Effect of Magnetopriming on Photosynthetic Performance of Plants
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34502258
PubMed Central
PMC8431099
DOI
10.3390/ijms22179353
PII: ijms22179353
Knihovny.cz E-zdroje
- Klíčová slova
- PSII efficiency, biomass, leaf growth, magnetopriming, photosynthetic enzymes, photosynthetic performance,
- MeSH
- chlorofyl chemie metabolismus MeSH
- fluorescence MeSH
- fotosyntéza * MeSH
- listy rostlin metabolismus MeSH
- magnetické pole * MeSH
- rostlinné proteiny metabolismus MeSH
- rostliny metabolismus MeSH
- semena rostlinná růst a vývoj metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- chlorofyl MeSH
- rostlinné proteiny MeSH
Magnetopriming has emerged as a promising seed-priming method, improving seed vigor, plant performance and productivity under both normal and stressed conditions. Various recent reports have demonstrated that improved photosynthesis can lead to higher biomass accumulation and overall crop yield. The major focus of the present review is magnetopriming-based, improved growth parameters, which ultimately favor increased photosynthetic performance. The plants originating from magnetoprimed seeds showed increased plant height, leaf area, fresh weight, thick midrib and minor veins. Similarly, chlorophyll and carotenoid contents, efficiency of PSII, quantum yield of electron transport, stomatal conductance, and activities of carbonic anhydrase (CA), Rubisco and PEP-carboxylase enzymes are enhanced with magnetopriming of the seeds. In addition, a higher fluorescence yield at the J-I-P phase in polyphasic chlorophyll a fluorescence (OJIP) transient curves was observed in plants originating from magnetoprimed seeds. Here, we have presented an overview of available studies supporting the magnetopriming-based improvement of various parameters determining the photosynthetic performance of crop plants, which consequently increases crop yield. Additionally, we suggest the need for more in-depth molecular analysis in the future to shed light upon hidden regulatory mechanisms involved in magnetopriming-based, improved photosynthetic performance.
Department of Horticulture Science Shiraz Branch Islamic Azad University Shiraz 71987 74731 Iran
Faculty of Pharmacy Federal University of Bahia Salvador 40170 115 BA Brazil
ICAR National Institute for Plant Biotechnology New Delhi 110012 India
School of Biochemistry Devi Ahilya Vishwavidyalaya Khandwa Road Indore 452001 India
Zobrazit více v PubMed
Kanervo E., Tasaka Y., Murata N., Aro E.-M. Membrane lipid unsaturation modulates processing of the photosystem II reaction-center protein D1 at low temperatures. Plant Physiol. 1997;114:841–849. doi: 10.1104/pp.114.3.841. PubMed DOI PMC
Quiles M.J. Stimulation of chlororespiration by heat and high light intensity in oat plants. Plant Cell Environ. 2006;29:1463–1470. doi: 10.1111/j.1365-3040.2006.01510.x. PubMed DOI
Battisti D.S., Naylor R.L. Historical warnings of future food insecurity with unprecedented seasonal heat. Science. 2009;323:240–244. doi: 10.1126/science.1164363. PubMed DOI
Lawlor D.W., Tezara W. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: A critical evaluation of mechanisms and integration of processes. Ann. Bot. 2009;103:561–579. doi: 10.1093/aob/mcn244. PubMed DOI PMC
Kalaji H.M., Carpentier R., Allakhverdiev S.I., Bosa K. Fluorescence parameters as early indicators of light stress in barley. J. Photochem. Photobiol. B Biol. 2012;112:1–6. doi: 10.1016/j.jphotobiol.2012.03.009. PubMed DOI
Murata N., Allakhverdiev S.I., Nishiyama Y. The mechanism of photoinhibition in vivo: Re-evaluation of the roles of catalase, α-tocopherol, non-photochemical quenching, and electron transport. Biochim. Biophys. Acta (BBA)-Bioenerg. 2012;1817:1127–1133. doi: 10.1016/j.bbabio.2012.02.020. PubMed DOI
Urban J., Ingwers M.W., McGuire M.A., Teskey R.O. Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra. J. Exp. Bot. 2017;68:1757–1767. doi: 10.1093/jxb/erx052. PubMed DOI PMC
