Insights into the growth of nanoparticles in liquid polyol by thermal annealing

. 2021 Aug 10 ; 3 (16) : 4780-4789. [epub] 20210628

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36134317

We report on the growth of metal- and metal-oxide based nanoparticles (NPs) in heated polyol solutions. For this purpose, NPs are produced by the sputtering of a silver, gold, or a copper target to produce either silver, gold, or copper oxide NPs in pentaerythritol ethoxylate (PEEL) which has been annealed up to 200 °C. The objective of the annealing step is the fine modulation of their size. Thus, the evolution of the NP size and shape after thermal annealing is explained according to collision/coalescence kinetics and the affinity between the metal-/metal-oxide and PEEL molecule. Moreover, highlights of few phenomena arising from the annealing step are described such as (i) the reduction of copper oxide into copper by the polyol process and (ii) the effective formation of carbon dots after annealing at 200 °C.

Zobrazit více v PubMed

Fang Z. Z. Wang H. Int. Mater. Rev. 2008;53:326–352.

Niu K.-Y. Liao H.-G. Zheng H. Microsc. Microanal. 2014;20:416–424. doi: 10.1017/S1431927614000282. PubMed DOI

Gervilla V. Almyras G. A. Lü B. Sarakinos K. Sci. Rep. 2020;10(2031):1–8. PubMed PMC

Theissmann R. Fendrich M. Zinetullin R. Guenther G. Schierning G. Wolf D. E. Phys. Rev. B. 2008;78(20):1–10. doi: 10.1103/PhysRevB.78.205413. DOI

Eggersdorfer M. L. Kadau D. Herrmann H. J. Pratsinis S. E. J. Aerosol Sci. 2012;46:7–19. doi: 10.1016/j.jaerosci.2011.11.005. PubMed DOI PMC

Grammatikopoulos P. Sowwan M. Kioseoglou J. Adv. Theory Simul. 2019:1900013. doi: 10.1002/adts.201900013. DOI

Ingham B. Lim T. H. Dotzler C. J. Henning A. Toney M. F. Tilley R. D. Chem. Mater. 2011;23:3312–3317. doi: 10.1021/cm200354d. DOI

Meli L. Green P. F. ACS Nano. 2008;2:1305–1312. doi: 10.1021/nn800045s. PubMed DOI

Woehl T. J. Park C. Evans J. E. Arslan I. Ristenpart W. D. Browning N. D. Nano Lett. 2014;14:373–378. doi: 10.1021/nl4043328. PubMed DOI PMC

Buesser B. Pratsinis S. E. Annu. Rev. Chem. Biomol. Eng. 2012;3:103–127. doi: 10.1146/annurev-chembioeng-062011-080930. PubMed DOI PMC

Goudeli E. Pratsinis S. E. AIChE J. 2016;62:589–598. doi: 10.1002/aic.15125. DOI

Zhu C. Liang S. Song E. Zhou Y. Wang W. Shan F. Shi Y. Hao C. Yin K. Zhang T. Liu J. Zheng H. Sun L. Nat. Commun. 2018;9(421):1–7. PubMed PMC

Moon S. Y. Tanaka S. Sekino T. Nanoscale Res. Lett. 2010;5:813–817. doi: 10.1007/s11671-010-9565-6. PubMed DOI PMC

Dietzel M. Poulikakos D. Int. J. Heat Mass Transfer. 2007;50:2246–2259. doi: 10.1016/j.ijheatmasstransfer.2006.10.035. DOI

Arcidiacono S. Bieri N. R. Poulikakos D. Grigoropoulos C. P. Int. J. Multiphase Flow. 2004;30:979–994. doi: 10.1016/j.ijmultiphaseflow.2004.03.006. DOI

Kruis F. E. Kusters K. A. Pratsinis S. E. Scarlett B. Aerosol Sci. Technol. 1993;19:514–526. doi: 10.1080/02786829308959656. DOI

Lehtinen K. E. J. Zachariah M. R. J. Aerosol Sci. 2002;33:357–368. doi: 10.1016/S0021-8502(01)00177-X. DOI

Hawa T. Zachariah M. R. J. Aerosol Sci. 2006;37:1–15. doi: 10.1016/j.jaerosci.2005.02.007. DOI

Wender H. Migowski P. Feil A. F. Teixeira S. R. Dupont J. Coord. Chem. Rev. 2013;257:2468–2483. doi: 10.1016/j.ccr.2013.01.013. DOI

