PEGylated Gold Nanoparticles Grafted with N-Acetyl-L-Cysteine for Polymer Modification

. 2021 May 28 ; 11 (6) : . [epub] 20210528

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34071711

The subjects of this work were the enhancement and determination of the stability and other properties of gold nanoparticles (AuNPs) in an aqueous solution, gold nanoparticle immobilization, and further surface grafting on polyethylene naphthalate (PEN). Gold nanoparticles in PEG with a subsequent water solution addition were prepared using cathode sputtering; for the subsequent surface activation, two different solutions were used: (i) sodium citrate dihydrate (TCD) and (ii) N-acetyl-L-cysteine (NALC). The aim of this work was to study the effect of the concentration of these solutions on AuNPs stability, and further, the effect of the concentration of gold nanoparticles and their morphology, and to describe the aging process of solutions, namely, the optical properties of samples over 28 days. Stabilized AuNPs were prepared in an N-acetyl-L-cysteine (NALC) system and subsequently immobilized with NALC. The surface chemistry modification of AuNPs was confirmed using HRTEM/EDS. Gold nanoparticles were successfully immobilized with NALC. Grafting of the modified PEN from a solution of colloidal gold stabilized in the PEG-H2O-NALC system led to the polymer surface functionalization.

Zobrazit více v PubMed

Jamkhande P.G., Ghule N.W., HaqueBamer A., Kalaskar M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 2019;53:101174. doi: 10.1016/j.jddst.2019.101174. DOI

Matsuyama K., Tsubaki T., Kato T., Okuyama T., Muto H. Preparation of catalytically active Au nanoparticles by sputter deposition and their encapsulation in metal-organic framework of Cu3(BTC)2. Mater. Lett. 2020;261:127124. doi: 10.1016/j.matlet.2019.127124. DOI

Slepička P., Slepičková Kasálková N., Siegel J., Kolská Z., Švorčík V. Methods of Gold and Silver Nanoparticles Preparation. Materials. 2020;13:1. doi: 10.3390/ma13010001. PubMed DOI PMC

Harada M., Yamamoto M., Sakata M. Temperature dependence on the size control of palladium nanoparticles by chemical reduction in nonionic surfactant/ionic liquid hybrid systems. J. Mol. Liquids. 2020;311:113255. doi: 10.1016/j.molliq.2020.113255. DOI

De Souza C.D., Ribeiro Nogueira B., Rostelato M.E.C.M. Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction. J. Alloys Compound. 2019;798:714–740. doi: 10.1016/j.jallcom.2019.05.153. DOI

Machida H., Sugahara T., Hirasawa I. Preparation of dispersed metal nanoparticles in the aqueous solution of metal carboxylate and the tetra-n-butylammonium carboxylate. J. Crystal Growth. 2019;514:14–20. doi: 10.1016/j.jcrysgro.2019.02.056. DOI

Zhou J., Ralston J., Sedev R., Beattie D.A. Functionalized gold nanoparticles: Synthesis, structure and colloid stability. J. Colloid Interface Sci. 2008;331:251–262. doi: 10.1016/j.jcis.2008.12.002. PubMed DOI

Wagener M., Günther B. Sputtering on liquids—A versatile process for the production of magnetic suspensions? J. Magn. Magn. Mater. 1999;201:41–44. doi: 10.1016/S0304-8853(99)00055-4. DOI

Torimoto T., Okazaki K. Sputter deposition onto ionic liquids: Simple and clean synthesis of highly dispersed ultrafine metal nanoparticles. Appl. Phys. Lett. 2006;89:24311. doi: 10.1063/1.2404975. DOI

Ye G.X., Zhang Q.R., Feng C.M., Ge H.L., Jiao Z.K. Structural and electrical properties of a metallic rough-thin-film system deposited on liquid substrates. Phys. Rev. B Condens. Matter. 1996;54:14754–14757. PubMed

Slepička P., Elashnikov R., Ulbrich P., Staszek M., Kolská Z., Švorčík V. Stabilization of sputtered gold and silver nanoparticles in PEG colloid solutions. J. Nanopart. Res. 2015;17:11–26. doi: 10.1007/s11051-014-2850-z. DOI

Slepička P., Přibyl M., Fajstavr D., Ulbrich P., Siegel J., Řezníčková A., Švorčík V. Grafting of platinum nanostructures on biopolymer at elevated temperature. Colloids Surf. A. 2018;546:316–325. doi: 10.1016/j.colsurfa.2018.02.016. DOI

Reznickova A., Slepicka P., Slavikova N., Staszek M., Svorcik V. Preparation, aging and temperature stability of PEGylated gold nanoparticles. Colloids Surf. A. 2017;523:91–97. doi: 10.1016/j.colsurfa.2017.04.005. DOI

Parveen R., Ullah S., Sgarbi R., Tremiliosi-Filho G. One-pot ligand-free synthesis of gold nanoparticles: The role of glycerol as reducing-cum-stabilizing agent. Colloids Surf. A. 2019;565:162–171. doi: 10.1016/j.colsurfa.2019.01.005. DOI

