Magnetopriming Actuates Nitric Oxide Synthesis to Regulate Phytohormones for Improving Germination of Soybean Seeds under Salt Stress
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35883617
PubMed Central
PMC9322440
DOI
10.3390/cells11142174
PII: cells11142174
Knihovny.cz E-zdroje
- Klíčová slova
- germination, growth hormones, magnetopriming, nitric oxide, salt stress, tolerance,
- MeSH
- donory oxidu dusnatého farmakologie MeSH
- Glycine max * MeSH
- hormony metabolismus MeSH
- kyselina abscisová metabolismus farmakologie MeSH
- oxid dusnatý metabolismus MeSH
- regulátory růstu rostlin * metabolismus farmakologie MeSH
- semena rostlinná metabolismus MeSH
- solný stres MeSH
- synthasa oxidu dusnatého metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- donory oxidu dusnatého MeSH
- hormony MeSH
- kyselina abscisová MeSH
- oxid dusnatý MeSH
- regulátory růstu rostlin * MeSH
- synthasa oxidu dusnatého MeSH
In this study, the role of the signalling molecule nitric oxide (NO) in magnetopriming-mediated induction of salinity tolerance in soybean seeds is established. The cross-talk of NO with germination-related hormones gibberellic acid (GA), abscisic acid (ABA) and auxin (IAA) for their ability to reduce the Na+/K+ ratio in the seeds germinating under salinity is highlighted. Salt tolerance index was significantly high for seedlings emerging from magnetoprimed seeds and sodium nitroprusside (SNP, NO-donor) treatment. The NO and superoxide (O2•-) levels were also increased in both of these treatments under non-saline and saline conditions. NO generation through nitrate reductase (NR) and nitric oxide synthase-like (NOS-like) pathways indicated the major contribution of NO from the NR-catalysed reaction. The relative expression of genes involved in the NO biosynthetic pathways reiterated the indulgence of NR in NO in magnetoprimed seeds, as a 3.86-fold increase in expression was observed over unprimed seeds under salinity. A 23.26-fold increase in relative expression of NR genes by the NO donor (SNP) was observed under salinity, while the NR inhibitor (sodium tungstate, ST) caused maximum reduction in expression of NR genes as compared to other inhibitors [L-NAME (N(G)-nitro-L-arginine methyl ester; inhibitor of nitric oxide synthase-like enzyme) and DPI (diphenylene iodonium; NADPH oxidase inhibitor)]. The ratio of ABA/GA and IAA/GA decreased in magnetoprimed and NO donor-treated seeds, suggesting homeostasis amongst hormones during germination under salinity. The magnetoprimed seeds showed low Na+/K+ ratio in all treatments irrespective of NO inhibitors. Altogether, our results indicate that a balance of ABA, GA and IAA is maintained by the signalling molecule NO in magnetoprimed seeds which lowers the Na+/K+ ratio to offset the adverse effects of salinity in soybean seeds.
Division of Plant Physiology ICAR Indian Agricultural Research Institute New Delhi 110012 India
ICAR National Institute for Plant Biotechnology New Delhi 110012 India
School of Biochemistry Devi Ahilya Vishwavidyalaya Khandwa Road Indore 452001 India
Zobrazit více v PubMed
Ismail A.M., Horie T. Genomics, Physiology, and Molecular Breeding Approaches for Improving Salt Tolerance. Annu. Rev. Plant Biol. 2017;68:405–434. doi: 10.1146/annurev-arplant-042916-040936. PubMed DOI
Tomar R.S., Kataria S., Jajoo A. Behind the scene: Critical role of reactive oxygen species and reactive nitrogen species in salt stress tolerance. J. Agron. Crop Sci. 2021;207:577–588. doi: 10.1111/jac.12490. DOI
Kataria S., Verma S.K. Salinity stress responses and adaptive mechanisms in major glycophytic crops: The Story So Far. In: Kumar V., Wani S.H., Suprasanna P., Tran L.P., editors. Salinity Responses and Tolerance in Plants. Volume 1: Targeting Sensory, Transport and Signaling Mechanisms. Springer; Cham, Switzerland: 2018. pp. 1–39. Chapter-1.
