Biopolymer Honeycomb Microstructures: A Review

. 2023 Jan 12 ; 16 (2) : . [epub] 20230112

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36676507

In this review, we present a comprehensive summary of the formation of honeycomb microstructures and their applications, which include tissue engineering, antibacterial materials, replication processes or sensors. The history of the honeycomb pattern, the first experiments, which mostly involved the breath figure procedure and the improved phase separation, the most recent approach to honeycomb pattern formation, are described in detail. Subsequent surface modifications of the pattern, which involve physical and chemical modifications and further enhancement of the surface properties, are also introduced. Different aspects influencing the polymer formation, such as the substrate influence, a particular polymer or solvent, which may significantly contribute to pattern formation, and thus influence the target structural properties, are also discussed.

Zobrazit více v PubMed

Tóth L.F. What the bees know and what they do not know. Bull. Am. Math. Soc. 1964;70:468–481. doi: 10.1090/S0002-9904-1964-11155-1. DOI

Munoz-Bonilla A., Fernandez-Garcia M., Rodriguez-Hernandez J. Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Prog. Polym. Sci. 2014;39:510–554. doi: 10.1016/j.progpolymsci.2013.08.006. DOI

Dong C., Hao J. Honeycomb films with ordered patterns and structures. In: Atwood J.L., editor. Comprehensive Supramolecular Chemistry II (Volume 9 Nanotechnology) Elsevier; Amsterdam, The Netherlands: 2017. pp. 207–229.

Cilliers L., Retief F.P. Bees, honey and health in antiquity. Akroterion. 2008;53:7–19. doi: 10.7445/53-0-36. DOI

Bulmer-Thomas I. Selections Illustrating the History of Greek Mathematics. Volume 2 Harvard University Press; Cambridge, MA, USA: 1939.

Kepler J. The Six-Cornered Snowflake. Paul Dry Books; Philadelphia, PA, USA: 2010.

Hales T.C. The honeycomb conjecture. Discret. Comput. Geom. 2001;25:1–22. doi: 10.1007/s004540010071. DOI

Gallo V., Chittka L. Cognitive aspects of comb-building in the honeybee? Front. Psychol. 2018;9:900. doi: 10.3389/fpsyg.2018.00900. PubMed DOI PMC

Wang Z., Zhang Y., Jiefu L. Comparison between Five Typical Reinforced Honeycomb Structures. Atlantic Press; Dordrecht, The Netherlands: 2015. pp. 704–707. DOI

Langstroth L. Langstroth’s The Hive and the Honey–Bee. Dover Publications Inc.; Mineola, NY, USA: 2004. originaly published in 1853.

Weaire D., Phelan R. Optimal design of honeycombs. Nature. 1994;367:123. doi: 10.1038/367123a0. DOI

Zhang Q., Yang X., Li P., Huang G., Feng S., Shen C., Han B., Zhang X., Jin F., Xu F. Bioinspired engineering of honeycomb structure–Using nature to inspire human innovation. Prog. Mater. Sci. 2015;74:332–400. doi: 10.1016/j.pmatsci.2015.05.001. DOI

MacDonald W.L. The Pantheon: Design, Meaning, and Progeny. Harvard University Press; Cambridge, MA, USA: 2002.

Hooke R. Micrographia. BoD–Books on Demand; Mumbai, India: 2020.

Wittenauer J., Norris B. Structural honeycomb materials for advanced aerospace designs. JOM. 1990;42:36–41. doi: 10.1007/BF03220895. DOI

Bitzer T. Honeycomb Technology: Materials, Design, Manufacturing, Applications and Testing. Springer Science & Business Media; Berlin/Heidelberg, Germany: 1997.

Höfler R., Renyi S. Plattenförmiger Baukörper. CompositesPRESS; Mennecy, France: 1914. DE355036.

Lee S.M. Handbook of Composite Reinforcements. John Wiley & Sons; Hoboken, NJ, USA: 1996.

Heng L., Wang B., Li M., Zhang Y., Jiang L. Advances in fabrication materials of honeycomb structure films by the breath-figure method. Materials. 2013;6:460–482. doi: 10.3390/ma6020460. PubMed DOI PMC

Male U., Jo E.J., Park J.Y. Surface functionalization of honeycomb-patterned porous poly (ε-caprolactone) films by interfacial polymerization of aniline. Polymer. 2016;99:623–632. doi: 10.1016/j.polymer.2016.07.040. DOI

Rodríguez-Hernández J., Bormashenko E. Breath Figures. Springer; Berlin/Heidelberg, Germany: 2020. Hierarchically Ordered Microporous Surfaces; pp. 169–187.