Leopold N., Chiş V., Mircescu N.E., Marişca O.T., Buja O.M., Leopold L.F., Socaciu C., Braicu C., Irimie A., Berindan-Neagoe I. One step synthesis of SERS active colloidal gold nanoparticles by reduction with polyethylene glycol. Colloids Surf. A. 2013;436:133–138. doi: 10.1016/j.colsurfa.2013.05.075. DOI

Zhao J., Wang L., Fu D., Zhao D., Wang Y., Yuan Q., Zhu Y., Yang J., Yang F. Gold nanoparticles amplified microcantilever biosensor for detecting protein biomarkers with high sensitivity. Sens. Actuators A. 2021;321:112563. doi: 10.1016/j.sna.2021.112563. DOI

Hua Z., Yu T., Liu D., Xianyu Y. Recent advances in gold nanoparticles-based biosensors for food safety detection. Biosensors Bioelectron. 2021;179:113076. doi: 10.1016/j.bios.2021.113076. PubMed DOI

Suárez-García S., Solórzano R., Novio F., Alibés R., Busqué F., Ruiz-Molina D. Coordination polymers nanoparticles for bioimaging. Coord. Chem. Rev. 2021;432:213716. doi: 10.1016/j.ccr.2020.213716. DOI

Wang Y., Langley R.J., Tamshen K., Harms J., Middleditch M.J., Maynard H.D., Jamieson S.M.F., Perry J.K. Enhanced Bioactivity of a Human GHR Antagonist Generated by Solid-Phase Site-Specific PEGylation. Biomacromolecules. 2021;22:299–308. doi: 10.1021/acs.biomac.0c01105. PubMed DOI

Matsuhira T., Sakai H. Entropy-Driven Supramolecular Ring-Opening Polymerization of a Cyclic Hemoglobin Monomer for Constructing a Hemoglobin–PEG Alternating Polymer with Structural Regularity. Biomacromolecules. 2021;22:1944–1954. doi: 10.1021/acs.biomac.1c00061. PubMed DOI

Qian W., Murakami M., Ichikawa Y., Che Y. Highly efficient and controllable PEGylation of gold nanoparticles prepared by femtosecond laser ablation in water. J. Phys. Chem. C. 2011;115:23293–23298.

Takae S., Akiyama Y., Otsuka H., Nakamura T., Nagasaki Y., Kataoka K. Ligand density effect on biorecognition by PEGylated gold nanoparticles: Regulated interaction of RCA120 lectin with lactose installed to the distal end of tethered PEG strands on gold surface. Biomacromolecules. 2005;6:818–824. doi: 10.1021/bm049427e. PubMed DOI

Shimmin R.G., Schoch A.B., Braun P.V. Polymer size and concentration of effects on the size of gold nanoparticles cappped by polymeric thiols. Langmuir. 2007;20:5613–5620. doi: 10.1021/la036365p. PubMed DOI

Shenoy D., Fu W., Li J., Crasto C., Jones G., DiMarzio C., Amiji M. Surface functionalization of gold nanoparticles using hetero-bifunctional poly (ethylene glycol) spacer for intracellular tracking and delivery. Int. J. Nanomed. 2006;1:51–57. doi: 10.2147/nano.2006.1.1.51. PubMed DOI PMC

Valkenier H., Malytskyi V., Blond P., Retout M., Mattiuzzi A., Goole J., Raussens V., Jabin I., Bruylants G. Orcid Controlled Functionalization of Gold Nanoparticles with Mixtures of Calix[4]arenes Revealed by Infrared Spectroscopy. Langmuir. 2017;33:8253–8259. doi: 10.1021/acs.langmuir.7b02140. PubMed DOI

Fu W., Shenoy D., Li J., Crasto C., Jones G., Dimarzio C., Sridhar S., Amiji M. Biomedical applications of gold nanoparticles functionalized using hetero-bifunctional poly(ethylene glycol) spacer. MRS Online Proc. Libr. 2004;1:199–204. doi: 10.1557/PROC-845-AA5.4. DOI

Wangoo N., Bhasin K., Mehta S., Suri C. Synthesis and capping of water-dispersed gold nanoparticles by an amino acid: Bioconjugation and binding studies. J. Colloids. Interface Sci. 2008;323:247–254. doi: 10.1016/j.jcis.2008.04.043. PubMed DOI

Russier-Antoine I., Bertorelle F., Kulesza A., Soleilhac A., Bensalah-Ledoux A., Guy S., Dugourd P., Brevet P., Antoine R. Chiral supramolecular gold-cysteine nanoparticles: Chiroptical and nonlinear optical properties. Prog. Natur. Sci. Mater. Int. 2016;26:455–460. doi: 10.1016/j.pnsc.2016.08.008. DOI