Sergievskaya A. O'Reilly A. Chauvin A. Veselý J. Panepinto A. De Winter J. Cornil D. Cornil J. Konstantinidis S. Colloids Surf., A. 2021;615:126286. doi: 10.1016/j.colsurfa.2021.126286. DOI

Ishida Y. Udagawa S. Yonezawa T. Colloids Surf., A. 2016;498:106–111. doi: 10.1016/j.colsurfa.2016.03.044. DOI

Hatakeyama Y. Morita T. Takahashi S. Onishi K. Nishikawa K. J. Phys. Chem. C. 2011;115:3279–3285. doi: 10.1021/jp110455k. DOI

Bond G. C. Catal. Today. 2002:5. doi: 10.1016/S0920-5861(01)00522-3. DOI

Shishino Y. Yonezawa T. Udagawa S. Hase K. Nishihara H. Angew. Chem., Int. Ed. 2011;50:703–705. doi: 10.1002/anie.201005723. PubMed DOI

Carette X. Debièvre B. Cornil D. Cornil J. Leclère P. Maes B. Gautier N. Gautron E. El Mel A.-A. Raquez J.-M. Konstantinidis S. J. Phys. Chem. C. 2018;122:26605–26612. doi: 10.1021/acs.jpcc.8b06987. DOI

Nakagawa K. Narushima T. Udagawa S. Yonezawa T. J. Phys.: Conf. Ser. 2013;417:012038. doi: 10.1088/1742-6596/417/1/012038. DOI

Chauvin A. Sergievskaya A. El Mel A.-A. Fucikova A. Antunes Corrêa C. Vesely J. Duverger-Nédellec E. Cornil D. Cornil J. Tessier P. Y. Dopita M. Konstantinidis S. Nanotechnology. 2020;31(45):1–13. doi: 10.1088/1361-6528/abaa75. PubMed DOI

Deschamps A. De Geuser F. J. Appl. Crystallogr. 2011;44:343–352. doi: 10.1107/S0021889811003049. DOI

Bienert R. Emmerling F. Thünemann A. F. Anal. Bioanal. Chem. 2009;395:1651–1660. doi: 10.1007/s00216-009-3049-5. PubMed DOI

Ilavsky J. Jemian P. R. J. Appl. Crystallogr. 2009;42:347–353. doi: 10.1107/S0021889809002222. DOI

Pedersen J. S. Adv. Colloid Interface Sci. 1997:40. PubMed

Gallardo O. A. D. Moiraghi R. Macchione M. A. Godoy J. A. Pérez M. A. Coronado E. A. Macagno V. A. RSC Adv. 2012;2:2923. doi: 10.1039/C2RA01044E. DOI

Yang Y. Matsubara S. Nogami M. Shi J. Mater. Sci. Eng., B. 2007;140:172–176. doi: 10.1016/j.mseb.2007.03.021. DOI

Desai R. Mankad V. Gupta S. K. Jha P. K. Nanosci. Nanotechnol. Lett. 2012;4:30–34. doi: 10.1166/nnl.2012.1278. DOI

Zhao S. J. Wang S. Q. Yang Z. Q. Ye H. Q. J. Phys.: Condens. Matter. 2001;13:8061–8069. doi: 10.1088/0953-8984/13/35/313. DOI

Deki S. Akamatsu K. Yano T. Mizuhata M. Kajinami A. J. Mater. Chem. 1998;8:1865–1868. doi: 10.1039/A801506F. DOI

Borgohain K. Murase N. Mahamuni S. J. Appl. Phys. 2002;92:1292–1297. doi: 10.1063/1.1491020. DOI

Yin M. Wu C.-K. Lou Y. Burda C. Koberstein J. T. Zhu Y. O'Brien S. J. Am. Chem. Soc. 2005;127:9506–9511. doi: 10.1021/ja050006u. PubMed DOI

Dabera G. D. M. R. Walker M. Sanchez A. M. Pereira H. J. Beanland R. Hatton R. A. Nat. Commun. 2017;8:1894. doi: 10.1038/s41467-017-01735-6. PubMed DOI PMC

Cherny A. Y. Anitas E. M. Osipov V. A. Kuklin A. I. Phys. Chem. Chem. Phys. 2019;21:12748–12762. doi: 10.1039/C9CP00783K. PubMed DOI

Grant T. D. Luft J. R. Carter L. G. Matsui T. Weiss T. M. Martel A. Snell E. H. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2015;71:45–56. doi: 10.1107/S1399004714010876. PubMed DOI PMC

Beaucage G. Kammler H. K. Pratsinis S. E. J. Appl. Crystallogr. 2004;37:523–535. doi: 10.1107/S0021889804008969. DOI