Dehnavi A.R., Zahedi M., Ludwiczak A., Perez S.C., Piernik A. Effect of Salinity on Seed Germination and Seedling Development of Sorghum (Sorghum bicolor (L.) Moench) Genotypes. Agronomy. 2020;10:859. doi: 10.3390/agronomy10060859. DOI
Hartman G.L., West E.D., Herman T.K. Crops that feed the World 2. Soybean—worldwide production, use, and constraints caused by pathogens and pests. Food Secur. 2011;3:5–17. doi: 10.1007/s12571-010-0108-x. DOI
Jabeen Z., Fayyaz H.A., Irshad F., Hussain N., Hassan M.N., Li J., Rehman S., Haider W., Yasmin H., Mumtaz S., et al. Sodium nitroprusside application improves morphological and physiological attributes of soybean (Glycine max L.) under salinity stress. PLoS ONE. 2021;16:e0248207. doi: 10.1371/journal.pone.0248207. PubMed DOI PMC
Thakur M., Sharma P., Anand A. Priming and Pretreatment of Seeds and Seedlings. Springer; Singapore: 2019. Seed Priming-Induced Early Vigor in Crops: An Alternate Strategy for Abiotic Stress Tolerance; pp. 163–180. DOI
Prajapati R., Kataria S., Jain M. Seed priming for alleviation of heavy metal toxicity in plants: An overview. Plant Sci. Today. 2020;7:308–313. doi: 10.14719/pst.2020.7.3.751. DOI
Thomas S., Anand A., Chinnusamy V., Dahuja A., Basu S. Magnetopriming circumvents the effect of salinity stress on germination in chickpea seeds. Acta Physiol. Plant. 2013;35:3401–3411. doi: 10.1007/s11738-013-1375-x. DOI
Mridha N., Chattaraj S., Chakraborty D., Anand A., Aggarwal P., Nagarajan S. Pre-sowing static magnetic field treatment for improving water and radiation use efficiency in chickpea (Cicer arietinum L.) under soil moisture stress. Bioelectromagnetics. 2016;37:400–408. doi: 10.1002/bem.21994. PubMed DOI
Kataria S., Jain M. Magnetopriming alleviates adverse effects of abiotic stresses in plants. In: Hasanuzzaman M., Fujita M., Oku H., Islam M.T., editors. Plant Tolerance to Environmental Stress. 1st ed. CRC Press; Boca Raton, FL, USA: 2019. pp. 427–438.
Sarraf M., Kataria S., Taimourya H., Santos L., Menegatti R., Jain M., Ihtisham M., Liu S. Magnetic Field (MF) Applications in Plants: An Overview. Plants. 2020;9:1139. doi: 10.3390/plants9091139. PubMed DOI PMC
Sarraf M., Deamici K.M., Taimourya H., Islam M., Kataria S., Raipuria R.K., Abdi G., Brestic M. Effect of Magnetopriming on Photosynthetic Performance of Plants. Int. J. Mol. Sci. 2021;22:9353. doi: 10.3390/ijms22179353. PubMed DOI PMC
Kataria S., Baghel L., Guruprasad K. Pre-treatment of seeds with static magnetic field improves germination and early growth characteristics under salt stress in maize and soybean. Biocatal. Agric. Biotechnol. 2017;10:83–90. doi: 10.1016/j.bcab.2017.02.010. DOI
Kataria S., Jain M., Tripathi D.K., Singh V.P. Involvement of nitrate reductase-dependent nitric oxide production in magnetopriming-induced salt tolerance in soybean. Physiol. Plant. 2020;168:422–436. doi: 10.1111/ppl.13031. PubMed DOI
Raipuria R.K., Kataria S., Watts A., Jain M. Magneto-priming promotes nitric oxide via nitric oxide synthase to ameliorate the UV-B stress during germination of soybean seedlings. J. Photochem. Photobiol. B Biol. 2021;220:112211. doi: 10.1016/j.jphotobiol.2021.112211. PubMed DOI