Sun L. Functional Gold Nanoparticle−Peptide Complexes as Cell-Targeting Agents. Langmuir. 2008;24:10293–10297. doi: 10.1021/la8015063. PubMed DOI

Chen C., Wang W., Ge J., Zhao X.S. Kinetics and thermodynamics of DNA hybridization on gold nanoparticles. Nucl. Acid Res. 2009;37:3756–3765. doi: 10.1093/nar/gkp230. PubMed DOI PMC

Chang T.L., Tsai C.Y., Sun C.C., Uppala R., Chen C.C., Lin C.H., Chen P.H. Electrical detection of DNA using gold and magnetic nanoparticles and bio bar-code DNA between nanogap electrodes. Microelectron. Eng. 2006;83:1630–1633. doi: 10.1016/j.mee.2006.01.117. DOI

Lipka J., Semmler-Behnke M., Sperling R.A., Wenk A., Takenaka S., Schleh C., Kissel T., Parak W.J., Kreyling W.G. Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials. 2010;31:6574–6581. doi: 10.1016/j.biomaterials.2010.05.009. PubMed DOI

Cho W.S., Cho M., Jeong J., Choi M., Han B.S., Shin H.S., Hong J., Chung B.H., Jeong J., Cho M.H. Size-dependent tissue kinetics of PEG-coated gold nanoparticles. Toxicol. Appl. Pharmacol. 2010;245:116–123. doi: 10.1016/j.taap.2010.02.013. PubMed DOI

Kolska Z., Valha P., Slepička P., Švorčík V. Refractometric study of systems water-poly (ethylene glycol) for preparation and characterization of Au nanoparticles dispersion. Arabian J. Chem. 2019;12:5019–5027. doi: 10.1016/j.arabjc.2016.11.006. DOI

Ishii T., Otsuka H., Kataoka K., Nagasaki Y. Preparation of functionally PEGylated gold nanoparticles with narrow distribution through autoreduction of auric cation by alpha-biotinyl-PEG-block-[poly(2-N, N-dimethylamino)ethyl methacrylate)] Langmuir. 2004;20:561–564. doi: 10.1021/la035653i. PubMed DOI

Lee S.H., Bae K.H., Kim S.H., Lee K.R., Park T.G. Amine functionalized gold nanoparticles as non-cytotoxic and efficient intracellular siRNA delivery carriers. Int. J. Pharm. 2008;364:94–101. doi: 10.1016/j.ijpharm.2008.07.027. PubMed DOI

Aziz M.A., Kim J.P., Oyama M. Preparation of monodispersed carboxylate-functionalized gold nanoparticles using pamoic acid as a reducingand capping reagent. Gold Bull. 2014;47:127–132. doi: 10.1007/s13404-014-0134-0. DOI

Chen P., Selegård R., Ailic D., Liedberg B. Peptide functionalized gold nanoparticles for colorimetric detection of matrilysin (MMP-7) activity. Nanoscale. 2013;5:8973–8976. doi: 10.1039/c3nr03006g. PubMed DOI

Bastis N.G., Sanchez-Tillo E., Pujals S., Farrera C., Kogan M.J., Giralt E., Celada A., Iloberas J., Puntes V. Peptides conjugated to gold nanoparticles induce macrophage activation. Mol. Immunol. 2009;46:743–748. doi: 10.1016/j.molimm.2008.08.277. PubMed DOI

Javier D.J., Nitin N., Levy M., Ellington A., Richards-Kortum R. Aptamer-targeted gold nanoparticles as molecular specific contrast agents for refelectance imaging. Bioconjugate Chem. 2008;19:1309–1312. doi: 10.1021/bc8001248. PubMed DOI PMC

Kim J.H., Jang H.H., Ryou S.M., Kim S., Bae J., Lee K., Han M.S. A functionalized gold nanoparticles-assisted universal carrier for antisense DNA. Chem. Commun. 2010;46:4151–4153. doi: 10.1039/c0cc00103a. PubMed DOI

Neděla O., Slepička P., Švorčík V. Surface Modification of Polymer Substrates for Biomedical Applications. Materials. 2017;10:1115. doi: 10.3390/ma10101115. PubMed DOI PMC

Slepicka P., Slepickova Kasalkova N., Siegel J., Kolska Z., Bacakova L., Svorcik V. Nano-structured and functionalized surfaces for cytocompatibility improvement and bactericidal action. Biotechnol. Adv. 2015;33:1120–1129. doi: 10.1016/j.biotechadv.2015.01.001. PubMed DOI

Slepicka P., Siegel J., Lyutakov O., Slepickova Kasalkova N., Kolska Z., Bacakova L., Svorcik V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. PubMed

Slepička P., Malá Z., Rimpelová S., Švorčík V. Antibacterial properties of modified biodegradable PHB non-woven fabric. Mater. Sci. Eng. C. 2016;65:364–368. doi: 10.1016/j.msec.2016.04.052. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Sputtering onto liquids: a critical review

. 2022 ; 13 () : 10-53. [epub] 20220104

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...