Kataria S., Jain M., Rastogi A., Brestic M. Static magnetic field treatment enhanced photosynthetic performance in soybean under supplemental ultraviolet-B radiation. Photosynth. Res. 2021 doi: 10.1007/s11120-021-00850-2. PubMed DOI
Zivcak M., Brestic M., Balatova Z., Drevenakova P., Olsovska K., Kalaji H.M., Yang X., Allakhverdiev S.I. Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynth. Res. 2013;117:529–546. doi: 10.1007/s11120-013-9885-3. PubMed DOI
Alte F., Stengel A., Benz J.P., Petersen E., Soll J., Groll M., Bölter B. Ferredoxin: NADPH oxidoreductase is recruited to thylakoids by binding to a polyproline type II helix in a pH-dependent manner. Proc. Natl. Acad. Sci. USA. 2010;107:19260–19265. doi: 10.1073/pnas.1009124107. PubMed DOI PMC
Benz J.P., Lintala M., Soll J., Mulo P., Bölter B. A new concept for ferredoxin–NADP (H) oxidoreductase binding to plant thylakoids. Trends Plant Sci. 2010;15:608–613. doi: 10.1016/j.tplants.2010.08.008. PubMed DOI
Kalaji H.M., Jajoo A., Oukarroum A., Brestic M., Zivcak M., Samborska I.A., Cetner M.D., Łukasik I., Goltsev V., Ladle R.J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 2016;38:102. doi: 10.1007/s11738-016-2113-y. DOI
Cruz J.A., Avenson T.J., Kanazawa A., Takizawa K., Edwards G.E., Kramer D.M. Plasticity in light reactions of photosynthesis for energy production and photoprotection. J. Exp. Bot. 2005;56:395–406. doi: 10.1093/jxb/eri022. PubMed DOI
Price C., Williams E., Elhalel G., Sentman D. Natural ELF fields in the atmosphere and in living organisms. Int. J. Biometeorol. 2021;65:85–92. doi: 10.1007/s00484-020-01864-6. PubMed DOI
Sarraf M., Kataria S., Taimourya H., Santos L.O., Menegatti R.D., Jain M., Ihtisham M., Liu S. Magnetic field (MF) applications in plants: An overview. Plants. 2020;9:1139. doi: 10.3390/plants9091139. PubMed DOI PMC
Maffei M.E. Magnetic field effects on plant growth, development, and evolution. Front. Plant Sci. 2014;5:445. doi: 10.3389/fpls.2014.00445. PubMed DOI PMC
Islam M., Vigani G., Maffei M.E. The Geomagnetic Field (GMF) Modulates Nutrient Status and Lipid Metabolism during Arabidopsis thaliana Plant Development. Plants. 2020;9:1729. doi: 10.3390/plants9121729. PubMed DOI PMC
Islam M., Maffei M.E., Vigani G. The geomagnetic field is a contributing factor for an efficient iron uptake in Arabidopsis thaliana. Front. Plant Sci. 2020;11:325. doi: 10.3389/fpls.2020.00325. PubMed DOI PMC
Shine M., Guruprasad K., Anand A. Enhancement of germination, growth, and photosynthesis in soybean by pre-treatment of seeds with magnetic field. Bioelectromagnetics. 2011;32:474–484. doi: 10.1002/bem.20656. PubMed DOI
Agliassa C., Narayana R., Christie J.M., Maffei M.E. Geomagnetic field impacts on cryptochrome and phytochrome signaling. J. Photochem. Photobiol. B Biol. 2018;185:32–40. doi: 10.1016/j.jphotobiol.2018.05.027. PubMed DOI
Baghel L., Kataria S., Guruprasad K. Effect of static magnetic field pretreatment on growth, photosynthetic performance and yield of soybean under water stress. Photosynthetica. 2018;56:718–730. doi: 10.1007/s11099-017-0722-3. DOI
Baghel L., Kataria S., Jain M. Mitigation of adverse effects of salt stress on germination, growth, photosynthetic efficiency and yield in maize (Zea mays L.) through magnetopriming. Acta Agrobot. 2019;72:1757. doi: 10.5586/aa.1757. DOI
Kataria S., Baghel L., Jain M., Guruprasad K. Magnetopriming regulates antioxidant defense system in soybean against salt stress. Biocatal. Agric. Biotechnol. 2019;18:101090. doi: 10.1016/j.bcab.2019.101090. DOI
Fatima A., Kataria S., Prajapati R., Jain M., Agrawal A.K., Singh B., Kashyap Y., Tripathi D.K., Singh V.P., Gadre R. Magnetopriming effects on arsenic stress-induced morphological and physiological variations in soybean involving synchrotron imaging. Physiol. Plant. 2020;173:88–99. doi: 10.1111/ppl.13211. PubMed DOI
Rochalska M. Influence of frequent magnetic field on chlorophyll content in leaves of sugar beet plants. Nukleonika. 2005;50:25–28.
