• This record comes from PubMed

Plasmonic Ag/Cu/PEG nanofluids prepared when solids meet liquids in the gas phase

. 2023 Jan 31 ; 5 (3) : 955-969. [epub] 20221222

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection

Document type Journal Article

Since the time of Faraday's experiments, the optical response of plasmonic nanofluids has been tailored by the shape, size, concentration, and material of nanoparticles (NPs), or by mixing different types of NPs. To date, water-based liquids have been the most extensively investigated host media, while polymers, such as poly(ethylene glycol) (PEG), have frequently been added to introduce repulsive steric interactions and protect NPs from agglomeration. Here, we introduce an inverse system of non-aqueous nanofluids, in which Ag and Cu NPs are dispersed in PEG (400 g mol-1), with no solvents or chemicals involved. Our single-step approach comprises the synthesis of metal NPs in the gas phase using sputtering-based gas aggregation cluster sources, gas flow transport of NPs, and their deposition (optionally simultaneous) on the PEG surface. Using computational fluid dynamics simulations, we show that NPs diffuse into PEG at an average velocity of the diffusion front of the order of μm s-1, which is sufficient for efficient loading of the entire polymer bulk. We synthesize yellow Ag/PEG, green Cu/PEG, and blue Ag/Cu/PEG nanofluids, in which the color is given by the position of the plasmon resonance. NPs are prone to partial agglomeration and sedimentation, with a slower kinetics for Cu. Density functional theory calculations combined with UV-vis data and zeta-potential measurements prove that the surface oxidation to Cu2O and stronger electrostatic repulsion are responsible for the higher stability of Cu NPs. Adopting the De Gennes formalism, we estimate that PEG molecules adsorb on the NP surface in mushroom coordination, with the thickness of the adsorbed layer L < 1.4 nm, grafting density σ < 0.20, and the average distance between the grafted chains D > 0.8 nm. Such values provide sufficient steric barriers to retard, but not completely prevent, agglomeration. Overall, our approach offers an excellent platform for fundamental research on non-aqueous nanofluids, with metal-polymer and metal-metal interactions unperturbed by the presence of solvents or chemical residues.

See more in PubMed

Faraday M. Philos. Trans. R. Soc. London. 1857;147:145–181. doi: 10.1098/rstl.1857.0011. DOI

Sharaf O. Z. Taylor R. A. Abu-Nada E. Phys. Rep. 2020;867:1–84. doi: 10.1016/j.physrep.2020.04.005. DOI

Yatsuya S. Mihama K. Uyeda R. Jpn. J. Appl. Phys. 1974;13:749–750. doi: 10.1143/JJAP.13.749. DOI

Ye G. Zhang Q. Feng C. Ge H. Jiao Z. Phys. Rev. B: Condens. Matter Mater. Phys. 1996;54:14754–14757. doi: 10.1103/PhysRevB.54.14754. PubMed DOI

Wender H. de Oliveira L. F. Feil A. F. Lissner E. Migowski P. Meneghetti M. R. Teixeira S. R. Dupont J. Chem. Commun. 2010;46:7019. doi: 10.1039/C0CC01353F. PubMed DOI

Staszek M. Siegel J. Rimpelová S. Lyutakov O. Švorčík V. Mater. Lett. 2015;158:351–354. doi: 10.1016/j.matlet.2015.06.021. DOI

De Luna M. M. Karandikar P. Gupta M. ACS Appl. Nano Mater. 2018;1:6575–6579. doi: 10.1021/acsanm.8b01888. DOI

Suzuki S. Morimoto A. Kuwabata S. Torimoto T. Jpn. J. Appl. Phys. 2021;60:SAAC01-1–SAAC01-8. doi: 10.35848/1347-4065/abf4a1. DOI

Zhu M. Nguyen M. T. Chau Y. R. Deng L. Yonezawa T. Langmuir. 2021;37:6096–6105. doi: 10.1021/acs.langmuir.1c00916. PubMed DOI

Sergievskaya A. O'Reilly A. Chauvin A. Veselý J. Panepinto A. De Winter J. Cornil D. Cornil J. Konstantinidis S. Colloids Surf., A. 2021;615:126286. doi: 10.1016/j.colsurfa.2021.126286. DOI