Yaycili O., Alikamanoglu S. The effect of magnetic field on Paulownia tissue cultures. Plant Cell Tissue Organ Cult. (PCTOC) 2005;83:109–114. doi: 10.1007/s11240-005-4852-0. DOI
Reina F.G., Pascual L.A., Fundora I.A. Influence of a stationary magnetic field on water relations in lettuce seeds. Part II: Experimental results. Bioelectromagnetics. 2001;22:596–602. doi: 10.1002/bem.89. PubMed DOI
Zafra A., Rodríguez-García M.I., Alché J.D.D. Cellular localization of ROS and NO in olive reproductive tissues during flower development. BMC Plant Biol. 2010;10:36. doi: 10.1186/1471-2229-10-36. PubMed DOI PMC
Chen Z., Wang Y., Wang J., Babla M., Zhao C., García-Mata C., Sani E., Differ C., Mak M., Hills A., et al. Nitrate reductase mutation alters potassium nutrition as well as nitric oxide-mediated control of guard cell ion channels in Arabidopsis. New Phytol. 2015;209:1456–1469. doi: 10.1111/nph.13714. PubMed DOI
Del Castello F., Nejamkin A., Cassia R., Correa-Aragunde N., Fernández B., Foresi N., Lombardo C., Ramirez L., Lamattina L. The era of nitric oxide in plant biology: Twenty years tying up loose ends. Nitric Oxide. 2019;85:17–27. doi: 10.1016/j.niox.2019.01.013. PubMed DOI
Verleysen K., Coppitters D., Parente A., De Paepe W., Contino F. How can power-to-ammonia be robust? Optimization of an ammonia synthesis plant powered by a wind turbine considering operational uncertainties. Fuel. 2020;266:117049. doi: 10.1016/j.fuel.2020.117049. DOI
Lau S.-E., Hamdan M., Pua T.-L., Saidi N., Tan B. Plant Nitric Oxide Signaling under Drought Stress. Plants. 2021;10:360. doi: 10.3390/plants10020360. PubMed DOI PMC
Ren Y., Wang W., He J., Zhang L., Wei Y., Yang M. Nitric oxide alleviates salt stress in seed germination and early seedling growth of pakchoi (Brassica chinensis L.) by enhancing physiological and biochemical parameters. Ecotoxicol. Environ. Saf. 2019;187:109785. doi: 10.1016/j.ecoenv.2019.109785. PubMed DOI
Sharma A., Kapoor D., Wang J., Landi M., Zheng B., Yan D., Yuan H. Nitric oxide mediated mechanisms adopted by plants to cope with salinity. Biol. Plant. 2020;64:512–518. doi: 10.32615/bp.2020.070. DOI
Kataria S., Jain M., Rastogi A., Brestic M. Static magnetic field treatment enhanced photosynthetic performance in soybean under supplemental ultraviolet-B radiation. Photosynth. Res. 2021;150:263–278. doi: 10.1007/s11120-021-00850-2. PubMed DOI
Koornneef M., Bentsink L., Hilhorst H. Seed dormancy and germination. Curr. Opin. Plant Biol. 2002;5:33–36. doi: 10.1016/S1369-5266(01)00219-9. PubMed DOI
Bentsink L., Koornneef M. Seed Dormancy and Germination. Arab. Book. 2008;6:e0119. doi: 10.1199/tab.0119. PubMed DOI PMC
Bailly C. The signalling role of ROS in the regulation of seed germination and dormancy. Biochem. J. 2019;476:3019–3032. doi: 10.1042/BCJ20190159. PubMed DOI
Meng Y.F., Chen H., Shuai X., Luo J., Ding S., Tang S., Xu J., Liu W.L., Du J. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions. Sci. Rep. 2016;6:22073. doi: 10.1038/srep22073. PubMed DOI PMC