Kataria S., Baghel L., Guruprasad K. Pre-treatment of seeds with static magnetic field improves germination and early growth characteristics under salt stress in maize and soybean. Biocatal. Agric. Biotechnol. 2017;10:83–90. doi: 10.1016/j.bcab.2017.02.010. DOI
Baghel L., Kataria S., Guruprasad K.N. Static magnetic field treatment of seeds improves carbon and nitrogen metabolism under salinity stress in soybean. Bioelectromagnetics. 2016;37:455–470. doi: 10.1002/bem.21988. PubMed DOI
Taimourya H., Oussible M., Baamal L., Bourarach E., Hassanain N., Masmoudi L., El-Harif A. Effect of magnetically treated water on strawberry plants (Fragaria× ananassa Duch.) in the northwest of Morocco; Proceedings of the VIII International Scientific Agriculture Symposium, “Agrosym 2017”; Jahorina, Bosnia and Herzegovina. 5–8 October 2017; pp. 382–387.
Carbonell M.V., Martinez E., Amaya J.M. Stimulation of germination in rice (Oryza sativa L.) by a static magnetic field. Electro-Magn. 2000;19:121–128. doi: 10.1081/JBC-100100303. DOI
Taimourya H., Oussible M., Baamal L., Bourarach E.H., Hassanain N., Masmoudi L., El Harif A. Magnetically treated irrigation water improves the production and the fruit quality of strawberry plants (Fragaria× ananassa Duch.) in the northwest of Morocco. J. Agric. Sci. Technol. 2018;8:145–156. doi: 10.17265/2161-6264/2018.03.001. DOI
Dhawi F., Al-Khayri J.M. Magnetic fields induce changes in photosynthetic pigments content in date palm (Phoenix dactylifera L.) seedlings. Open Agric. J. 2009;3:1–5. doi: 10.2174/1874331500903010001. DOI
Taimourya H., Oussible M., Baamal L., Harif A., Zaid E., Guedira A., Smouni A. Magnetic Treatment of Culture Medium Enhance Growth and Minerals Uptake of Strawberry (Fragaria× ananassa Duch.) and Tomato (Solanum lycopersicum) in Fe Deficiency Conditions. Int. J. Sci. Eng. Res. 2017;8:1414–1436.
Anand A., Nagarajan S., Verma A., Joshi D., Pathak P., Bhardwaj J. Pre-treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (Zea mays L.) [(accessed on 1 February 2021)];Indian J. Biochem. Biol. 2012 49:63–70. Available online: http://nopr.niscair.res.in/handle/123456789/13593. PubMed
Abdul Qados A., Hozayn M. Response of growth, yield, yield components and some chemical constituents of flax for irrigation with magnetized and tap water. World Appl. Sci. J. 2010;8:630–634.