Dvurečenskij A. Cigáň A. Lobotka P. Radnóczi G. Škrátek M. Benyó J. Kováčová E. Majerová M. Maňka J. J. Alloys Compd. 2022;896:163089. doi: 10.1016/j.jallcom.2021.163089. DOI

Meischein M. Garzón-Manjón A. Hammerschmidt T. Xiao B. Zhang S. Abdellaoui L. Scheu C. Ludwig A. Nanoscale Adv. 2022;4:3855–3869. doi: 10.1039/D2NA00363E. PubMed DOI PMC

Okazaki K. Kiyama T. Hirahara K. Tanaka N. Kuwabata S. Torimoto T. Chem. Commun. 2008:691–693. doi: 10.1039/B714761A. PubMed DOI

Suzuki T. Okazaki K. Kiyama T. Kuwabata S. Torimoto T. Electrochemistry. 2009;77:636–638. doi: 10.5796/electrochemistry.77.636. DOI

Nguyen M. T. Yonezawa T. Wang Y. Tokunaga T. Mater. Lett. 2016;171:75–78. doi: 10.1016/j.matlet.2016.02.047. DOI

Ishida Y. Corpuz R. D. Yonezawa T. Acc. Chem. Res. 2017;50:2986–2995. doi: 10.1021/acs.accounts.7b00470. PubMed DOI

Corpuz R. D. Ishida Y. Nguyen M. T. Yonezawa T. Langmuir. 2017;33:9144–9150. doi: 10.1021/acs.langmuir.7b02011. PubMed DOI

Suzuki S. Suzuki T. Tomita Y. Hirano M. Okazaki K. Kuwabata S. Torimoto T. CrystEngComm. 2012;14:4922. doi: 10.1039/C2CE25235J. DOI

Sugioka D. Kameyama T. Kuwabata S. Yamamoto T. Torimoto T. ACS Appl. Mater. Interfaces. 2016;8:10874–10883. doi: 10.1021/acsami.6b01978. PubMed DOI

Deng L. Nguyen M. T. Shi J. Chau Y. R. Tokunaga T. Kudo M. Matsumura S. Hashimoto N. Yonezawa T. Langmuir. 2020;36:3004–3015. doi: 10.1021/acs.langmuir.0c00152. PubMed DOI

Liu C. H. Liu J. Zhou Y. Y. Cai X. L. Lu Y. Gao X. Wang S. D. Carbon N. Y. 2015;94:295–300. doi: 10.1016/j.carbon.2015.07.003. DOI

Liu C.-H. Liu R.-H. Sun Q.-J. Chang J.-B. Gao X. Liu Y. Lee S.-T. Kang Z.-H. Wang S.-D. Nanoscale. 2015;7:6356–6362. doi: 10.1039/C4NR06855F. PubMed DOI

König D. Richter K. Siegel A. Mudring A.-V. Ludwig A. Adv. Funct. Mater. 2014;24:2049–2056. doi: 10.1002/adfm.201303140. DOI

Chauvin A. Sergievskaya A. El Mel A.-A. Fucikova A. Antunes Corrêa C. Vesely J. Duverger-Nédellec E. Cornil D. Cornil J. Tessier P.-Y. Dopita M. Konstantinidis S. Nanotechnology. 2020;31:455303. doi: 10.1088/1361-6528/abaa75. PubMed DOI

Deng L. Nguyen M. T. Mei S. Tokunaga T. Kudo M. Matsumura S. Yonezawa T. Langmuir. 2019;35:8418–8427. PubMed

Choukourov A. Nikitin D. Pleskunov P. Tafiichuk R. Biliak K. Protsak M. Kishenina K. Hanuš J. Dopita M. Cieslar M. Popelář T. Ondič L. Varga M. J. Mol. Liq. 2021;336:116319. doi: 10.1016/j.molliq.2021.116319. DOI

