Plasmonic Ag/Cu/PEG nanofluids prepared when solids meet liquids in the gas phase
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection
Document type Journal Article
PubMed
36756512
PubMed Central
PMC9891094
DOI
10.1039/d2na00785a
PII: d2na00785a
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Since the time of Faraday's experiments, the optical response of plasmonic nanofluids has been tailored by the shape, size, concentration, and material of nanoparticles (NPs), or by mixing different types of NPs. To date, water-based liquids have been the most extensively investigated host media, while polymers, such as poly(ethylene glycol) (PEG), have frequently been added to introduce repulsive steric interactions and protect NPs from agglomeration. Here, we introduce an inverse system of non-aqueous nanofluids, in which Ag and Cu NPs are dispersed in PEG (400 g mol-1), with no solvents or chemicals involved. Our single-step approach comprises the synthesis of metal NPs in the gas phase using sputtering-based gas aggregation cluster sources, gas flow transport of NPs, and their deposition (optionally simultaneous) on the PEG surface. Using computational fluid dynamics simulations, we show that NPs diffuse into PEG at an average velocity of the diffusion front of the order of μm s-1, which is sufficient for efficient loading of the entire polymer bulk. We synthesize yellow Ag/PEG, green Cu/PEG, and blue Ag/Cu/PEG nanofluids, in which the color is given by the position of the plasmon resonance. NPs are prone to partial agglomeration and sedimentation, with a slower kinetics for Cu. Density functional theory calculations combined with UV-vis data and zeta-potential measurements prove that the surface oxidation to Cu2O and stronger electrostatic repulsion are responsible for the higher stability of Cu NPs. Adopting the De Gennes formalism, we estimate that PEG molecules adsorb on the NP surface in mushroom coordination, with the thickness of the adsorbed layer L < 1.4 nm, grafting density σ < 0.20, and the average distance between the grafted chains D > 0.8 nm. Such values provide sufficient steric barriers to retard, but not completely prevent, agglomeration. Overall, our approach offers an excellent platform for fundamental research on non-aqueous nanofluids, with metal-polymer and metal-metal interactions unperturbed by the presence of solvents or chemical residues.
ELI Beamlines Centre Institute of Physics Czech Academy of Sciences Dolni Brezany Czech Republic
Laboratory for Chemistry of Novel Materials University of Mons Place du Parc 23 B 7000 Mons Belgium
Plasma Surface Interaction Chemistry University of Mons Place du Parc 20 7000 Mons Belgium
See more in PubMed
Faraday M. Philos. Trans. R. Soc. London. 1857;147:145–181. doi: 10.1098/rstl.1857.0011. DOI
Sharaf O. Z. Taylor R. A. Abu-Nada E. Phys. Rep. 2020;867:1–84. doi: 10.1016/j.physrep.2020.04.005. DOI