De Souza A., Garcí D., Sueiro L., Gilart F., Porras E., Licea L. Pre-sowing magnetic treatments of tomato seeds increase the growth and yield of plants. Bioelectromagnetics. 2006;27:247–257. doi: 10.1002/bem.20206. PubMed DOI
El Sayed H.E.S.A. Impact of magnetic water irrigation for improve the growth, chemical composition and yield production of broad bean (Vicia faba L.) plant. J. Exp. Agric. Int. 2014;4:476–496. doi: 10.9734/AJEA/2014/7468. DOI
Oldacay S., Erdem G. Evaluation of Chlorophyll Contents and Peroxidase Activities in Helianthus annuus Genotypes Exposed to Radiation and Magnetic Fields. J. Appl. Sci. 2002;2:934–937. doi: 10.3923/jas.2002.934.937. DOI
Racuciu M., Miclaus S., Creanga D. The response of plant tissues to magnetic fluid and electromagnetic exposure. [(accessed on 1 March 2021)];Rom. J. Biophys. 2009 19:73–83. Available online: https://www.rjb.ro/articles/229/art07Racuciu.pdf.
Rakosy-Tican L., Aurori C., Morariu V. Influence of near null magnetic field on in vitro growth of potato and wild Solanum species. Bioelectromagnetics. 2005;26:548–557. doi: 10.1002/bem.20134. PubMed DOI
Tahir N.A., Karim H.F.H. Impact of magnetic application on the parameters related to growth of chickpea (Cicer arietinum L.) Jordan J. Biol. Sci. 2010;3:175–184.
Voica C., Polescu L., Lazar D. The influence of the magnetic fluids on some physiological processes in Phaseolus vulgaris. Rev. Roum. Biol. 2003;48:9–15.
Çelik Ö., Atak Ç., Rzakulieva A. Stimulation of rapid regeneration by a magnetic field in paulownia node cultures. [(accessed on 20 March 2021)];J. Cent. Eur. Agric. 2008 9:297–304. Available online: https://jcea.agr.hr/en/issues/article/525.
Atak Ç., Yurttaş B., Yalçın S., Mutlu D., Rzakoulieva A., Danilov V. Effects of Magnetic Field on soybean (Glycine max. L. Merrill) seeds. Com. JINR. Dubna 1997. 1–13. [(accessed on 20 March 2021)]; Available online: https://hdl.handle.net/11413/2851.
Shine M., Guruprasad K. Impact of pre-sowing magnetic field exposure of seeds to stationary magnetic field on growth, reactive oxygen species and photosynthesis of maize under field conditions. Acta Physiol. Plant. 2012;34:255–265. doi: 10.1007/s11738-011-0824-7. DOI
Turker M., Temirci C., Battal P., Erez M.E. The effects of an artificial and static magnetic field on plant growth, chlorophyll and phytohormone levels in maize and sunflower plants. [(accessed on 2 February 2021)];Phyton. Ann. Rei Bot. 2007 46:271–284. Available online: https://www.zobodat.at/pdf/PHY_46_2_0271-0284.pdf.
