegner S, Janiak C. Top Curr Chem. 2017;375:65. doi: 10.1007/s41061-017-0148-1. PubMed DOI

He Z, Alexandridis P. Phys Chem Chem Phys. 2015;17:18238–18261. doi: 10.1039/c5cp01620g. PubMed DOI

Khatri O P, Adachi K, Murase K, Okazaki K-i, Torimoto T, Tanaka N, Kuwabata S, Sugimura H. Langmuir. 2008;24(15):7785–7792. doi: 10.1021/la800678m. PubMed DOI

Richter K, Birkner A, Mudring A-V. Angew Chem, Int Ed. 2010;49(13):2431–2435. doi: 10.1002/anie.200901562. PubMed DOI

Liu C-H, Mao B-H, Gao J, Zhang S, Gao X, Liu Z, Lee S-T, Sun X-H, Wang S-D. Carbon. 2012;50(8):3008–3014. doi: 10.1016/j.carbon.2012.02.086. DOI

Siegel J, Kvítek O, Ulbrich P, Kolská Z, Slepička P, Švorčík V. Mater Lett. 2012;89:47–50. doi: 10.1016/j.matlet.2012.08.048. DOI

Siegel J, Kolářová K, Vosmanská V, Rimpelová S, Leitner J, Švorčík V. Mater Lett. 2013;113:59–62. doi: 10.1016/j.matlet.2013.09.047. DOI

Castro H P S, Wender H, Alencar M A R C, Teixeira S R, Dupont J, Hickmann J M. J Appl Phys. 2013;114(18):183104. doi: 10.1063/1.4831679. DOI

Iimori T, Hatakeyama Y, Nishikawa K, Kato M, Ohta N. Chem Phys Lett. 2013;586:100–103. doi: 10.1016/j.cplett.2013.09.010. DOI

Zhang C, Feng Y. J Phys Soc Jpn. 2015;84(7):074601. doi: 10.7566/jpsj.84.074601. DOI

Hatakeyama Y, Kimura S, Kameyama T, Agawa Y, Tanaka H, Judai K, Torimoto T, Nishikawa K. Chem Phys Lett. 2016;658:188–191. doi: 10.1016/j.cplett.2016.06.044. DOI

Yoda M, Takashima T, Akiyoshi K, Torimoto T, Irie H. J Chem Phys. 2020;153(1):014701. doi: 10.1063/5.0010100. PubMed DOI

Hamm S C, Shankaran R, Korampally V, Bok S, Praharaj S, Baker G A, Robertson J D, Lee B D, Sengupta S, Gangopadhyay K, et al. ACS Appl Mater Interfaces. 2012;4(1):178–184. doi: 10.1021/am2012273. PubMed DOI

Suzuki S, Morimoto A, Kuwabata S, Torimoto T. Jpn J Appl Phys. 2021;60(SA):SAAC01. doi: 10.35848/1347-4065/abb75a. DOI

Trajano M F, Franceschini D F, Silva E F, Correa M A, Bohn F, Alves S M. J Tribol. 2021;143(11):112101 . doi: 10.1115/1.4049790. DOI

Staszek M, Siegel J, Kolářová K, Rimpelová S, Švorčík V. Micro Nano Lett. 2014;9:778–781. doi: 10.1049/mnl.2014.0345. DOI

Yoshii K, Yamaji K, Tsuda T, Matsumoto H, Sato T, Izumi R, Torimoto T, Kuwabata S. J Mater Chem A. 2016;4:12152–12157. doi: 10.1039/c6ta04859e. DOI

Sasaki T, Inoue S, Kuwabata S. Electrochemistry. 2021;89:83–86. doi: 10.5796/electrochemistry.20-65149. DOI

Sasaki T, Izumi R, Tsuda T, Kuwabata S. ACS Appl Energy Mater. 2021;4:7298–7308. doi: 10.1021/acsaem.1c01410. DOI

Oda Y, Hirano K, Yoshii K, Kuwabata S, Torimoto T, Miura M. Chem Lett. 2010;39:1069–1071. doi: 10.1246/cl.2010.1069. DOI

Cano I, Weilhard A, Martin C, Pinto J, Lodge R W, Santos A R, Rance G A, Åhlgren E H, Jónsson E, Yuan J, et al. Nat Commun. 2021;12:4965. doi: 10.1038/s41467-021-25263-6. PubMed DOI PMC

Cuenya B R. Thin Solid Films. 2010;518:3127–3150. doi: 10.1016/j.tsf.2010.01.018. DOI

Narayan N, Meiyazhagan A, Vajtai R. Materials. 2019;12:3602. doi: 10.3390/ma12213602. PubMed DOI PMC

Lopez N. J Catal. 2004;223:232–235. doi: 10.1016/j.jcat.2004.01.001. DOI

Hvolbæk B, Janssens T V W, Clausen B S, Falsig H, Christensen C H, Nørskov J K. Nano Today. 2007;2:14–18. doi: 10.1016/s1748-0132(07)70113-5. DOI

Kang X, Zhu M. Chem Soc Rev. 2019;48:2422–2457. doi: 10.1039/c8cs00800k. PubMed DOI