Chepkasov I. V. Popov Z. I. IOP Conf. Ser.: Mater. Sci. Eng. 2015;81:012033. PubMed

Laffont L. Wu M. Y. Chevallier F. Poizot P. Morcrette M. Tarascon J. M. Micron. 2006;37:459–464. doi: 10.1016/j.micron.2005.11.007. PubMed DOI

Dong H. Chen Y.-C. Feldmann C. Green Chem. 2015;17:4107–4132. doi: 10.1039/C5GC00943J. DOI

Fievet F. Ammar-Merah S. Brayner R. Chau F. Giraud M. Mammeri F. Peron J. Chem. Soc. Rev. 2018:48. PubMed

Fievet F. Fievet-Vincent F. Lagier J.-P. Dumont B. Figlarz M. J. Mater. Chem. 1993;3:627. doi: 10.1039/JM9930300627. DOI

Fiévet F. Ammar-Merah S. Brayner R. Chau F. Giraud M. Mammeri F. Peron J. Piquemal J.-Y. Sicard L. Viau G. Chem. Soc. Rev. 2018;47:5187–5233. doi: 10.1039/C7CS00777A. PubMed DOI

Wang Y. Q. Liang W. S. Geng C. Y. Nanoscale Res. Lett. 2009;4:684–688. doi: 10.1007/s11671-009-9298-6. PubMed DOI PMC

Kim T. Lee C.-H. Joo S.-W. Lee K. J. Colloid Interface Sci. 2008;318:238–243. doi: 10.1016/j.jcis.2007.10.029. PubMed DOI

Bonaccorso F. Zerbetto M. Ferrari A. C. Amendola V. J. Phys. Chem. C. 2013;117:13217–13229. doi: 10.1021/jp400599g. DOI

Song M. Zhou G. Lu N. Lee J. Nakouzi E. Wang H. Li D. Science. 2020;367:40–45. doi: 10.1126/science.aax6511. PubMed DOI

Peng Z. Ji C. Zhou Y. Zhao T. Leblanc R. M. Appl. Mater. Today. 2020;20:100677. doi: 10.1016/j.apmt.2020.100677. DOI

Chen M. Wang W. Wu X. J. Mater. Chem. B. 2014;2:3937–3945. doi: 10.1039/C4TB00292J. PubMed DOI

Zuo P. Lu X. Sun Z. Guo Y. He H. Microchim. Acta. 2016;183:519–542. doi: 10.1007/s00604-015-1705-3. DOI

Sharma A. Das J. J. Nanobiotechnol. 2019;17:92. doi: 10.1186/s12951-019-0525-8. PubMed DOI PMC

Liu R. Huang H. Li H. Liu Y. Zhong J. Li Y. Zhang S. Kang Z. ACS Catal. 2014;4:328–336. doi: 10.1021/cs400913h. DOI

Ye G. Zhang Q. Feng C. Ge H. Jiao Z. Phys. Rev. B: Condens. Matter Mater. Phys. 1996;54:14754–14757. doi: 10.1103/PhysRevB.54.14754. PubMed DOI

Beausir B. and Fundenberger J.-J., ATEX – software, Université de Lorraine, Metz, 2017

Girardot R., Viguier G., Ounsy M. and Perez J., Foxtrot, Synchrotron SOLEIL, 2017

Artacho E. Anglada E. Diéguez O. Gale J. D. García A. Junquera J. Martin R. M. Ordejón P. Pruneda J. M. Sánchez-Portal D. Soler J. M. J. Phys.: Condens. Matter. 2008;20:064208. doi: 10.1088/0953-8984/20/6/064208. PubMed DOI

Perdew J. P. Burke K. Wang Y. Phys. Rev. B: Condens. Matter Mater. Phys. 1996;54:16533–16539. doi: 10.1103/PhysRevB.54.16533. PubMed DOI

Troullier N. Martins J. L. Phys. Rev. B: Condens. Matter Mater. Phys. 1991;43:1993–2006. doi: 10.1103/PhysRevB.43.1993. PubMed DOI

Manz T. A. Limas N. G. RSC Adv. 2016;6:47771–47801. doi: 10.1039/C6RA04656H. DOI

Manz T. A. RSC Adv. 2017;7:45552–45581. doi: 10.1039/C7RA07400J. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Plasmonic Ag/Cu/PEG nanofluids prepared when solids meet liquids in the gas phase

. 2023 Jan 31 ; 5 (3) : 955-969. [epub] 20221222

Sputtering onto liquids: a critical review

. 2022 ; 13 () : 10-53. [epub] 20220104

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...