Biopolymer Composites with Ti/Au Nanostructures and Their Antibacterial Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34199533
PubMed Central
PMC8226802
DOI
10.3390/pharmaceutics13060826
PII: pharmaceutics13060826
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial properties, antimicrobial activity, biopolymer, composites, gold layer, nanostructured surface, surface morphology, thermal modification, titanium layer, wrinkled patterns,
- Publikační typ
- časopisecké články MeSH
In this study, we have aimed at the preparation and characterization of poly-l-lactic acid (PLLA) composites with antibacterial properties. Thin bilayers of titanium and gold of various thickness ratios were deposited on PLLA by a cathode sputtering method; selected samples were subsequently thermally treated. The surface morphology of the prepared composites was studied by atomic force, scanning electron, and laser confocal microscopy. The chemical properties of the composites were determined by X-ray photoelectron and energy-dispersive X-ray spectroscopy in combination with contact angle and zeta potential analyses. The antibacterial properties of selected samples were examined against a Gram-negative bacterial strain of E. coli. We have found that a certain combination of Au and Ti nanolayers in combination with heat treatment leads to the formation of a unique wrinkled pattern. Moreover, we have developed a simple technique by which a large-scale sample modification can be easily produced. The dimensions of wrinkles can be tailored by the sequence and thickness of the deposited metals. A selected combination of gold, titanium, and heat treatment led to the formation of a nanowrinkled pattern with excellent antibacterial properties.
Zobrazit více v PubMed
Zheng J., Teng L. Bifurcation instability of substrate-supported metal films under biaxial in-plane tension. J. Mech. Phys. Solids. 2019;126:52–75. doi: 10.1016/j.jmps.2019.02.010. DOI
Yu S.J., Du Y.P., Sun Y.D., Ye Q.L., Zhou H. Wrinkling patterns in metal films sputter deposited on viscoelastic substrates. Thin Solid Films. 2017;638:230–235. doi: 10.1016/j.tsf.2017.07.051. DOI
Li K., Wang J., Shao B., Xiao J., Zhou H., Yu S. Wrinkling patterns of tantalum films on modulus-gradient compliant substrates. Thin Solid Films. 2018;654:100–106. doi: 10.1016/j.tsf.2018.03.094. DOI
Yu S., Sun Y., Li S., Ni Y. Harnessing fold-to-wrinkle transition and hierarchical wrinkling on soft material surfaces by regulating substrate stiffness and sputtering flux. Soft Matter. 2018;14:6745–6755. doi: 10.1039/C8SM01287C. PubMed DOI
Li S.J., Wu K., Yuan H.Z., Zhang J.Y., Liu G., Sun J. Formation of wrinkled patterns in metal films deposited on elastic substrates: Tunability and wettability. Surf. Coat. Technol. 2019;362:35–43. doi: 10.1016/j.surfcoat.2019.01.088. DOI
Zhao Y., Huang W.M., Fu Y.Q. Formation of micro/nano-scale wrinkling patterns atop shape memory polymers. J. Micromechanics Microeng. 2011;21:067007. doi: 10.1088/0960-1317/21/6/067007. DOI
Juřík P., Slepička P., Mistrík J., Janíček P., Rimpelová S., Kolská Z., Švorčík V. Oriented gold ripple-like structures on poly-L-lactic acid. Appl. Surf. Sci. 2014;321:503–510. doi: 10.1016/j.apsusc.2014.10.033. DOI
Juřík P., Slepička P., Nagyová M., Švorčík V. Wrinkle pattern on PLLA induced by stress of polymer-metal bilayer. Surf. Coat. Technol. 2017;311:344–350. doi: 10.1016/j.surfcoat.2017.01.030. DOI
Krajcar R., Siegel J., Slepička P., Fitl P., Švorčík V. Silver nanowires prepared on PET structured by laser irradiation. Mater. Lett. 2014;117:184–187. doi: 10.1016/j.matlet.2013.11.112. DOI