Yatsuya S. Mihama K. Uyeda R. Jpn. J. Appl. Phys. 1974;13:749–750. doi: 10.1143/JJAP.13.749. DOI
Ye G. Zhang Q. Feng C. Ge H. Jiao Z. Phys. Rev. B: Condens. Matter Mater. Phys. 1996;54:14754–14757. doi: 10.1103/PhysRevB.54.14754. PubMed DOI
Wender H. de Oliveira L. F. Feil A. F. Lissner E. Migowski P. Meneghetti M. R. Teixeira S. R. Dupont J. Chem. Commun. 2010;46:7019. doi: 10.1039/C0CC01353F. PubMed DOI
Staszek M. Siegel J. Rimpelová S. Lyutakov O. Švorčík V. Mater. Lett. 2015;158:351–354. doi: 10.1016/j.matlet.2015.06.021. DOI
De Luna M. M. Karandikar P. Gupta M. ACS Appl. Nano Mater. 2018;1:6575–6579. doi: 10.1021/acsanm.8b01888. DOI
Suzuki S. Morimoto A. Kuwabata S. Torimoto T. Jpn. J. Appl. Phys. 2021;60:SAAC01-1–SAAC01-8. doi: 10.35848/1347-4065/abf4a1. DOI
Zhu M. Nguyen M. T. Chau Y. R. Deng L. Yonezawa T. Langmuir. 2021;37:6096–6105. doi: 10.1021/acs.langmuir.1c00916. PubMed DOI
Sergievskaya A. O'Reilly A. Chauvin A. Veselý J. Panepinto A. De Winter J. Cornil D. Cornil J. Konstantinidis S. Colloids Surf., A. 2021;615:126286. doi: 10.1016/j.colsurfa.2021.126286. DOI
Dvurečenskij A. Cigáň A. Lobotka P. Radnóczi G. Škrátek M. Benyó J. Kováčová E. Majerová M. Maňka J. J. Alloys Compd. 2022;896:163089. doi: 10.1016/j.jallcom.2021.163089. DOI
Meischein M. Garzón-Manjón A. Hammerschmidt T. Xiao B. Zhang S. Abdellaoui L. Scheu C. Ludwig A. Nanoscale Adv. 2022;4:3855–3869. doi: 10.1039/D2NA00363E. PubMed DOI PMC
Okazaki K. Kiyama T. Hirahara K. Tanaka N. Kuwabata S. Torimoto T. Chem. Commun. 2008:691–693. doi: 10.1039/B714761A. PubMed DOI
Suzuki T. Okazaki K. Kiyama T. Kuwabata S. Torimoto T. Electrochemistry. 2009;77:636–638. doi: 10.5796/electrochemistry.77.636. DOI
Nguyen M. T. Yonezawa T. Wang Y. Tokunaga T. Mater. Lett. 2016;171:75–78. doi: 10.1016/j.matlet.2016.02.047. DOI
Ishida Y. Corpuz R. D. Yonezawa T. Acc. Chem. Res. 2017;50:2986–2995. doi: 10.1021/acs.accounts.7b00470. PubMed DOI
Corpuz R. D. Ishida Y. Nguyen M. T. Yonezawa T. Langmuir. 2017;33:9144–9150. doi: 10.1021/acs.langmuir.7b02011. PubMed DOI
Suzuki S. Suzuki T. Tomita Y. Hirano M. Okazaki K. Kuwabata S. Torimoto T. CrystEngComm. 2012;14:4922. doi: 10.1039/C2CE25235J. DOI
Sugioka D. Kameyama T. Kuwabata S. Yamamoto T. Torimoto T. ACS Appl. Mater. Interfaces. 2016;8:10874–10883. doi: 10.1021/acsami.6b01978. PubMed DOI
Deng L. Nguyen M. T. Shi J. Chau Y. R. Tokunaga T. Kudo M. Matsumura S. Hashimoto N. Yonezawa T. Langmuir. 2020;36:3004–3015. doi: 10.1021/acs.langmuir.0c00152. PubMed DOI
Liu C. H. Liu J. Zhou Y. Y. Cai X. L. Lu Y. Gao X. Wang S. D. Carbon N. Y. 2015;94:295–300. doi: 10.1016/j.carbon.2015.07.003. DOI
Liu C.-H. Liu R.-H. Sun Q.-J. Chang J.-B. Gao X. Liu Y. Lee S.-T. Kang Z.-H. Wang S.-D. Nanoscale. 2015;7:6356–6362. doi: 10.1039/C4NR06855F. PubMed DOI
König D. Richter K. Siegel A. Mudring A.-V. Ludwig A. Adv. Funct. Mater. 2014;24:2049–2056. doi: 10.1002/adfm.201303140. DOI
