PEGylated Gold Nanoparticles Grafted with N-Acetyl-L-Cysteine for Polymer Modification
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34071711
PubMed Central
PMC8229060
DOI
10.3390/nano11061434
PII: nano11061434
Knihovny.cz E-zdroje
- Klíčová slova
- grafting, nanoparticles, noble metal, plasma modification, polymer, sputtering,
- Publikační typ
- časopisecké články MeSH
The subjects of this work were the enhancement and determination of the stability and other properties of gold nanoparticles (AuNPs) in an aqueous solution, gold nanoparticle immobilization, and further surface grafting on polyethylene naphthalate (PEN). Gold nanoparticles in PEG with a subsequent water solution addition were prepared using cathode sputtering; for the subsequent surface activation, two different solutions were used: (i) sodium citrate dihydrate (TCD) and (ii) N-acetyl-L-cysteine (NALC). The aim of this work was to study the effect of the concentration of these solutions on AuNPs stability, and further, the effect of the concentration of gold nanoparticles and their morphology, and to describe the aging process of solutions, namely, the optical properties of samples over 28 days. Stabilized AuNPs were prepared in an N-acetyl-L-cysteine (NALC) system and subsequently immobilized with NALC. The surface chemistry modification of AuNPs was confirmed using HRTEM/EDS. Gold nanoparticles were successfully immobilized with NALC. Grafting of the modified PEN from a solution of colloidal gold stabilized in the PEG-H2O-NALC system led to the polymer surface functionalization.
Zobrazit více v PubMed
Jamkhande P.G., Ghule N.W., HaqueBamer A., Kalaskar M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 2019;53:101174. doi: 10.1016/j.jddst.2019.101174. DOI
Matsuyama K., Tsubaki T., Kato T., Okuyama T., Muto H. Preparation of catalytically active Au nanoparticles by sputter deposition and their encapsulation in metal-organic framework of Cu3(BTC)2. Mater. Lett. 2020;261:127124. doi: 10.1016/j.matlet.2019.127124. DOI
Slepička P., Slepičková Kasálková N., Siegel J., Kolská Z., Švorčík V. Methods of Gold and Silver Nanoparticles Preparation. Materials. 2020;13:1. doi: 10.3390/ma13010001. PubMed DOI PMC
Harada M., Yamamoto M., Sakata M. Temperature dependence on the size control of palladium nanoparticles by chemical reduction in nonionic surfactant/ionic liquid hybrid systems. J. Mol. Liquids. 2020;311:113255. doi: 10.1016/j.molliq.2020.113255. DOI
De Souza C.D., Ribeiro Nogueira B., Rostelato M.E.C.M. Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction. J. Alloys Compound. 2019;798:714–740. doi: 10.1016/j.jallcom.2019.05.153. DOI
Machida H., Sugahara T., Hirasawa I. Preparation of dispersed metal nanoparticles in the aqueous solution of metal carboxylate and the tetra-n-butylammonium carboxylate. J. Crystal Growth. 2019;514:14–20. doi: 10.1016/j.jcrysgro.2019.02.056. DOI
Zhou J., Ralston J., Sedev R., Beattie D.A. Functionalized gold nanoparticles: Synthesis, structure and colloid stability. J. Colloid Interface Sci. 2008;331:251–262. doi: 10.1016/j.jcis.2008.12.002. PubMed DOI
Wagener M., Günther B. Sputtering on liquids—A versatile process for the production of magnetic suspensions? J. Magn. Magn. Mater. 1999;201:41–44. doi: 10.1016/S0304-8853(99)00055-4. DOI
Torimoto T., Okazaki K. Sputter deposition onto ionic liquids: Simple and clean synthesis of highly dispersed ultrafine metal nanoparticles. Appl. Phys. Lett. 2006;89:24311. doi: 10.1063/1.2404975. DOI
Ye G.X., Zhang Q.R., Feng C.M., Ge H.L., Jiao Z.K. Structural and electrical properties of a metallic rough-thin-film system deposited on liquid substrates. Phys. Rev. B Condens. Matter. 1996;54:14754–14757. PubMed
Slepička P., Elashnikov R., Ulbrich P., Staszek M., Kolská Z., Švorčík V. Stabilization of sputtered gold and silver nanoparticles in PEG colloid solutions. J. Nanopart. Res. 2015;17:11–26. doi: 10.1007/s11051-014-2850-z. DOI
Slepička P., Přibyl M., Fajstavr D., Ulbrich P., Siegel J., Řezníčková A., Švorčík V. Grafting of platinum nanostructures on biopolymer at elevated temperature. Colloids Surf. A. 2018;546:316–325. doi: 10.1016/j.colsurfa.2018.02.016. DOI