Slepička P., Chaloupka A., Sajdl P., Heitz J., Hnatowicz V., Švorčík V. Angle dependent laser nanopatterning of poly(ethylene terephthalate) surfaces. Appl. Surf. Sci. 2011;257:6021–6025. doi: 10.1016/j.apsusc.2011.01.107. DOI
Michaljaničová I., Slepička P., Rimpelová S., Slepičková Kasálková N., Švorčík V. Regular pattern formation on surface of aromatic polymers and its cytocompatibility. Appl. Surf. Sci. 2016;370:131–141. doi: 10.1016/j.apsusc.2016.02.160. DOI
Barb R.A., Hrelescu C., Dong L., Heitz J., Siegel J., Slepička P., Vosmanská V., Švorčík V., Magnus B., Marksteiner R., et al. Laser-induced periodic surface structures on polymers for formation of gold nanowires and activation of human cells. Appl. Phys. A. 2014;117:295–300. doi: 10.1007/s00339-013-8219-9. DOI
Neděla O., Slepička P., Malý J., Štofík M., Švorčík V. Laser-induced nanostructures on a polymer irradiated through a contact mask. Appl. Surf. Sci. 2014;321:173–178. doi: 10.1016/j.apsusc.2014.09.187. DOI
Slepička P., Neznalová K., Fajstavr D., Švorčík V. Nanostructuring of honeycomb-like polystyrene with excimer laser. Prog. Organic Coat. 2020;145:105670. doi: 10.1016/j.porgcoat.2020.105670. DOI
Yu S., Zhang X., Xiao X., Zhou H., Chen M. Wrinkled stripes localized by cracks in metal films deposited on soft substrates. Soft Matter. 2015;11:2203–2212. doi: 10.1039/C5SM00105F. PubMed DOI
Goel P., Kumar S., Sarkar J., Singh J.P. Mechanical strain induced tunable anisotropic wetting on buckled PDMS silver nanorods arrays. ACS Appl. Mater. Interfaces. 2015;7:8419–8426. doi: 10.1021/acsami.5b01530. PubMed DOI
Mei Y., Kiravittaya S., Harazim S., Schmidt O.G. Principles and applications of micro and nanoscale wrinkles. Mater. Sci. Eng. R. 2010;70:209–224. doi: 10.1016/j.mser.2010.06.009. DOI
Ko P.L., Chang F.L., Li C.H., Chen J.Z., Cheng I.C., Tung Y.C., Lin P.C. Dynamically programmable surface micro-wrinkles on PDMS-SMA composite. Smart Mater Struct. 2014;23:115007. doi: 10.1088/0964-1726/23/11/115007. DOI
Lee T.D., Ebong A.U. A review of thin film solar cell technologies and challenges. Renew. Sust. Energy Rev. 2017;70:1286–1297. doi: 10.1016/j.rser.2016.12.028. DOI
Aberle A.G. Thin-film solar cells. Thin Solid Films. 2009;517:4706–4710. doi: 10.1016/j.tsf.2009.03.056. DOI
Oh M.K., De R., Yim S.Y. Highly sensitive VOC gas sensor employing deep cooling of SERS film. J Raman Spectrosc. 2018;49:800–809. doi: 10.1002/jrs.5355. DOI
Oh M.-K., Shin Y.-S., Lee C.-L., De R., Kang H., Yu N.E., Kim B.H., Kim J.H., Yang J.-K. Morphological and SERS Properties of Silver Nanorod Array Films Fabricated by Oblique Thermal Evaporation at Various Substrate Temperatures. Nanoscale Res. Lett. 2015;10:259. doi: 10.1186/s11671-015-0962-8. PubMed DOI PMC
De R., Shin Y.S., Lee C.L., Oh M.K. Long-Standing Stability of Silver Nanorod Array Substrates Functionalized Using a Series of Thiols for a SERS-Based Sensing Application. Appl. Spectroscopy. 2016;70:1137–1149. doi: 10.1177/0003702816652327. PubMed DOI
Sertel B.C., Sonmez N.A., Kaya M.D., Ozcelik S. Development of MgO:TiO2 thin films for gas sensor applications. Ceramics Int. 2019;45:2917–2921. doi: 10.1016/j.ceramint.2018.11.079. DOI
Huang J.J., Lin C.C., Wuu D.S. Antireflection and passivation property of titanium oxide thin film on silicon nanowire by liquid phase deposition. Surf. Coat. Technol. 2017;320:252–258. doi: 10.1016/j.surfcoat.2017.01.027. DOI
Tec-Yam S., Rojas J., Rejón V., Oliva A.I. High quality antireflective ZnS thin films prepared by chemical bath deposition. Mater. Chem. Phys. 2012;136:386–393. doi: 10.1016/j.matchemphys.2012.06.063. DOI