Chauvin A. Sergievskaya A. El Mel A.-A. Fucikova A. Antunes Corrêa C. Vesely J. Duverger-Nédellec E. Cornil D. Cornil J. Tessier P.-Y. Dopita M. Konstantinidis S. Nanotechnology. 2020;31:455303. doi: 10.1088/1361-6528/abaa75. PubMed DOI
Deng L. Nguyen M. T. Mei S. Tokunaga T. Kudo M. Matsumura S. Yonezawa T. Langmuir. 2019;35:8418–8427. PubMed
Choukourov A. Nikitin D. Pleskunov P. Tafiichuk R. Biliak K. Protsak M. Kishenina K. Hanuš J. Dopita M. Cieslar M. Popelář T. Ondič L. Varga M. J. Mol. Liq. 2021;336:116319. doi: 10.1016/j.molliq.2021.116319. DOI
Kousal J. Shelemin A. Schwartzkopf M. Polonskyi O. Hanuš J. Solař P. Vaidulych M. Nikitin D. Pleskunov P. Krtouš Z. Strunskus T. Faupel F. Roth S. V. Biederman H. Choukourov A. Nanoscale. 2018;10:18275–18281. doi: 10.1039/C8NR06155F. PubMed DOI
Shelemin A. Pleskunov P. Kousal J. Drewes J. Hanuš J. Ali-Ogly S. Nikitin D. Solař P. Kratochvíl J. Vaidulych M. Schwartzkopf M. Kylián O. Polonskyi O. Strunskus T. Faupel F. V Roth S. Biederman H. Choukourov A. Part. Part. Syst. Charact. 2020;37:1900436. doi: 10.1002/ppsc.201900436. DOI
Singh M. K. Manda P. Singh A. K. Mandal R. K. AIP Adv. 2015;5:107108. doi: 10.1063/1.4933072. DOI
Robinson R. Krause V. Wang S. Yan S. Shang G. Gordon J. Tycko S. Zhong C.-J. Langmuir. 2022;38:5633–5644. doi: 10.1021/acs.langmuir.2c00221. PubMed DOI
Hosny M. Fawzy M. Eltaweil A. S. J. Environ. Manage. 2022;316:115238. doi: 10.1016/j.jenvman.2022.115238. PubMed DOI
Ilavsky J. Jemian P. R. J. Appl. Crystallogr. 2009;42:347–353. doi: 10.1107/S0021889809002222. DOI
Li A. Ahmadi G. Aerosol Sci. Technol. 1992;16:209–226. doi: 10.1080/02786829208959550. DOI
Marsaglia G. Bray T. A. SIAM Rev. 1964;6:260–264. doi: 10.1137/1006063. DOI
Laven P., MiePlot version 4.6, http://www.philiplaven.com/mieplot.htm
Laven P. Lock J. A. J. Opt. Soc. Am. A. 2012;29:1498. doi: 10.1364/JOSAA.29.001498. PubMed DOI
Lock J. A. Laven P. J. Opt. Soc. Am. A. 2012;29:1489. doi: 10.1364/JOSAA.29.001489. PubMed DOI
Johnson P. B. Christy R. W. Phys. Rev. B: Condens. Matter Mater. Phys. 1972;6:4370–4379. doi: 10.1103/PhysRevB.6.4370. DOI
Malerba C. Biccari F. Leonor Azanza Ricardo C. D'Incau M. Scardi P. Mittiga A. Sol. Energy Mater. Sol. Cells. 2011;95:2848–2854. doi: 10.1016/j.solmat.2011.05.047. DOI
Shah D. Roychowdhury T. Hilfiker J. N. Linford M. R. Surf. Sci. Spectra. 2020;27:016001. doi: 10.1116/1.5095949. DOI
Carette X. Debièvre B. Cornil D. Cornil J. Leclère P. Maes B. Gautier N. Gautron E. El Mel A.-A. Raquez J.-M. Konstantinidis S. J. Phys. Chem. C. 2018;122:26605–26612. doi: 10.1021/acs.jpcc.8b06987. DOI
Chauvin A. Sergievskaya A. Fucikova A. Corrêa C. A. Vesely J. Cornil J. Cornil D. Dopita M. Konstantinidis S. Nanoscale Adv. 2021;3:4780–4789. doi: 10.1039/D1NA00222H. PubMed DOI PMC
Sergievskaya A. O’Reilly A. Alem H. De Winter J. Cornil D. Cornil J. Konstantinidis S. Front. Nanotechnol. 2021;3:710612. doi: 10.3389/fnano.2021.710612. DOI