Reznickova A., Slepicka P., Slavikova N., Staszek M., Svorcik V. Preparation, aging and temperature stability of PEGylated gold nanoparticles. Colloids Surf. A. 2017;523:91–97. doi: 10.1016/j.colsurfa.2017.04.005. DOI
Parveen R., Ullah S., Sgarbi R., Tremiliosi-Filho G. One-pot ligand-free synthesis of gold nanoparticles: The role of glycerol as reducing-cum-stabilizing agent. Colloids Surf. A. 2019;565:162–171. doi: 10.1016/j.colsurfa.2019.01.005. DOI
Leopold N., Chiş V., Mircescu N.E., Marişca O.T., Buja O.M., Leopold L.F., Socaciu C., Braicu C., Irimie A., Berindan-Neagoe I. One step synthesis of SERS active colloidal gold nanoparticles by reduction with polyethylene glycol. Colloids Surf. A. 2013;436:133–138. doi: 10.1016/j.colsurfa.2013.05.075. DOI
Zhao J., Wang L., Fu D., Zhao D., Wang Y., Yuan Q., Zhu Y., Yang J., Yang F. Gold nanoparticles amplified microcantilever biosensor for detecting protein biomarkers with high sensitivity. Sens. Actuators A. 2021;321:112563. doi: 10.1016/j.sna.2021.112563. DOI
Hua Z., Yu T., Liu D., Xianyu Y. Recent advances in gold nanoparticles-based biosensors for food safety detection. Biosensors Bioelectron. 2021;179:113076. doi: 10.1016/j.bios.2021.113076. PubMed DOI
Suárez-García S., Solórzano R., Novio F., Alibés R., Busqué F., Ruiz-Molina D. Coordination polymers nanoparticles for bioimaging. Coord. Chem. Rev. 2021;432:213716. doi: 10.1016/j.ccr.2020.213716. DOI
Wang Y., Langley R.J., Tamshen K., Harms J., Middleditch M.J., Maynard H.D., Jamieson S.M.F., Perry J.K. Enhanced Bioactivity of a Human GHR Antagonist Generated by Solid-Phase Site-Specific PEGylation. Biomacromolecules. 2021;22:299–308. doi: 10.1021/acs.biomac.0c01105. PubMed DOI
Matsuhira T., Sakai H. Entropy-Driven Supramolecular Ring-Opening Polymerization of a Cyclic Hemoglobin Monomer for Constructing a Hemoglobin–PEG Alternating Polymer with Structural Regularity. Biomacromolecules. 2021;22:1944–1954. doi: 10.1021/acs.biomac.1c00061. PubMed DOI
Qian W., Murakami M., Ichikawa Y., Che Y. Highly efficient and controllable PEGylation of gold nanoparticles prepared by femtosecond laser ablation in water. J. Phys. Chem. C. 2011;115:23293–23298.
Takae S., Akiyama Y., Otsuka H., Nakamura T., Nagasaki Y., Kataoka K. Ligand density effect on biorecognition by PEGylated gold nanoparticles: Regulated interaction of RCA120 lectin with lactose installed to the distal end of tethered PEG strands on gold surface. Biomacromolecules. 2005;6:818–824. doi: 10.1021/bm049427e. PubMed DOI
Shimmin R.G., Schoch A.B., Braun P.V. Polymer size and concentration of effects on the size of gold nanoparticles cappped by polymeric thiols. Langmuir. 2007;20:5613–5620. doi: 10.1021/la036365p. PubMed DOI
Shenoy D., Fu W., Li J., Crasto C., Jones G., DiMarzio C., Amiji M. Surface functionalization of gold nanoparticles using hetero-bifunctional poly (ethylene glycol) spacer for intracellular tracking and delivery. Int. J. Nanomed. 2006;1:51–57. doi: 10.2147/nano.2006.1.1.51. PubMed DOI PMC
Valkenier H., Malytskyi V., Blond P., Retout M., Mattiuzzi A., Goole J., Raussens V., Jabin I., Bruylants G. Orcid Controlled Functionalization of Gold Nanoparticles with Mixtures of Calix[4]arenes Revealed by Infrared Spectroscopy. Langmuir. 2017;33:8253–8259. doi: 10.1021/acs.langmuir.7b02140. PubMed DOI
Fu W., Shenoy D., Li J., Crasto C., Jones G., Dimarzio C., Sridhar S., Amiji M. Biomedical applications of gold nanoparticles functionalized using hetero-bifunctional poly(ethylene glycol) spacer. MRS Online Proc. Libr. 2004;1:199–204. doi: 10.1557/PROC-845-AA5.4. DOI
Wangoo N., Bhasin K., Mehta S., Suri C. Synthesis and capping of water-dispersed gold nanoparticles by an amino acid: Bioconjugation and binding studies. J. Colloids. Interface Sci. 2008;323:247–254. doi: 10.1016/j.jcis.2008.04.043. PubMed DOI