Slepička P., Neznalová K., Fajstavr D., Švorčík V. Nanostructuring of honeycomb-like polystyrene with excimer laser. Prog. Org. Coat. 2020;145:105670. doi: 10.1016/j.porgcoat.2020.105670. DOI

Neznalová K., Sajdl P., Švorčík V., Slepička P. Cellulose acetate honeycomb-like pattern created by improved phase separation. eXPRESS Polym. Lett. 2020;14:1078–1088. doi: 10.3144/expresspolymlett.2020.87. DOI

Hurtuková K., Juřicová V., Fajstavrová K., Fajstavr D., Slepičková Kasálková N., Rimpelová S., Švorčík V., Slepička P. Cytocompatibility of Polymethyl Methacrylate Honeycomb-like Pattern on Perfluorinated Polymer. Polymers. 2021;13:3663. doi: 10.3390/polym13213663. PubMed DOI PMC

Slepička P., Neznalová K., Fajstavr D., Slepičková Kasálková N., Švorčík V. Honeycomb-like pattern formation on perfluoroethylenepropylene enhanced by plasma treatment. Plasma Processes Polym. 2019;16:1900063. doi: 10.1002/ppap.201900063. DOI

Peng J., Han Y., Yang Y., Li B. The influencing factors on the macroporous formation in polymer films by water droplet templating. Polymer. 2004;45:447–452. doi: 10.1016/j.polymer.2003.11.019. DOI

Fajstavrová K., Rimpelová S., Fajstavr D., Švorčík V., Slepička P. Cell behavior of primary fibroblasts and osteoblasts on plasma-treated fluorinated polymer coated with honeycomb polystyrene. Materials. 2021;14:889. doi: 10.3390/ma14040889. PubMed DOI PMC

Stenzel M.H., Barner Kowollik C., Davis T.P. Formation of honeycomb-structured, porous films via breath figures with different polymer architectures. J. Polym. Sci. Part A Polym. Chem. 2006;44:2363–2375. doi: 10.1002/pola.21334. DOI

Yin H., Feng Y., Billon L. Directed Self-Assembly in “Breath Figure” Templating of Melamine-Based Amphiphilic Copolymers: Effect of Hydrophilic End-Chain on Honeycomb Film Formation and Wetting. Chem. Eur. J. 2018;24:425–433. doi: 10.1002/chem.201704369. PubMed DOI

Yabu H., Shimomura M. Surface properties of self-organized honeycomb-patterned films. Mol. Cryst. Liq. Cryst. 2006;445:125–129. doi: 10.1080/15421400500369518. DOI

Nurmawati M.H., Ajikumar P.K., Renu R., Valiyaveettil S. Hierarchical Self-Organization of Nanomaterials into Two-Dimensional Arrays Using Functional Polymer Scaffold. Adv. Funct. Mater. 2008;18:3213–3218. doi: 10.1002/adfm.200800396. DOI

Falconnet D., Csucs G., Grandin H.M., Textor M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials. 2006;27:3044–3063. doi: 10.1016/j.biomaterials.2005.12.024. PubMed DOI

Norman J.J., Desai T.A. Methods for fabrication of nanoscale topography for tissue engineering scaffolds. Ann. Biomed. Eng. 2006;34:89–101. doi: 10.1007/s10439-005-9005-4. PubMed DOI

Xue L., Han Y. Pattern formation by dewetting of polymer thin film. Prog. Polym. Sci. 2011;36:269–293. doi: 10.1016/j.progpolymsci.2010.07.004. DOI

Xue L., Zhang J., Han Y. Phase separation induced ordered patterns in thin polymer blend films. Prog. Polym. Sci. 2012;37:564–594. doi: 10.1016/j.progpolymsci.2011.09.001. DOI

Xie Y., Kocaefe D., Chen C., Kocaefe Y. Review of research on template methods in preparation of nanomaterials. J. Nanomater. 2016;2016:2302595. doi: 10.1155/2016/2302595. DOI

Wang D.M., Lai J.Y. Recent advances in preparation and morphology control of polymeric membranes formed by nonsolvent induced phase separation. Curr. Opin. Chem. Eng. 2013;2:229–237. doi: 10.1016/j.coche.2013.04.003. DOI