Liu X.D., Zhang H., Zhao Y., Feng Z.Y., Li Q., Yang H.-Q., Luan S., Li J.M., He Z.-H. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2013;110:15485–15490. doi: 10.1073/pnas.1304651110. PubMed DOI PMC
Hussain S., Kim S.H., Bahk S., Ali A., Nguyen X.C., Yun D.J., Chung W.S. The auxin signaling repressor IAA8 promotes seed germination through down-regulation of ABI3 transcription in Arabidopsis. Front. Plant Sci. 2020;11:111. doi: 10.3389/fpls.2020.00111. PubMed DOI PMC
Bialek K., Michalczuk L., Cohen J.D. Auxin biosynthesis during seed germination in Phaseolusvulgaris. Plant Physiol. 1992;100:509–517. doi: 10.1104/pp.100.1.509. PubMed DOI PMC
Kataria S., Rastogi A., Bele A., Jain M. Role of nitric oxide and reactive oxygen species in static magnetic field pre-treatment induced tolerance to ambient UV-B stress in soybean. Physiol. Mol. Biol. Plants. 2020;26:931–945. doi: 10.1007/s12298-020-00802-5. PubMed DOI PMC
Goudarzi M., Pakniyat H. Evaluation of wheat cultivars under salinity stress based on some agronomic and physiological traits. J. Agric. Soc. Sci. 2008;4:35–38.
Chapman H.D., Pratt P.F. Methods of analysis for soils, plants and waters. Soil Sci. 1962;93:68. doi: 10.1097/00010694-196201000-00015. DOI
Kelen M., Demiralay E.Ç., Sen S., Alsancak G.Ö. Separation of abscisic acid, indole-3-acetic acid, gibberellic acid in 99 R (Vitis berlandieri × Vitis rupestris) and rose oil (Rosa damascene Mill.) by reversed phase liquid chromatography. Turk. J. Chem. 2004;28:603–610.
Chaitanya K.K., Naithani S.C. Role of superoxide, lipid peroxidation and superoxide dismutase in membrane perturbation during loss of viability in seeds of Shorea robusta Gaertn. f. New Phytol. 1994;126:623–627. doi: 10.1111/j.1469-8137.1994.tb02957.x. DOI
Zhou B., Guo Z., Xing J., Huang B. Nitric oxide is involved in abscisic acid induced antioxidant activities in Stylosan-thesguianensis. J. Exp. Bot. 2005;56:3223–3228. doi: 10.1093/jxb/eri319. PubMed DOI
Lin A., Wang Y., Tang J., Xue P., Li C., Liu L., Hu B., Yang F., Loake G.J., Chu C. Nitric Oxide and Protein S-Nitrosylation Are Integral to Hydrogen Peroxide-Induced Leaf Cell Death in Rice. Plant Physiol. 2011;158:451–464. doi: 10.1104/pp.111.184531. PubMed DOI PMC
Gonzalez A., de los Angeles Cabrera M., Henrquez M.J., Contreras R.A., Morales B., Moenne A. Cross talk among calcium, hydrogen peroxide, and nitric oxide and activation of gene expression involving calmodulins and calcium-dependent protein kinases in Ulva compressa exposed to copper excess. Plant Physiol. 2012;158:1451–1462. doi: 10.1104/pp.111.191759. PubMed DOI PMC
Jaworski E.G. Nitrate reductase assay in intact plant tissues. Biochem. Biophys. Res. Commun. 1971;43:1274–1279. doi: 10.1016/S0006-291X(71)80010-4. PubMed DOI
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Astier J., Gross I., Durner J. Nitric oxide production in plants: An update. J. Exp. Bot. 2017;69:3401–3411. doi: 10.1093/jxb/erx420. PubMed DOI
Hao F., Zhao S., Dong H., Zhang H., Sun L., Miao C. Nia1 and Nia2 are Involved in Exogenous Salicylic Acid-induced Nitric Oxide Generation and Stomatal Closure in Arabidopsis. J. Integr. Plant Biol. 2010;52:298–307. doi: 10.1111/j.1744-7909.2010.00920.x. PubMed DOI