Russier-Antoine I., Bertorelle F., Kulesza A., Soleilhac A., Bensalah-Ledoux A., Guy S., Dugourd P., Brevet P., Antoine R. Chiral supramolecular gold-cysteine nanoparticles: Chiroptical and nonlinear optical properties. Prog. Natur. Sci. Mater. Int. 2016;26:455–460. doi: 10.1016/j.pnsc.2016.08.008. DOI
Sun L. Functional Gold Nanoparticle−Peptide Complexes as Cell-Targeting Agents. Langmuir. 2008;24:10293–10297. doi: 10.1021/la8015063. PubMed DOI
Chen C., Wang W., Ge J., Zhao X.S. Kinetics and thermodynamics of DNA hybridization on gold nanoparticles. Nucl. Acid Res. 2009;37:3756–3765. doi: 10.1093/nar/gkp230. PubMed DOI PMC
Chang T.L., Tsai C.Y., Sun C.C., Uppala R., Chen C.C., Lin C.H., Chen P.H. Electrical detection of DNA using gold and magnetic nanoparticles and bio bar-code DNA between nanogap electrodes. Microelectron. Eng. 2006;83:1630–1633. doi: 10.1016/j.mee.2006.01.117. DOI
Lipka J., Semmler-Behnke M., Sperling R.A., Wenk A., Takenaka S., Schleh C., Kissel T., Parak W.J., Kreyling W.G. Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials. 2010;31:6574–6581. doi: 10.1016/j.biomaterials.2010.05.009. PubMed DOI
Cho W.S., Cho M., Jeong J., Choi M., Han B.S., Shin H.S., Hong J., Chung B.H., Jeong J., Cho M.H. Size-dependent tissue kinetics of PEG-coated gold nanoparticles. Toxicol. Appl. Pharmacol. 2010;245:116–123. doi: 10.1016/j.taap.2010.02.013. PubMed DOI
Kolska Z., Valha P., Slepička P., Švorčík V. Refractometric study of systems water-poly (ethylene glycol) for preparation and characterization of Au nanoparticles dispersion. Arabian J. Chem. 2019;12:5019–5027. doi: 10.1016/j.arabjc.2016.11.006. DOI
Ishii T., Otsuka H., Kataoka K., Nagasaki Y. Preparation of functionally PEGylated gold nanoparticles with narrow distribution through autoreduction of auric cation by alpha-biotinyl-PEG-block-[poly(2-N, N-dimethylamino)ethyl methacrylate)] Langmuir. 2004;20:561–564. doi: 10.1021/la035653i. PubMed DOI
Lee S.H., Bae K.H., Kim S.H., Lee K.R., Park T.G. Amine functionalized gold nanoparticles as non-cytotoxic and efficient intracellular siRNA delivery carriers. Int. J. Pharm. 2008;364:94–101. doi: 10.1016/j.ijpharm.2008.07.027. PubMed DOI
Aziz M.A., Kim J.P., Oyama M. Preparation of monodispersed carboxylate-functionalized gold nanoparticles using pamoic acid as a reducingand capping reagent. Gold Bull. 2014;47:127–132. doi: 10.1007/s13404-014-0134-0. DOI
Chen P., Selegård R., Ailic D., Liedberg B. Peptide functionalized gold nanoparticles for colorimetric detection of matrilysin (MMP-7) activity. Nanoscale. 2013;5:8973–8976. doi: 10.1039/c3nr03006g. PubMed DOI
Bastis N.G., Sanchez-Tillo E., Pujals S., Farrera C., Kogan M.J., Giralt E., Celada A., Iloberas J., Puntes V. Peptides conjugated to gold nanoparticles induce macrophage activation. Mol. Immunol. 2009;46:743–748. doi: 10.1016/j.molimm.2008.08.277. PubMed DOI
Javier D.J., Nitin N., Levy M., Ellington A., Richards-Kortum R. Aptamer-targeted gold nanoparticles as molecular specific contrast agents for refelectance imaging. Bioconjugate Chem. 2008;19:1309–1312. doi: 10.1021/bc8001248. PubMed DOI PMC
Kim J.H., Jang H.H., Ryou S.M., Kim S., Bae J., Lee K., Han M.S. A functionalized gold nanoparticles-assisted universal carrier for antisense DNA. Chem. Commun. 2010;46:4151–4153. doi: 10.1039/c0cc00103a. PubMed DOI
Neděla O., Slepička P., Švorčík V. Surface Modification of Polymer Substrates for Biomedical Applications. Materials. 2017;10:1115. doi: 10.3390/ma10101115. PubMed DOI PMC
Slepicka P., Slepickova Kasalkova N., Siegel J., Kolska Z., Bacakova L., Svorcik V. Nano-structured and functionalized surfaces for cytocompatibility improvement and bactericidal action. Biotechnol. Adv. 2015;33:1120–1129. doi: 10.1016/j.biotechadv.2015.01.001. PubMed DOI
Slepicka P., Siegel J., Lyutakov O., Slepickova Kasalkova N., Kolska Z., Bacakova L., Svorcik V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. PubMed
Slepička P., Malá Z., Rimpelová S., Švorčík V. Antibacterial properties of modified biodegradable PHB non-woven fabric. Mater. Sci. Eng. C. 2016;65:364–368. doi: 10.1016/j.msec.2016.04.052. PubMed DOI
Sputtering onto liquids: a critical review