Ulaeto S.B., Rajan R., Pancrecious J.K., Rajan T.P.D., Pai B.C. Developments in smart anticorrosive coatings with multifunctional characteristics. Prog. Organic Coat. 2017;111:294–314. doi: 10.1016/j.porgcoat.2017.06.013. DOI
Abreu C.S., Matos J., Cavaleiro A., Alves E., Barradas N.P., Vaz F., Torrell M., Gomes J.R. Tribological characterization of TiO2/Au decorative thin films obtained by PVD magnetron sputtering technology. Wear. 2015;330–331:419–428. doi: 10.1016/j.wear.2015.01.069. DOI
Slepička P., Slepičková Kasálková N., Siegel J., Kolská Z., Švorčík V. Methods of gold and silver nanoparticles preparation. Materials. 2019;13:1. doi: 10.3390/ma13010001. PubMed DOI PMC
Romanenko O., Slepička P., Malinský P., Cutroneo M., Havránek V., Stammers J., Švorčík V., Macková A. The influence of Au-nanoparticles presence in PDMS on microstructures creation by ion beam lithography. Surf. Interface Anal. 2020;52:1040–1044. doi: 10.1002/sia.6821. DOI
Slepičková Kasálková N., Slepička P., Ivanovská B., Trávníčková M., Malinský P., Macková A., Bačáková L., Švorčík V. Plasma-activated polyvinyl alcohol foils for cell growth. Coatings. 2020;10:1083. doi: 10.3390/coatings10111083. DOI
Juřík P., Slepička P., Kolská Z., Slepičková Kasálková N., Švorčík V. Nanostrukturování polymerních substrátů pomocí indukovaného vrásnění. Chem. Listy. 2020;114:804–814.
Lišková J., Slepičková Kasálková N., Slepička P., Švorčík V., Bačáková L. Heat-treated carbon coatings on poly (L-lactide) foils for tissue engineering. Mater. Sci. Eng. C. 2019;100:117–128. doi: 10.1016/j.msec.2019.02.105. PubMed DOI
Slepicka P., Siegel J., Lyutakov O., Slepickova Kasalkova N., Kolska Z., Bacakova L., Svorcik V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. doi: 10.1016/j.biotechadv.2017.12.011. PubMed DOI
Fajstavr D., Neznalová K., Švorčík V., Slepička P. LIPSS structures induced on graphene-polystyrene composite. Materials. 2019;12:3460. doi: 10.3390/ma12213460. PubMed DOI PMC
Chen L., Chen N., Li Y., Li W., Zhou X., Wang Z., Zhao Y., Bu Y. Metal-dielectric pure red to gold special effect coatings for security and decorative applications. Surf. Coat. Technol. 2019;363:18–24. doi: 10.1016/j.surfcoat.2019.01.098. DOI
Balázsi K., Vandrovcová M., Bačáková L., Balázsi C. Structural and biocompatible characterization of TiC/a:C nanocomposite thin films. Mater. Sci. Eng. C. 2013;33:1671–1675. doi: 10.1016/j.msec.2012.12.076. PubMed DOI
Achache S., Alhussein A., Lamri S., François M., Sanchette F., Pulgarin C., Kiwi J., Rtimi S. Sputtered Gum metal thin films showing bacterial inactivtion and biocompatibility. Colloids Surf. B. 2016;146:687–691. doi: 10.1016/j.colsurfb.2016.07.007. PubMed DOI
Hsieh J.H., Lai Y.H., Lin Y.C., Liao S.J., Li C., Chang Y., Hu C. Structure analysis, mechanical property, and biocompatibility of TaOxNy thin films. Surf. Coat. Technol. 2016;303:54–60. doi: 10.1016/j.surfcoat.2016.03.047. DOI
Chu J.P., Jang J.S.C., Huang J.C., Chou H.S., Yang Y., Ye J.C., Rullyani C. Thin film metallic glasses: Unique properties and potential applications. Thin Solid Films. 2012;520:5097–5122. doi: 10.1016/j.tsf.2012.03.092. DOI
Lou B.S., Yang Y.C., Lee J.W., Chen L.T. Biocompatibility and mechanical property evaluation of Zr-Ti-Fe based ternary thin film metallic glasses. Surf. Coat. Technol. 2017;320:512–519. doi: 10.1016/j.surfcoat.2016.11.039. DOI
Karki S., Kim H., Na S.J., Shin D., Jo K., Lee J. Thin films as an emerging platform for drug delivery. Asian J. Pharm. Sci. 2016;11:559–574. doi: 10.1016/j.ajps.2016.05.004. DOI
Biopolymer Honeycomb Microstructures: A Review