Hosseini M.K., Powell A.A., Bingham I.J. Comparison of the seed germination and early seedling growth of soybean in saline conditions. Seed Sci. Res. 2002;12:165–172. doi: 10.1079/SSR2002108. DOI
Gharsallah C., Fakhfakh H., Grubb D., Gorsane F. Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB Plants. 2016;8:plw055. doi: 10.1093/aobpla/plw055. PubMed DOI PMC
Anand A., Kumari A., Thakur M., Koul A. Hydrogen peroxide signaling integrates with phytohormones during the ger-mination of magnetoprimed tomato seeds. Sci. Rep. 2019;9:8814. doi: 10.1038/s41598-019-45102-5. PubMed DOI PMC
Guha T., Gopal G., Das H., Mukherjee A., Kundu R. Nanopriming with zero-valent iron synthesized using pomegranate peel waste: A “green” approach for yield enhancement in Oryza sativa L. cv. Gonindobhog. Plant Physiol. Biochem. 2021;163:261–275. doi: 10.1016/j.plaphy.2021.04.006. PubMed DOI
Hajihashemi S., Skalicky M., Brestic M., Pavla V. Cross-talk between nitric oxide, hydrogen peroxide and calcium in salt-stressed Chenopodium quinoa Willd. At seed germination stage. Plant Physiol. Biochem. 2020;154:657–664. doi: 10.1016/j.plaphy.2020.07.022. PubMed DOI
Hajihashemi S., Skalicky M., Brestic M., Pavla V. Effect of sodium nitroprusside on physiological and anatomical features of salt-stressed Raphanus sativus. Plant Physiol. Biochem. 2021;169:160–170. doi: 10.1016/j.plaphy.2021.11.013. PubMed DOI
Shabala S., Cuin T.A. Potassium transport and plant salt tolerance. Physiol. Plant. 2008;133:651–669. doi: 10.1111/j.1399-3054.2007.01008.x. PubMed DOI
de Souza Miranda R., Gomes-Filho E., Prisco J.T., Alvarez-Pizarro J.C. Ammonium improves tolerance to salinity stress in Sorghum bicolor plants. Plant Growth Regul. 2016;78:121–131. doi: 10.1007/s10725-015-0079-1. DOI
Rathod G.R., Anand A. Effect of seed magneto-priming on growth, yield and Na/K ratio in wheat (Triticumaestivum L.) under salt stress. Ind. J. Plant Physiol. 2016;21:15–22. doi: 10.1007/s40502-015-0189-9. DOI
Gadelha C.G., De Souza Miranda R., Alencar N.L.M., Costa J.H., Prisco J.T., Gom-esilho E. Exogenous nitric oxide improves salt tolerance during establishment of Jatrophacurcas seedlings by ameliorating oxidative damage and toxic ion accumulation. J. Plant Physiol. 2017;212:69–79. doi: 10.1016/j.jplph.2017.02.005. PubMed DOI
Du S., Liu Y., Zhang P., Liu H., Zhang X., Zhang R. Atmospheric application of trace amounts of nitric oxide enhances tolerance to salt stress and improves nutritional quality in spinach (Spinacia oleracea L.) Food Chem. 2015;173:905–911. doi: 10.1016/j.foodchem.2014.10.115. PubMed DOI
Hayat S., Yadav S., Wani A.S., Irfan M., Alyemini M.N., Ahmad A. Impact of sodium nitroprusside on nitrate reductase, prolineand antioxidant systemin Solanumlycopersicum under salinity stress. Hort. Environ. Biotechnol. 2012;53:362–367. doi: 10.1007/s13580-012-0481-9. DOI
Kong X., Wang T., Li W., Tang W., Zhang D., Dong H. Exogenous nitric oxide delays salt-induced leaf senescence in cotton (Gossypium hirsutum L.) Acta Physiol. Plant. 2016;38:61. doi: 10.1007/s11738-016-2079-9. DOI