Guillen G.R., Pan Y., Li M., Hoek E.M. Preparation and characterization of membranes formed by nonsolvent induced phase separation: A review. Ind. Eng. Chem. Res. 2011;50:3798–3817. doi: 10.1021/ie101928r. DOI

Bui V.T., Ko S.H., Choi H.S. A surfactant-free bio-compatible film with a highly ordered honeycomb pattern fabricated via an improved phase separation method. Chem. Commun. 2014;50:3817–3819. doi: 10.1039/c3cc48654k. PubMed DOI

Liu Q., Tang Z., Ou B., Liu L., Zhou Z., Shen S., Duan Y. Design, preparation, and application of ordered porous polymer materials. Mater. Chem. Phys. 2014;144:213–225. doi: 10.1016/j.matchemphys.2014.01.013. DOI

Hsueh H.Y., Ho R.M. Bicontinuous ceramics with high surface area from block copolymer templates. Langmuir. 2012;28:8518–8529. doi: 10.1021/la3009706. PubMed DOI

Rodríguez-Hernández J. Surface Chemistry of Nanobiomaterials. Elsevier; Amsterdam, The Netherlands: 2016. Nano-microporous structured surfaces prepared by the breath figures approach and their biorelated applications; pp. 107–133.

Aitken J. Breath figures. Proc. R. Soc. Edinb. 1895;20:94–97. doi: 10.1017/S0370164600048434. DOI

Dou Y., Jin M., Zhou G., Shui L. Breath figure method for construction of honeycomb films. Membranes. 2015;5:399–424. doi: 10.3390/membranes5030399. PubMed DOI PMC

Li M., Xu S., Kumacheva E. Convection in polymeric fluids subjected to vertical temperature gradients. Macromolecules. 2000;33:4972–4978. doi: 10.1021/ma992156t. DOI

Wan L.S., Zhu L.W., Ou Y., Xu Z.K. Multiple interfaces in self-assembled breath figures. Chem. Commun. 2014;50:4024–4039. doi: 10.1039/C3CC49826C. PubMed DOI

Wong K.H., Hernández-Guerrero M., Granville A.M., Davis T.P., Barner-Kowollik C., Stenzel M.H. Water-assisted formation of honeycomb structured porous films. J. Porous Mater. 2006;13:213–223. doi: 10.1007/s10934-006-8007-4. DOI

Eslamian M., Soltani-Kordshuli F. Development of multiple-droplet drop-casting method for the fabrication of coatings and thin solid films. J. Coat. Technol. Res. 2018;15:271–280. doi: 10.1007/s11998-017-9975-9. DOI

Yabu H., Tanaka M., Ijiro K., Shimomura M. Preparation of honeycomb-patterned polyimide films by self-organization. Langmuir. 2003;19:6297–6300. doi: 10.1021/la034454w. DOI

Madej W., Budkowski A., Raczkowska J., Rysz J. Breath figures in polymer and polymer blend films spin-coated in dry and humid ambience. Langmuir. 2008;24:3517–3524. doi: 10.1021/la703363a. PubMed DOI

Pilati F., Montecchi M., Fabbri P., Synytska A., Messori M., Toselli M., Grundke K., Pospiech D. Design of surface properties of PET films: Effect of fluorinated block copolymers. J. Colloid Interface Sci. 2007;315:210–222. doi: 10.1016/j.jcis.2007.06.046. PubMed DOI

Bui V.T., Tran Q.C., Nguyen V.T., Dao V.D., Choi J.S., Choi H.S. Ordered honeycomb biocompatible polymer films via a one-step solution-immersion phase separation used as a scaffold for cell cultures. Chem. Eng. J. 2017;320:561–569. doi: 10.1016/j.cej.2017.03.086. DOI

Iqbal M., Dinh D.K., Abbas Q., Imran M., Sattar H., Ul Ahmad A. Controlled surface wettability by plasma polymer surface modification. Surfaces. 2019;2:349–371. doi: 10.3390/surfaces2020026. DOI

Morent R., De Geyter N., Desmet T., Dubruel P., Leys C. Plasma surface modification of biodegradable polymers: A review. Plasma Processes Polym. 2011;8:171–190. doi: 10.1002/ppap.201000153. DOI

Cheng Z., Teoh S.H. Surface modification of ultra thin poly (ε-caprolactone) films using acrylic acid and collagen. Biomaterials. 2004;25:1991–2001. doi: 10.1016/j.biomaterials.2003.08.038. PubMed DOI