Kousal J. Shelemin A. Schwartzkopf M. Polonskyi O. Hanuš J. Solař P. Vaidulych M. Nikitin D. Pleskunov P. Krtouš Z. Strunskus T. Faupel F. Roth S. V. Biederman H. Choukourov A. Nanoscale. 2018;10:18275–18281. doi: 10.1039/C8NR06155F. PubMed DOI

Shelemin A. Pleskunov P. Kousal J. Drewes J. Hanuš J. Ali-Ogly S. Nikitin D. Solař P. Kratochvíl J. Vaidulych M. Schwartzkopf M. Kylián O. Polonskyi O. Strunskus T. Faupel F. V Roth S. Biederman H. Choukourov A. Part. Part. Syst. Charact. 2020;37:1900436. doi: 10.1002/ppsc.201900436. DOI

Singh M. K. Manda P. Singh A. K. Mandal R. K. AIP Adv. 2015;5:107108. doi: 10.1063/1.4933072. DOI

Robinson R. Krause V. Wang S. Yan S. Shang G. Gordon J. Tycko S. Zhong C.-J. Langmuir. 2022;38:5633–5644. doi: 10.1021/acs.langmuir.2c00221. PubMed DOI

Hosny M. Fawzy M. Eltaweil A. S. J. Environ. Manage. 2022;316:115238. doi: 10.1016/j.jenvman.2022.115238. PubMed DOI

Ilavsky J. Jemian P. R. J. Appl. Crystallogr. 2009;42:347–353. doi: 10.1107/S0021889809002222. DOI

Li A. Ahmadi G. Aerosol Sci. Technol. 1992;16:209–226. doi: 10.1080/02786829208959550. DOI

Marsaglia G. Bray T. A. SIAM Rev. 1964;6:260–264. doi: 10.1137/1006063. DOI

Laven P., MiePlot version 4.6, http://www.philiplaven.com/mieplot.htm

Laven P. Lock J. A. J. Opt. Soc. Am. A. 2012;29:1498. doi: 10.1364/JOSAA.29.001498. PubMed DOI

Lock J. A. Laven P. J. Opt. Soc. Am. A. 2012;29:1489. doi: 10.1364/JOSAA.29.001489. PubMed DOI

Johnson P. B. Christy R. W. Phys. Rev. B: Condens. Matter Mater. Phys. 1972;6:4370–4379. doi: 10.1103/PhysRevB.6.4370. DOI

Malerba C. Biccari F. Leonor Azanza Ricardo C. D'Incau M. Scardi P. Mittiga A. Sol. Energy Mater. Sol. Cells. 2011;95:2848–2854. doi: 10.1016/j.solmat.2011.05.047. DOI

Shah D. Roychowdhury T. Hilfiker J. N. Linford M. R. Surf. Sci. Spectra. 2020;27:016001. doi: 10.1116/1.5095949. DOI

Carette X. Debièvre B. Cornil D. Cornil J. Leclère P. Maes B. Gautier N. Gautron E. El Mel A.-A. Raquez J.-M. Konstantinidis S. J. Phys. Chem. C. 2018;122:26605–26612. doi: 10.1021/acs.jpcc.8b06987. DOI

Chauvin A. Sergievskaya A. Fucikova A. Corrêa C. A. Vesely J. Cornil J. Cornil D. Dopita M. Konstantinidis S. Nanoscale Adv. 2021;3:4780–4789. doi: 10.1039/D1NA00222H. PubMed DOI PMC

Sergievskaya A. O’Reilly A. Alem H. De Winter J. Cornil D. Cornil J. Konstantinidis S. Front. Nanotechnol. 2021;3:710612. doi: 10.3389/fnano.2021.710612. DOI

Artacho E. Anglada E. Diéguez O. Gale J. D. García A. Junquera J. Martin R. M. Ordejón P. Pruneda J. M. Sánchez-Portal D. Soler J. M. J. Phys.: Condens. Matter. 2008;20:064208. doi: 10.1088/0953-8984/20/6/064208. PubMed DOI

Perdew J. P. Burke K. Wang Y. Phys. Rev. B: Condens. Matter Mater. Phys. 1996;54:16533–16539. doi: 10.1103/PhysRevB.54.16533. PubMed DOI

