Insights into the growth of nanoparticles in liquid polyol by thermal annealing
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36134317
PubMed Central
PMC9418955
DOI
10.1039/d1na00222h
PII: d1na00222h
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We report on the growth of metal- and metal-oxide based nanoparticles (NPs) in heated polyol solutions. For this purpose, NPs are produced by the sputtering of a silver, gold, or a copper target to produce either silver, gold, or copper oxide NPs in pentaerythritol ethoxylate (PEEL) which has been annealed up to 200 °C. The objective of the annealing step is the fine modulation of their size. Thus, the evolution of the NP size and shape after thermal annealing is explained according to collision/coalescence kinetics and the affinity between the metal-/metal-oxide and PEEL molecule. Moreover, highlights of few phenomena arising from the annealing step are described such as (i) the reduction of copper oxide into copper by the polyol process and (ii) the effective formation of carbon dots after annealing at 200 °C.
Chimie des Interactions Plasma Surface University of Mons Place du Parc 20 7000 Mons Belgium
Laboratory for Chemistry of Novel Materials University of Mons Place du Parc 20 Mons 7000 Belgium
Zobrazit více v PubMed
Fang Z. Z. Wang H. Int. Mater. Rev. 2008;53:326–352.
Niu K.-Y. Liao H.-G. Zheng H. Microsc. Microanal. 2014;20:416–424. doi: 10.1017/S1431927614000282. PubMed DOI
Gervilla V. Almyras G. A. Lü B. Sarakinos K. Sci. Rep. 2020;10(2031):1–8. PubMed PMC
Theissmann R. Fendrich M. Zinetullin R. Guenther G. Schierning G. Wolf D. E. Phys. Rev. B. 2008;78(20):1–10. doi: 10.1103/PhysRevB.78.205413. DOI
Eggersdorfer M. L. Kadau D. Herrmann H. J. Pratsinis S. E. J. Aerosol Sci. 2012;46:7–19. doi: 10.1016/j.jaerosci.2011.11.005. PubMed DOI PMC
Grammatikopoulos P. Sowwan M. Kioseoglou J. Adv. Theory Simul. 2019:1900013. doi: 10.1002/adts.201900013. DOI
Ingham B. Lim T. H. Dotzler C. J. Henning A. Toney M. F. Tilley R. D. Chem. Mater. 2011;23:3312–3317. doi: 10.1021/cm200354d. DOI
Meli L. Green P. F. ACS Nano. 2008;2:1305–1312. doi: 10.1021/nn800045s. PubMed DOI
Woehl T. J. Park C. Evans J. E. Arslan I. Ristenpart W. D. Browning N. D. Nano Lett. 2014;14:373–378. doi: 10.1021/nl4043328. PubMed DOI PMC
Buesser B. Pratsinis S. E. Annu. Rev. Chem. Biomol. Eng. 2012;3:103–127. doi: 10.1146/annurev-chembioeng-062011-080930. PubMed DOI PMC
Goudeli E. Pratsinis S. E. AIChE J. 2016;62:589–598. doi: 10.1002/aic.15125. DOI
Zhu C. Liang S. Song E. Zhou Y. Wang W. Shan F. Shi Y. Hao C. Yin K. Zhang T. Liu J. Zheng H. Sun L. Nat. Commun. 2018;9(421):1–7. PubMed PMC
Moon S. Y. Tanaka S. Sekino T. Nanoscale Res. Lett. 2010;5:813–817. doi: 10.1007/s11671-010-9565-6. PubMed DOI PMC
Dietzel M. Poulikakos D. Int. J. Heat Mass Transfer. 2007;50:2246–2259. doi: 10.1016/j.ijheatmasstransfer.2006.10.035. DOI
Arcidiacono S. Bieri N. R. Poulikakos D. Grigoropoulos C. P. Int. J. Multiphase Flow. 2004;30:979–994. doi: 10.1016/j.ijmultiphaseflow.2004.03.006. DOI
Kruis F. E. Kusters K. A. Pratsinis S. E. Scarlett B. Aerosol Sci. Technol. 1993;19:514–526. doi: 10.1080/02786829308959656. DOI