Zelzer M., Scurr D., Abdullah B., Urquhart A.J., Gadegaard N., Bradley J.W., Alexander M.R. Influence of the plasma sheath on plasma polymer deposition in advance of a mask and down pores. J. Phys. Chem. B. 2009;113:8487–8494. doi: 10.1021/jp902137y. PubMed DOI

Shen H., Hu X., Yang F., Bei J., Wang S. Combining oxygen plasma treatment with anchorage of cationized gelatin for enhancing cell affinity of poly (lactide-co-glycolide) Biomaterials. 2007;28:4219–4230. doi: 10.1016/j.biomaterials.2007.06.004. PubMed DOI

Nishikawa T., Ookura R., Nishida J., Arai K., Hayashi J., Kurono N., Sawadaishi T., Hara M., Shimomura M. Fabrication of honeycomb film of an amphiphilic copolymer at the air− water interface. Langmuir. 2002;18:5734–5740. doi: 10.1021/la011451f. DOI

Wan L.S., Li J.W., Ke B.B., Xu Z.K. Ordered microporous membranes templated by breath figures for size-selective separation. J. Am. Chem. Soc. 2012;134:95–98. doi: 10.1021/ja2092745. PubMed DOI

Farbod F., Pourabbas B., Sharif M. Direct breath figure formation on PMMA and superhydrophobic surface using in situ perfluoro-modified silica nanoparticles. J. Polym. Sci. Part B: Polym. Phys. 2013;51:441–451. doi: 10.1002/polb.23238. DOI

Huang C., Kamra T., Chaudhary S., Shen X. Breath figure patterns made easy. ACS Appl. Mater. Interfaces. 2014;6:5971–5976. doi: 10.1021/am501096k. PubMed DOI

Wang Y., Liu Z., Huang Y., Han B., Yang G. Micropatterned polymer surfaces induced by nonsolvent. Langmuir. 2006;22:1928–1931. doi: 10.1021/la051646d. PubMed DOI

Hernández-Guerrero M., Stenzel M.H. Honeycomb structured polymer films via breath figures. Polym. Chem. 2012;3:563–577. doi: 10.1039/C1PY00219H. DOI

Bui V.T., Choi H.S. Surface morphology and wettability control of polymer Substrates: A comparison of water-miscible and water-immiscible mixture solvents. Eur. Polym. J. 2017;93:158–166. doi: 10.1016/j.eurpolymj.2017.05.039. DOI

Brien F. Biomaterials & scaffolds Every day thousands of surgical procedures are performed to replace. Mater. Today. 2011;14:88–95.

Chen S., Gao S., Jing J., Lu Q. Designing 3D Biological Surfaces via the Breath-Figure Method. Adv. Healthc. Mater. 2018;7:1701043. doi: 10.1002/adhm.201701043. PubMed DOI

Nishikawa T., Nonomura M., Arai K., Hayashi J., Sawadaishi T., Nishiura Y., Hara M., Shimomura M. Micropatterns based on deformation of a viscoelastic honeycomb mesh. Langmuir. 2003;19:6193–6201. doi: 10.1021/la0300129. DOI

Zhang A., Bai H., Li L. Breath figure: A nature-inspired preparation method for ordered porous films. Chem. Rev. 2015;115:9801–9868. doi: 10.1021/acs.chemrev.5b00069. PubMed DOI

Du M., Zhu P., Yan X., Su Y., Song W., Li J. Honeycomb self-assembled peptide scaffolds by the breath figure method. Chem. Eur. J. 2011;17:4238–4245. doi: 10.1002/chem.201003021. PubMed DOI

Li J., Peng J., Huang W., Wu Y., Fu J., Cong Y., Xue L., Han Y. Ordered honeycomb-structured gold nanoparticle films with changeable pore morphology: From circle to ellipse. Langmuir. 2005;21:2017–2021. doi: 10.1021/la047625l. PubMed DOI

Wu X., Wang S. Regulating MC3T3-E1 cells on deformable poly (ε-caprolactone) honeycomb films prepared using a surfactant-free breath figure method in a water-miscible solvent. ACS Appl. Mater. Interfaces. 2012;4:4966–4975. doi: 10.1021/am301334s. PubMed DOI

Kasuya J., Sudo R., Tamogami R., Masuda G., Mitaka T., Ikeda M., Tanishita K. Reconstruction of 3D stacked hepatocyte tissues using degradable, microporous poly (d, l-lactide-co-glycolide) membranes. Biomaterials. 2012;33:2693–2700. doi: 10.1016/j.biomaterials.2011.12.039. PubMed DOI