Zhang Y., Wang L., Liu Y., Zhang Q., Wei Q., Zhang W. Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta. 2006;224:545–555. doi: 10.1007/s00425-006-0242-z. PubMed DOI
Shi Q., Ding F., Wang X., Wei M. Exogenous nitric oxide protect cucumber roots against oxidative stress induced by salt stress. Plant Physiol. Biochem. 2007;45:542–550. doi: 10.1016/j.plaphy.2007.05.005. PubMed DOI
Siddiqui M.H., Al-Whaibi M.H., Basalah M.O. Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma. 2010;248:447–455. doi: 10.1007/s00709-010-0206-9. PubMed DOI
Shine M., Guruprasad K., Anand A. Effect of stationary magnetic field strengths of 150 and 200 mT on reactive oxygen species production in soybean. Bioelectromagnetics. 2012;33:428–437. doi: 10.1002/bem.21702. PubMed DOI
Begara-Morales J.C., Sánchez-Calvo B., Chaki M., Valderrama R., Mata-Pérez C., Padilla M.N., Corpas F.J., Barroso J.B. Antioxidant Systems are Regulated by Nitric Oxide-Mediated Post-translational Modifications (NO-PTMs) Front. Plant Sci. 2016;7:152. doi: 10.3389/fpls.2016.00152. PubMed DOI PMC
Tripathi D.K., Singh S., Singh S., Srivastava P.K., Singh V.P., Singh S., Prasad S.M., Singh P.K., Dubey N.K., Pandey A.C., et al. Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol. Biochem. 2017;110:167–177. doi: 10.1016/j.plaphy.2016.06.015. PubMed DOI
Shan C., Yang T. Nitric oxide acts downstream of hydrogen peroxide in the regulation of ascorbate and glutathione metabo-lism by jasmonic acid in Agropyron cristatum leaves. Biol. Plant. 2017;61:779–784. doi: 10.1007/s10535-017-0708-9. DOI
Corpas F.J., del Rio L.A., Palma J.M. Plant peroxisomes at the crossroad of NO and H2O2 metabolism. J. Integr. Plant Biol. 2019;61:803–816. doi: 10.1111/jipb. PubMed DOI
Vishwakarma A., Wany A., Pandey S., Bulle M., Kumari A., Kishorekumar R., Igamberdiev A.U., Mur L.A.J., Gupta K.J. Current approaches to measure nitric oxide in plants. J. Exp. Bot. 2019;70:4333–4343. doi: 10.1093/jxb/erz242. PubMed DOI PMC
Thakur M., Sharma P., Anand A., Pandita V.K., Bhatia A., Pushkar S. Raffinose and Hexose Sugar Content During Germination Are Related to Infrared Thermal Fingerprints of Primed Onion (Allium cepa L.) Seeds. Front. Plant Sci. 2020;11:579037. doi: 10.3389/fpls.2020.579037. PubMed DOI PMC
Nie L., Liu H., Zhang L., Wang W. Enhancement in rice seed germination via improved respiratory metabolism under chilling stress. Food Energy Secur. 2020;9 doi: 10.1002/fes3.234. DOI
Hussain S., Khan F., Hussain H.A., Nie L. Physiological and Biochemical Mechanisms of Seed Priming-Induced Chilling Tolerance in Rice Cultivars. Front. Plant Sci. 2016;7:116. doi: 10.3389/fpls.2016.00116. PubMed DOI PMC
Planchet E. Nitric oxide (NO) detection by DAF fluorescence and chemiluminescence: A comparison using abiotic and biotic NO sources. J. Exp. Bot. 2006;57:3043–3055. doi: 10.1093/jxb/erl070. PubMed DOI
Efreschi L. Nitric oxide and phytohormone interactions: Current status and perspectives. Front. Plant Sci. 2013;4:398. doi: 10.3389/fpls.2013.00398. PubMed DOI PMC