Manz T. A. Limas N. G. RSC Adv. 2016;6:47771–47801. doi: 10.1039/C6RA04656H. DOI

Grimme S. J. Comput. Chem. 2006;27:1787–1799. doi: 10.1002/jcc.20495. PubMed DOI

Manz T. A. RSC Adv. 2017;7:45552–45581. doi: 10.1039/C7RA07400J. DOI

NIST, Simulation of Electron Spectra for Surface Analysis (SESSA, version 2.2.0)

Seah M. P. Dench W. A. Surf. Interface Anal. 1979;1:2–11. doi: 10.1002/sia.740010103. DOI

Solař P. Kousal J. Hanuš J. Škorvánková K. Kuzminova A. Kylián O. Sci. Rep. 2021;11:6415. doi: 10.1038/s41598-021-85533-7. PubMed DOI PMC

Smirnov B. M. Shyjumon I. Hippler R. Phys. Rev. E. 2007;75:066402. doi: 10.1103/PhysRevE.75.066402. PubMed DOI

Nikitin D. Madkour S. Pleskunov P. Tafiichuk R. Shelemin A. Hanuš J. Gordeev I. Sysolyatina E. Lavrikova A. Ermolaeva S. Titov V. Schönhals A. Choukourov A. Soft Matter. 2019;15:2884–2896. doi: 10.1039/C8SM02413H. PubMed DOI

Kelly K. L. Coronado E. Zhao L. L. Schatz G. C. J. Phys. Chem. B. 2003;107:668–677. doi: 10.1021/jp026731y. DOI

Jiang M.-M. Chen H.-Y. Li B.-H. Liu K.-W. Shan C.-X. Shen D.-Z. J. Mater. Chem. C. 2014;2:56–63. doi: 10.1039/C3TC31910E. DOI

Rice K. P. Walker E. J. Stoykovich M. P. Saunders A. E. J. Phys. Chem. C. 2011;115:1793–1799. doi: 10.1021/jp110483z. DOI

Rice K. P. Paterson A. S. Stoykovich M. P. Part. Part. Syst. Charact. 2015;32:373–380. doi: 10.1002/ppsc.201400155. DOI

Peña-Rodríguez O. Pal U. J. Opt. Soc. Am. B. 2011;28:2735. doi: 10.1364/JOSAB.28.002735. DOI

Pike S. D. White E. R. Regoutz A. Sammy N. Payne D. J. Williams C. K. Shaffer M. S. P. ACS Nano. 2017;11:2714–2723. doi: 10.1021/acsnano.6b07694. PubMed DOI

Snoke D. W. Shields A. J. Cardona M. Phys. Rev. B: Condens. Matter Mater. Phys. 1992;45:11693–11697. doi: 10.1103/PhysRevB.45.11693. PubMed DOI

Wang L. G. Zunger A. Phys. Rev. B: Condens. Matter Mater. Phys. 2003;67:092103. doi: 10.1103/PhysRevB.67.092103. DOI

Redapangu P. R. Kidan T. G. Berhane K. J. Appl. Fluid Mech. 2021;14:601–613.

Rayleigh L. Proc. London Math. Soc. 1882;1–14:170–177. doi: 10.1112/plms/s1-14.1.170. DOI

Taylor G. I. Proc. Math. Phys. Eng. Sci. 1950;201:192–196.

Debacq M. Fanguet V. Hulin J. P. Salin D. Perrin B. Phys. Fluids. 2001;13:3097–3100. doi: 10.1063/1.1405442. DOI

Perry J. L. Reuter K. G. Kai M. P. Herlihy K. P. Jones S. W. Luft J. C. Napier M. Bear J. E. DeSimone J. M. Nano Lett. 2012;12:5304–5310. doi: 10.1021/nl302638g. PubMed DOI PMC

de Gennes P. G. Macromolecules. 1980;13:1069–1075. doi: 10.1021/ma60077a009. DOI

Mishra A. K. Roldan A. de Leeuw N. H. J. Chem. Phys. 2016;145:044709. doi: 10.1063/1.4958804. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...