Radhakrishnan R., Kumari B.D.R. Influence of pulsed magnetic field on soybean (Glycine max L.) seed germination, seedling growth and soil microbial population. [(accessed on 2 July 2020)];Indian J. Biochem. Biophys. 2013 50:312–317. Available online: http://nopr.niscair.res.in/bitstream/123456789/20879/1/IJBB%2050(4)%20312-317.pdf. PubMed
Asghar T., Iqbal M., Jamil Y., Nisar J., Shahid M. Comparison of HeNe laser and sinusoidal non-uniform magnetic field seed pre-sowing treatment effect on Glycine max (Var 90-I) germination, growth and yield. J. Photochem. Photobiol. B Biol. 2017;166:212–219. doi: 10.1016/j.jphotobiol.2016.11.018. PubMed DOI
Chen Y.-P., Li R., He J.-M. Magnetic field can alleviate toxicological effect induced by cadmium in mungbean seedlings. Ecotoxicology. 2011;20:760–769. doi: 10.1007/s10646-011-0620-6. PubMed DOI
Kataria S., Baghel L., Guruprasad K. Alleviation of adverse effects of ambient UV stress on growth and some potential physiological attributes in soybean (Glycine max) by seed pre-treatment with static magnetic field. J. Plant Growth Regul. 2017;36:550–565. doi: 10.1007/s00344-016-9657-3. DOI
Kataria S., Rastogi A., Bele A., Jain M. Role of nitric oxide and reactive oxygen species in static magnetic field pre-treatment induced tolerance to ambient UV-B stress in soybean. Physiol. Mol. Biol. Plants. 2020;26:931–945. doi: 10.1007/s12298-020-00802-5. PubMed DOI PMC
Javed N., Ashraf M., Akram N.A., Al-Qurainy F. Alleviation of adverse effects of drought stress on growth and some potential physiological attributes in maize (Zea mays L.) by seed electromagnetic treatment. Photochem. Photobiol. 2011;87:1354–1362. doi: 10.1111/j.1751-1097.2011.00990.x. PubMed DOI
Aladjadjiyan A., Ylieva T. Influence of stationary magnetic field on the early stages of the development of tobacco seeds (Nicotiana tabacum L.) [(accessed on 1 March 2021)];J. Cent. Eur. Agric. 2003 4:131–138. Available online: https://jcea.agr.hr/en/issues/article/124.
Campbell G.S., Norman J. An introduction to Environmental Biophysics. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2012. DOI
Strzałka K., Kostecka-Gugała A., Latowski D. Carotenoids and environmental stress in plants: Significance of carotenoid-mediated modulation of membrane physical properties. Russ. J. Plant Physiol. 2003;50:168–173. doi: 10.1023/A:1022960828050. DOI
Abdolmaleki P., Ghanati F., Sahebjamei H., Sarvestani A.S. Peroxidase activity, lignification and promotion of cell death in tobacco cells exposed to static magnetic field. Environmentalist. 2007;27:435–440. doi: 10.1007/s10669-007-9080-1. DOI
Racuciu M., Creanga D., Amoraritei C. Biochemical changes induced by low frequency magnetic field exposure of vegetal organisms. [(accessed on 13 March 2021)];Rom. J. Phys. 2007 52:601–606. Available online: https://rjp.nipne.ro/2007_52_5-6/0645_0652.pdf.
Racuciu M., Creanga D., Galugaru C. The influence of extremely low frequency magnetic field on tree seedlings. [(accessed on 13 March 2021)];Rom. J. Phys. 2008 35:337–342. Available online: https://rjp.nipne.ro/2008_53_1-2/0361_0368.pdf.
Taia W.K., Kotbi A.M., AlZahrani H.S. The effect of static magnetic forces on water contents and photosynthetic pigments in sweet basil Ocimum basilicum L. (Lamiaceae) [(accessed on 6 March 2021)];Saudi J. Biol. Sci. 2007 14:103–107. Available online: https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=40087321.
Strasser R.J., Tsimilli-Michael M., Srivastava A. Chlorophyll a Fluorescence. Springer; Berlin/Heidelberg, Germany: 2004. Analysis of the chlorophyll a fluorescence transient; pp. 321–362. DOI
Schreiber U., Bilger W., Neubauer C. Ecophysiology of Photosynthesis. Springer; Berlin/Heidelberg, Germany: 1995. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis; pp. 49–70. DOI