Castillo M.-C., Lozano-Juste J., González-Guzmán M., Rodriguez L., Rodriguez P.L., León J. Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants. Sci. Signal. 2015;8:ra89. doi: 10.1126/scisignal.aaa7981. PubMed DOI
Signorelli S., Considine M.J. Nitric Oxide Enables Germination by a Four-Pronged Attack on ABA-Induced Seed Dormancy. Front. Plant Sci. 2018;9:296. doi: 10.3389/fpls.2018.00296. PubMed DOI PMC
Miransari M., Smith D.L. Plant hormones and seed germination. Environ. Exp. Bot. 2014;99:110–121. doi: 10.1016/j.envexpbot.2013.11.005. DOI
Née G., Xiang Y., Soppe W.J.J. The release of dormancy, a wake-up call for seeds to germinate. Curr. Opin. Plant Biol. 2017;35:8–14. doi: 10.1016/j.pbi.2016.09.002. PubMed DOI
Liu Y., Ye N., Liu R., Chen M., Zhang J. H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. J. Exp. Bot. 2010;61:2979–2990. doi: 10.1093/jxb/erq125. PubMed DOI PMC
Shu K., Meng Y., Shuai H., Liu W., Du J.B., Liu J., Yang W.Y. Dormancy and germination: How does the crop seed decide? Plant Biol. 2015;17:1104–1112. doi: 10.1111/plb.12356. PubMed DOI
Shu K., Liu X.-D., Xie Q., He Z.-H. Two Faces of One Seed: Hormonal Regulation of Dormancy and Germination. Mol. Plant. 2016;9:34–45. doi: 10.1016/j.molp.2015.08.010. PubMed DOI
Bethke P.C., Libourel I., Aoyama N., Chung Y.-Y., Still D.W., Jones R.L. The Arabidopsis Aleurone Layer Responds to Nitric Oxide, Gibberellin, and Abscisic Acid and Is Sufficient and Necessary for Seed Dormancy. Plant Physiol. 2007;143:1173–1188. doi: 10.1104/pp.106.093435. PubMed DOI PMC
Jiang C., Belfield E.J., Cao Y., Smith J.A.C., Harberd N.P. An Arabidopsis Soil-Salinity–Tolerance Mutation Confers Ethylene-Mediated Enhancement of Sodium/Potassium Homeostasis. Plant Cell. 2013;25:3535–3552. doi: 10.1105/tpc.113.115659. PubMed DOI PMC
Li W., Yamaguchi S., Khan M.A., An P., Liu X., Tran L.-S.P. Roles of Gibberellins and Abscisic Acid in Regulating Germination of Suaeda salsa Dimorphic Seeds Under Salt Stress. Front. Plant Sci. 2016;6:1235. doi: 10.3389/fpls.2015.01235. PubMed DOI PMC
Ishibashi Y., Kasa S., Sakamoto M., Aoki N., Kai K., Yuasa T., Hanada A., Yamaguchi S., Iwaya-Inoue M. A Role for Reactive Oxygen Species Produced by NADPH Oxidases in the Embryo and Aleurone Cells in Barley Seed Germination. PLoS ONE. 2015;10:e0143173. doi: 10.1371/journal.pone.0143173. PubMed DOI PMC
Podleśna A., Bojarszczuk J., Podleśny J. Effect of Pre-sowing Magnetic Field Treatment on Some Biochemical and Physiological Processes in Faba Bean (Vicia faba L. spp. Minor) J. Plant Growth Regul. 2019;38:1153–1160. doi: 10.1007/s00344-019-09920-1. DOI
Jakubowska A. The Mechanism of IAA Level Regulation in Plants. Mikołaj Kopernik University; Toruń, Poland: 2004. pp. 1–116. (In Polish)
Belin C., Megies C., Hauserová E., Lopez-Molina L. Abscisic Acid Represses Growth of the Arabidopsis Embryonic Axis after Germination by Enhancing Auxin Signaling. Plant Cell. 2009;21:2253–2268. doi: 10.1105/tpc.109.067702. PubMed DOI PMC
Moreau M., Lee G.I., Wang Y., Crane B.R., Klessig D.F. AtNOS/AtNOA1 is a functional Arabidopsis thaliana cGTPase and not a nitric-oxide synthase. J. Biol. Chem. 2008;283:32957–32967. doi: 10.1074/jbc.M804838200. PubMed DOI PMC