Lehtinen K. E. J. Zachariah M. R. J. Aerosol Sci. 2002;33:357–368. doi: 10.1016/S0021-8502(01)00177-X. DOI
Hawa T. Zachariah M. R. J. Aerosol Sci. 2006;37:1–15. doi: 10.1016/j.jaerosci.2005.02.007. DOI
Wender H. Migowski P. Feil A. F. Teixeira S. R. Dupont J. Coord. Chem. Rev. 2013;257:2468–2483. doi: 10.1016/j.ccr.2013.01.013. DOI
Sergievskaya A. O'Reilly A. Chauvin A. Veselý J. Panepinto A. De Winter J. Cornil D. Cornil J. Konstantinidis S. Colloids Surf., A. 2021;615:126286. doi: 10.1016/j.colsurfa.2021.126286. DOI
Ishida Y. Udagawa S. Yonezawa T. Colloids Surf., A. 2016;498:106–111. doi: 10.1016/j.colsurfa.2016.03.044. DOI
Hatakeyama Y. Morita T. Takahashi S. Onishi K. Nishikawa K. J. Phys. Chem. C. 2011;115:3279–3285. doi: 10.1021/jp110455k. DOI
Bond G. C. Catal. Today. 2002:5. doi: 10.1016/S0920-5861(01)00522-3. DOI
Shishino Y. Yonezawa T. Udagawa S. Hase K. Nishihara H. Angew. Chem., Int. Ed. 2011;50:703–705. doi: 10.1002/anie.201005723. PubMed DOI
Carette X. Debièvre B. Cornil D. Cornil J. Leclère P. Maes B. Gautier N. Gautron E. El Mel A.-A. Raquez J.-M. Konstantinidis S. J. Phys. Chem. C. 2018;122:26605–26612. doi: 10.1021/acs.jpcc.8b06987. DOI
Nakagawa K. Narushima T. Udagawa S. Yonezawa T. J. Phys.: Conf. Ser. 2013;417:012038. doi: 10.1088/1742-6596/417/1/012038. DOI
Chauvin A. Sergievskaya A. El Mel A.-A. Fucikova A. Antunes Corrêa C. Vesely J. Duverger-Nédellec E. Cornil D. Cornil J. Tessier P. Y. Dopita M. Konstantinidis S. Nanotechnology. 2020;31(45):1–13. doi: 10.1088/1361-6528/abaa75. PubMed DOI
Deschamps A. De Geuser F. J. Appl. Crystallogr. 2011;44:343–352. doi: 10.1107/S0021889811003049. DOI
Bienert R. Emmerling F. Thünemann A. F. Anal. Bioanal. Chem. 2009;395:1651–1660. doi: 10.1007/s00216-009-3049-5. PubMed DOI
Ilavsky J. Jemian P. R. J. Appl. Crystallogr. 2009;42:347–353. doi: 10.1107/S0021889809002222. DOI
Pedersen J. S. Adv. Colloid Interface Sci. 1997:40. PubMed
Gallardo O. A. D. Moiraghi R. Macchione M. A. Godoy J. A. Pérez M. A. Coronado E. A. Macagno V. A. RSC Adv. 2012;2:2923. doi: 10.1039/C2RA01044E. DOI
Yang Y. Matsubara S. Nogami M. Shi J. Mater. Sci. Eng., B. 2007;140:172–176. doi: 10.1016/j.mseb.2007.03.021. DOI
Desai R. Mankad V. Gupta S. K. Jha P. K. Nanosci. Nanotechnol. Lett. 2012;4:30–34. doi: 10.1166/nnl.2012.1278. DOI
Zhao S. J. Wang S. Q. Yang Z. Q. Ye H. Q. J. Phys.: Condens. Matter. 2001;13:8061–8069. doi: 10.1088/0953-8984/13/35/313. DOI
Deki S. Akamatsu K. Yano T. Mizuhata M. Kajinami A. J. Mater. Chem. 1998;8:1865–1868. doi: 10.1039/A801506F. DOI
Borgohain K. Murase N. Mahamuni S. J. Appl. Phys. 2002;92:1292–1297. doi: 10.1063/1.1491020. DOI
Yin M. Wu C.-K. Lou Y. Burda C. Koberstein J. T. Zhu Y. O'Brien S. J. Am. Chem. Soc. 2005;127:9506–9511. doi: 10.1021/ja050006u. PubMed DOI
Dabera G. D. M. R. Walker M. Sanchez A. M. Pereira H. J. Beanland R. Hatton R. A. Nat. Commun. 2017;8:1894. doi: 10.1038/s41467-017-01735-6. PubMed DOI PMC
Cherny A. Y. Anitas E. M. Osipov V. A. Kuklin A. I. Phys. Chem. Chem. Phys. 2019;21:12748–12762. doi: 10.1039/C9CP00783K. PubMed DOI