Tsimilli-Michael M., Strasser R.J. The energy flux theory 35 years later: Formulations and applications. Photosynth. Res. 2013;117:289–320. doi: 10.1007/s11120-013-9895-1. PubMed DOI
Deamici K.M., Cuellar-Bermudez S.P., Muylaert K., Santos L.O., Costa J.A.V. Quantum yield alterations due to the static magnetic fields action on Arthrospira platensis SAG 21.99: Evaluation of photosystem activity. Bioresour. Technol. 2019;292:121945. doi: 10.1016/j.biortech.2019.121945. PubMed DOI
Markou G., Muylaert K. Effect of light intensity on the degree of ammonia toxicity on PSII activity of Arthrospira platensis and Chlorella vulgaris. Bioresour. Technol. 2016;216:453–461. doi: 10.1016/j.biortech.2016.05.094. PubMed DOI
Benavides A.M.S., Ranglová K., Malapascua J.R., Masojídek J., Torzillo G. Diurnal changes of photosynthesis and growth of Arthrospira platensis cultured in a thin-layer cascade and an open pond. Algal Res. 2017;28:48–56. doi: 10.1016/j.algal.2017.10.007. DOI
Voznyak V.M., Ganago I.B., Moskalenko A.A., Elfimov E.I. Magnetic field-induced fluorescence changes in chlorophyll-proteins enriched with P-700. Biochim. Biophys. Acta (BBA)-Bioenerg. 1980;592:364–368. doi: 10.1016/0005-2728(80)90196-6. PubMed DOI
Schansker G., Tóth S.Z., Strasser R.J. Dark recovery of the Chl a fluorescence transient (OJIP) after light adaptation: The qT-component of non-photochemical quenching is related to an activated photosystem I acceptor side. Biochim. Biophys. Acta (BBA)-Bioenerg. 2006;1757:787–797. doi: 10.1016/j.bbabio.2006.04.019. PubMed DOI
Stirbet A., Lazár D., Kromdijk J. Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica. 2018;56:86–104. doi: 10.1007/s11099-018-0770-3. DOI
Ripley B.S., Redfern S.P., Dames J. Quantification of the photosynthetic performance of phosphorus-deficient Sorghum by means of chlorophyll-a fluorescence kinetics. [(accessed on 2 March 2021)];S. Afr. J. Sci. 2004 100:615–618. Available online: https://hdl.handle.net/10520/EJC96177.
Kataria S., Jain M. Plant Tolerance to Environmental Stress. CRC Press; Boca Raton, FL, USA: 2019. Magnetopriming Alleviates Adverse Effects of Abiotic Stresses in Plants; pp. 427–442. DOI
Maurino V.G., Weber A.P. Engineering photosynthesis in plants and synthetic microorganisms. J. Exp. Bot. 2013;64:743–751. doi: 10.1093/jxb/ers263. PubMed DOI
Smith A.D., Datta S.P., Smith G.H. Oxford Dictionary of Biochemistry and Molecular Biology. Oxford University Press; Oxford, UK: 1997.
Zhao B., Su Y. Process effect of microalgal-carbon dioxide fixation and biomass production: A review. Renew. Sustain. Energy Rev. 2014;31:121–132. doi: 10.1016/j.rser.2013.11.054. DOI
Calvin M. Forty years of photosynthesis and related activities. Photosynth. Res. 1989;21:3–16. doi: 10.1179/isr.1997.22.2.138. PubMed DOI
Iverson T.M. Evolution and unique bioenergetic mechanisms in oxygenic photosynthesis. Curr. Opin. Chem. Biol. 2006;10:91–100. doi: 10.1016/j.cbpa.2006.02.013. PubMed DOI
Červený J., Šetlík I., Trtílek M., Nedbal L. Photobioreactor for cultivation and real-time, in-situ measurement of O2 and CO2 exchange rates, growth dynamics, and of chlorophyll fluorescence emission of photoautotrophic microorganisms. Eng. Life Sci. 2009;9:247–253. doi: 10.1002/elsc.200800123. DOI
Vian A., Davies E., Gendraud M., Bonnet P. Plant responses to high frequency electromagnetic fields. BioMed Res. Int. 2016;2016:1830262. doi: 10.1155/2016/1830262. PubMed DOI PMC
Deamici K.M., Santos L.O., Costa J.A.V. Magnetic field as promoter of growth in outdoor and indoor assays of Chlorella fusca. Bioprocess Biosyst. Eng. 2021;44:1453–1460. doi: 10.1007/s00449-021-02526-6. PubMed DOI
Krylov A., Tarakonova G.A. Plant physiology. Fiziol. Rost. 1960;7:156.