Bhattacharya R, Mukherjee P. Adv Drug Delivery Rev. 2008;60:1289–1306. doi: 10.1016/j.addr.2008.03.013. PubMed DOI

Hajipour M J, Fromm K M, Akbar Ashkarran A, Jimenez de Aberasturi D, Ruiz de Larramendi I, Rojo T, Serpooshan V, Parak W J, Mahmoudi M. Trends Biotechnol. 2012;30:499–511. doi: 10.1016/j.tibtech.2012.06.004. PubMed DOI

Suzuki S, Suzuki T, Tomita Y, Hirano M, Okazaki K-i, Kuwabata S, Torimoto T. CrystEngComm. 2012;14(15):4922. doi: 10.1039/c2ce25235j. DOI

Liu C-H, Liu R-H, Sun Q-J, Chang J-B, Gao X, Liu Y, Lee S-T, Kang Z-H, Wang S-D. Nanoscale. 2015;7(14):6356–6362. doi: 10.1039/c4nr06855f. PubMed DOI

Zhou Y-Y, Liu C-H, Liu J, Cai X-L, Lu Y, Zhang H, Sun X-H, Wang S-D. Nano-Micro Lett. 2016;8(4):371–380. doi: 10.1007/s40820-016-0096-2. PubMed DOI PMC

Manjón A G, Löffler T, Meischein M, Meyer H, Lim J, Strotkötter V, Schuhmann W, Ludwig A, Scheu C. Nanoscale. 2020;12(46):23570–23577. doi: 10.1039/d0nr07632e. PubMed DOI

König D, Richter K, Siegel A, Mudring A-V, Ludwig A. Adv Funct Mater. 2014;24(14):2049–2056. doi: 10.1002/adfm.201303140. DOI

Meischein M, Garzón-Manjón A, Frohn T, Meyer H, Salomon S, Scheu C, Ludwig A. ACS Comb Sci. 2019;21(11):743–752. doi: 10.1021/acscombsci.9b00140. PubMed DOI

Zhu M, Nguyen M T, Chau Y-t R, Deng L, Yonezawa T. Langmuir. 2021;37(19):6096–6105. doi: 10.1021/acs.langmuir.1c00916. PubMed DOI

Löffler T, Meyer H, Savan A, Wilde P, Garzón Manjón A, Chen Y-T, Ventosa E, Scheu C, Ludwig A, Schuhmann W. Adv Energy Mater. 2018;8(34):1802269. doi: 10.1002/aenm.201802269. DOI

Liu X, Wang A, Wang X, Mou C-Y, Zhang T. Chem Commun. 2008;(27):3187. doi: 10.1039/b804362k. PubMed DOI

Chimentão R J, Medina F, Fierro J L G, Llorca J, Sueiras J E, Cesteros Y, Salagre P. J Mol Catal A: Chem. 2007;274(1-2):159–168. doi: 10.1016/j.molcata.2007.05.008. DOI

Llorca J, Dominguez M, Ledesma C, Chimentao R, Medina F, Sueiras J, Angurell I, Seco M, Rossell O. J Catal. 2008;258:187–198. doi: 10.1016/j.jcat.2008.06.010. DOI

Liu C-H, Chen X-Q, Hu Y-F, Sham T-K, Sun Q-J, Chang J-B, Gao X, Sun X-H, Wang S-D. ACS Appl Mater Interfaces. 2013;5(11):5072–5079. doi: 10.1021/am4008853. PubMed DOI

Kaito T, Mitsumoto H, Sugawara S, Shinohara K, Uehara H, Ariga H, Takakusagi S, Hatakeyama Y, Nishikawa K, Asakura K. J Phys Chem C. 2014;118(16):8481–8490. doi: 10.1021/jp501607f. DOI

El Mel A-A, Nakamura R, Bittencourt C. Beilstein J Nanotechnol. 2015;6:1348–1361. doi: 10.3762/bjnano.6.139. PubMed DOI PMC

Yang B, Xia A-G, Jin J-S, Ye Q-L, Lao Y-F, Jiao Z-K, Ye G-X. J Phys: Condens Matter. 2002;14(43):10051–10062. doi: 10.1088/0953-8984/14/43/304. DOI

Quan-Lin Y, Sen-Jiang Y, Jin-Sheng J, Gao-Xiang Y. Chin Phys Lett. 2003;20:1109–1111. doi: 10.1088/0256-307x/20/7/340. DOI

Ye Q-L, Xu X-J, Cai P-G, Xia A-G, Ye G-X. Phys Lett A. 2003;318(4-5):457–462. doi: 10.1016/j.physleta.2003.09.015. DOI

Xu X-J, Ye Q-L, Ye G-X. Phys Lett A. 2007;361(4-5):429–433. doi: 10.1016/j.physleta.2006.09.063. DOI

Tao X, Xuan W, Yang B. Mater Res Express. 2019;6(11):116446. doi: 10.1088/2053-1591/ab4d88. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Stability and biological response of PEGylated gold nanoparticles

. 2024 May 15 ; 10 (9) : e30601. [epub] 20240501

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...