Artacho E. Anglada E. Diéguez O. Gale J. D. García A. Junquera J. Martin R. M. Ordejón P. Pruneda J. M. Sánchez-Portal D. Soler J. M. J. Phys.: Condens. Matter. 2008;20:064208. doi: 10.1088/0953-8984/20/6/064208. PubMed DOI
Perdew J. P. Burke K. Wang Y. Phys. Rev. B: Condens. Matter Mater. Phys. 1996;54:16533–16539. doi: 10.1103/PhysRevB.54.16533. PubMed DOI
Manz T. A. Limas N. G. RSC Adv. 2016;6:47771–47801. doi: 10.1039/C6RA04656H. DOI
Grimme S. J. Comput. Chem. 2006;27:1787–1799. doi: 10.1002/jcc.20495. PubMed DOI
Manz T. A. RSC Adv. 2017;7:45552–45581. doi: 10.1039/C7RA07400J. DOI
NIST, Simulation of Electron Spectra for Surface Analysis (SESSA, version 2.2.0)
Seah M. P. Dench W. A. Surf. Interface Anal. 1979;1:2–11. doi: 10.1002/sia.740010103. DOI
Solař P. Kousal J. Hanuš J. Škorvánková K. Kuzminova A. Kylián O. Sci. Rep. 2021;11:6415. doi: 10.1038/s41598-021-85533-7. PubMed DOI PMC
Smirnov B. M. Shyjumon I. Hippler R. Phys. Rev. E. 2007;75:066402. doi: 10.1103/PhysRevE.75.066402. PubMed DOI
Nikitin D. Madkour S. Pleskunov P. Tafiichuk R. Shelemin A. Hanuš J. Gordeev I. Sysolyatina E. Lavrikova A. Ermolaeva S. Titov V. Schönhals A. Choukourov A. Soft Matter. 2019;15:2884–2896. doi: 10.1039/C8SM02413H. PubMed DOI
Kelly K. L. Coronado E. Zhao L. L. Schatz G. C. J. Phys. Chem. B. 2003;107:668–677. doi: 10.1021/jp026731y. DOI
Jiang M.-M. Chen H.-Y. Li B.-H. Liu K.-W. Shan C.-X. Shen D.-Z. J. Mater. Chem. C. 2014;2:56–63. doi: 10.1039/C3TC31910E. DOI
Rice K. P. Walker E. J. Stoykovich M. P. Saunders A. E. J. Phys. Chem. C. 2011;115:1793–1799. doi: 10.1021/jp110483z. DOI
Rice K. P. Paterson A. S. Stoykovich M. P. Part. Part. Syst. Charact. 2015;32:373–380. doi: 10.1002/ppsc.201400155. DOI
Peña-Rodríguez O. Pal U. J. Opt. Soc. Am. B. 2011;28:2735. doi: 10.1364/JOSAB.28.002735. DOI
Pike S. D. White E. R. Regoutz A. Sammy N. Payne D. J. Williams C. K. Shaffer M. S. P. ACS Nano. 2017;11:2714–2723. doi: 10.1021/acsnano.6b07694. PubMed DOI
Snoke D. W. Shields A. J. Cardona M. Phys. Rev. B: Condens. Matter Mater. Phys. 1992;45:11693–11697. doi: 10.1103/PhysRevB.45.11693. PubMed DOI
Wang L. G. Zunger A. Phys. Rev. B: Condens. Matter Mater. Phys. 2003;67:092103. doi: 10.1103/PhysRevB.67.092103. DOI
Redapangu P. R. Kidan T. G. Berhane K. J. Appl. Fluid Mech. 2021;14:601–613.
Rayleigh L. Proc. London Math. Soc. 1882;1–14:170–177. doi: 10.1112/plms/s1-14.1.170. DOI
Taylor G. I. Proc. Math. Phys. Eng. Sci. 1950;201:192–196.
Debacq M. Fanguet V. Hulin J. P. Salin D. Perrin B. Phys. Fluids. 2001;13:3097–3100. doi: 10.1063/1.1405442. DOI
Perry J. L. Reuter K. G. Kai M. P. Herlihy K. P. Jones S. W. Luft J. C. Napier M. Bear J. E. DeSimone J. M. Nano Lett. 2012;12:5304–5310. doi: 10.1021/nl302638g. PubMed DOI PMC
de Gennes P. G. Macromolecules. 1980;13:1069–1075. doi: 10.1021/ma60077a009. DOI
Mishra A. K. Roldan A. de Leeuw N. H. J. Chem. Phys. 2016;145:044709. doi: 10.1063/1.4958804. PubMed DOI