Martinez E., Carbonell M.V., Amaya J.M. A static magnetic field of 125 mT stimulates the initial growth stages of barley (Hordeum vulgare L.) Electro- Magn. 2000;19:271–277. doi: 10.1081/JBC-100102118. DOI
Kataria S., Baghel L., Guruprasad K.N. Effect of seed pretreatment by magnetic field on the sensitivity of maize seedlings to ambient ultraviolet radiation (280–400 nm) [(accessed on 2 March 2020)];Int. J. Trop. Agric. 2015 33:3645–3652. Available online: https://www.cabdirect.org/cabdirect/abstract/20173067937.
Pittman U. Magnetism and plant growth: I effect on germination and early growth of cereal seeds. Can. J. Plant Sci. 1963;43:513–518. doi: 10.4141/cjps63-104. DOI
Galland P., Pazur A. Magnetoreception in plants. J. Plant Res. 2005;118:371–389. doi: 10.1007/s10265-005-0246-y. PubMed DOI
Rathod G.R., Anand A. Effect of seed magneto-priming on growth, yield and Na/K ratio in wheat (Triticum aestivum L.) under salt stress. Indian J. Plant Physiol. 2016;21:15–22. doi: 10.1007/s40502-015-0189-9. DOI
Long S.P., Zhu X.G., Naidu S.L., Ort D.R. Can improvement in photosynthesis increase crop yields? Plant Cell Environ. 2006;29:315–330. doi: 10.1111/j.1365-3040.2005.01493.x. PubMed DOI
Patel P. Ph.D Thesis. School of Life Sciences, Devi Ahilya Vishwavidyalaya; Indore, India: 2020. Impact of Magneto-Priming of Seeds with Special Reference to Photosynthesis and Yield of Soybean and Maize.
Mathan J., Bhattacharya J., Ranjan A. Enhancing crop yield by optimizing plant developmental features. Development. 2016;143:3283–3294. doi: 10.1242/dev.134072. PubMed DOI
Fatima A., Kataria S., Baghel L., Guruprasad K., Agrawal A., Singh B., Sarkar P., Shripathi T., Kashyap Y. Synchrotron-based phase-sensitive imaging of leaves grown from magneto-primed seeds of soybean. J. Synchrotron Radiat. 2017;24:232–239. doi: 10.1107/S1600577516015745. PubMed DOI
Fatima A., Kataria S., Agrawal A.K., Singh B., Kashyap Y., Jain M., Brestic M., Allakhverdiev S.I., Rastogi A. Use of Synchrotron Phase-Sensitive Imaging for the Investigation of Magnetopriming and Solar UV-Exclusion Impact on Soybean (Glycine max) Leaves. Cells. 2021;10:1725. doi: 10.3390/cells10071725. PubMed DOI PMC
Afzal I., Noor M., Bakhtavar M., Ahmad A., Haq Z. Improvement of spring maize performance through physical and physiological seed enhancements. Seed Sci. Technol. 2015;43:238–249. doi: 10.15258/sst.2015.43.2.02. DOI
Gupta M.K., Anand A., Paul V., Dahuja A., Singh A. Reactive oxygen species mediated improvement in vigour of static and pulsed magneto-primed cherry tomato seeds. Indian J. Plant Physiol. 2015;20:197–204. doi: 10.1007/s40502-015-0161-8. DOI
Raipuria R.K., Kataria S., Watts A., Jain M. Magneto-priming promotes nitric oxide via nitric oxide synthase to ameliorate the UV-B stress during germination of soybean seedlings. J. Photochem. Photobiol. B Biol. 2021;220:112211. doi: 10.1016/j.jphotobiol.2021.112211. PubMed DOI
Thomas S., Ramakrishnan R.S., Anand A. Growth, Na+/K+ Partitioning and Yield of Chickpea Plants Alleviated From Salt Stress by Magnetopriming. Int. J. Curr. Microbiol. Appl. Sci. 2019;8:821–833. doi: 10.20546/ijcmas.2019.807.099. DOI
Maheshwari B.L., Grewal H.S. Magnetic treatment of irrigation water: Its effects on vegetable crop yield and water productivity. Agric. Water Manag. 2009;96:1229–1236. doi: 10.1016/j.agwat.2009.03.016. DOI