Grant T. D. Luft J. R. Carter L. G. Matsui T. Weiss T. M. Martel A. Snell E. H. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2015;71:45–56. doi: 10.1107/S1399004714010876. PubMed DOI PMC
Beaucage G. Kammler H. K. Pratsinis S. E. J. Appl. Crystallogr. 2004;37:523–535. doi: 10.1107/S0021889804008969. DOI
Chepkasov I. V. Popov Z. I. IOP Conf. Ser.: Mater. Sci. Eng. 2015;81:012033. PubMed
Laffont L. Wu M. Y. Chevallier F. Poizot P. Morcrette M. Tarascon J. M. Micron. 2006;37:459–464. doi: 10.1016/j.micron.2005.11.007. PubMed DOI
Dong H. Chen Y.-C. Feldmann C. Green Chem. 2015;17:4107–4132. doi: 10.1039/C5GC00943J. DOI
Fievet F. Ammar-Merah S. Brayner R. Chau F. Giraud M. Mammeri F. Peron J. Chem. Soc. Rev. 2018:48. PubMed
Fievet F. Fievet-Vincent F. Lagier J.-P. Dumont B. Figlarz M. J. Mater. Chem. 1993;3:627. doi: 10.1039/JM9930300627. DOI
Fiévet F. Ammar-Merah S. Brayner R. Chau F. Giraud M. Mammeri F. Peron J. Piquemal J.-Y. Sicard L. Viau G. Chem. Soc. Rev. 2018;47:5187–5233. doi: 10.1039/C7CS00777A. PubMed DOI
Wang Y. Q. Liang W. S. Geng C. Y. Nanoscale Res. Lett. 2009;4:684–688. doi: 10.1007/s11671-009-9298-6. PubMed DOI PMC
Kim T. Lee C.-H. Joo S.-W. Lee K. J. Colloid Interface Sci. 2008;318:238–243. doi: 10.1016/j.jcis.2007.10.029. PubMed DOI
Bonaccorso F. Zerbetto M. Ferrari A. C. Amendola V. J. Phys. Chem. C. 2013;117:13217–13229. doi: 10.1021/jp400599g. DOI
Song M. Zhou G. Lu N. Lee J. Nakouzi E. Wang H. Li D. Science. 2020;367:40–45. doi: 10.1126/science.aax6511. PubMed DOI
Peng Z. Ji C. Zhou Y. Zhao T. Leblanc R. M. Appl. Mater. Today. 2020;20:100677. doi: 10.1016/j.apmt.2020.100677. DOI
Chen M. Wang W. Wu X. J. Mater. Chem. B. 2014;2:3937–3945. doi: 10.1039/C4TB00292J. PubMed DOI
Zuo P. Lu X. Sun Z. Guo Y. He H. Microchim. Acta. 2016;183:519–542. doi: 10.1007/s00604-015-1705-3. DOI
Sharma A. Das J. J. Nanobiotechnol. 2019;17:92. doi: 10.1186/s12951-019-0525-8. PubMed DOI PMC
Liu R. Huang H. Li H. Liu Y. Zhong J. Li Y. Zhang S. Kang Z. ACS Catal. 2014;4:328–336. doi: 10.1021/cs400913h. DOI
Ye G. Zhang Q. Feng C. Ge H. Jiao Z. Phys. Rev. B: Condens. Matter Mater. Phys. 1996;54:14754–14757. doi: 10.1103/PhysRevB.54.14754. PubMed DOI
Beausir B. and Fundenberger J.-J., ATEX – software, Université de Lorraine, Metz, 2017
Girardot R., Viguier G., Ounsy M. and Perez J., Foxtrot, Synchrotron SOLEIL, 2017
Artacho E. Anglada E. Diéguez O. Gale J. D. García A. Junquera J. Martin R. M. Ordejón P. Pruneda J. M. Sánchez-Portal D. Soler J. M. J. Phys.: Condens. Matter. 2008;20:064208. doi: 10.1088/0953-8984/20/6/064208. PubMed DOI
Perdew J. P. Burke K. Wang Y. Phys. Rev. B: Condens. Matter Mater. Phys. 1996;54:16533–16539. doi: 10.1103/PhysRevB.54.16533. PubMed DOI
Troullier N. Martins J. L. Phys. Rev. B: Condens. Matter Mater. Phys. 1991;43:1993–2006. doi: 10.1103/PhysRevB.43.1993. PubMed DOI
Manz T. A. Limas N. G. RSC Adv. 2016;6:47771–47801. doi: 10.1039/C6RA04656H. DOI
Manz T. A. RSC Adv. 2017;7:45552–45581. doi: 10.1039/C7RA07400J. DOI
Plasmonic Ag/Cu/PEG nanofluids prepared when solids meet liquids in the gas phase
Sputtering onto liquids: a critical review