Fajstavrová K., Rimpelová S., Fajstavr D., Švorčík V., Slepička P. PLLA honeycomb-like pattern on fluorinated ethylene propylene as a substrate for fibroblast growth. Polymers. 2020;12:2436. doi: 10.3390/polym12112436. PubMed DOI PMC

Bunz U.H.F. Breath figures as a dynamic templating method for polymers and nanomaterials. Adv. Mater. 2006;18:973–989. doi: 10.1002/adma.200501131. DOI

Kuroda K., Caputo G.A., DeGrado W.F. The role of hydrophobicity in the antimicrobial and hemolytic activities of polymethacrylate derivatives. Chem. Eur. J. 2009;15:1123–1133. doi: 10.1002/chem.200801523. PubMed DOI PMC

Lin C.L., Tung P.H., Chang F.C. Synthesis of rod-coil diblock copolymers by ATRP and their honeycomb morphologies formed by the ‘breath figures’ method. Polymer. 2005;46:9304–9313. doi: 10.1016/j.polymer.2005.07.051. DOI

Deepak V., Asha S. Self-organization-induced three-dimensional honeycomb pattern in structure-controlled bulky methacrylate polymers: Synthesis, morphology, and mechanism of pore formation. J. Phys. Chem. B. 2006;110:21450–21459. doi: 10.1021/jp063469a. PubMed DOI

Wu X., Jones M.D., Davidson M.G., Chaudhuri J.B., Ellis M.J. Surfactant-free poly (lactide-co-glycolide) honeycomb films for tissue engineering: Relating solvent, monomer ratio and humidity to scaffold structure. Biotechnol. Lett. 2011;33:423–430. doi: 10.1007/s10529-010-0438-y. PubMed DOI

Fukuhira Y., Yabu H., Ijiro K., Shimomura M. Interfacial tension governs the formation of self-organized honeycomb-patterned polymer films. Soft Matter. 2009;5:2037–2041. doi: 10.1039/b821183c. DOI

Yabu H. Fabrication of honeycomb films by the breath figure technique and their applications. Sci. Technol. Adv. Mater. 2018;19:802–822. doi: 10.1080/14686996.2018.1528478. DOI

Bui V.T., Ko S.H., Choi H.S. Large-scale fabrication of commercially available, nonpolar linear polymer film with a highly ordered honeycomb pattern. ACS Appl. Mater. Interfaces. 2015;7:10541–10547. doi: 10.1021/acsami.5b02097. PubMed DOI

Nishikawa T., Nishida J., Ookura R., Nishimura S.I., Scheumann V., Zizlsperger M., Lawall R., Knoll W., Shimomura M. Web-structured films of an amphiphilic polymer from water in oil emulsion: Fabrication and characterization. Langmuir. 2000;16:1337–1342. doi: 10.1021/la9809170. DOI

Ferrari E., Fabbri P., Pilati F. Solvent and substrate contributions to the formation of breath figure patterns in polystyrene films. Langmuir. 2011;27:1874–1881. doi: 10.1021/la104500j. PubMed DOI

Jiang X., Zhang T., Xu L., Wang C., Zhou X., Gu N. Surfactant-induced formation of honeycomb pattern on micropipette with curvature gradient. Langmuir. 2011;27:5410–5419. doi: 10.1021/la200375t. PubMed DOI

Connal L.A., Vestberg R., Hawker C.J., Qiao G.G. Fabrication of reversibly crosslinkable, 3-dimensionally conformal polymeric microstructures. Adv. Funct. Mater. 2008;18:3315–3322. doi: 10.1002/adfm.200800333. DOI

Ucar I.O., Erbil H.Y. Dropwise condensation rate of water breath figures on polymer surfaces having similar surface free energies. Appl. Surf. Sci. 2012;259:515–523. doi: 10.1016/j.apsusc.2012.07.076. DOI

Lee J., Cuddihy M.J., Kotov N.A. Three-dimensional cell culture matrices: State of the art. Tissue Eng. Part B Rev. 2008;14:61–86. doi: 10.1089/teb.2007.0150. PubMed DOI

Gloria A., De Santis R., Ambrosio L. Polymer-based composite scaffolds for tissue engineering. J. Appl. Biomater. Biomech. 2010;8:57–67. PubMed

Yuan M.-S., Xu W., He Q.-G., Cheng J.G., Fu Y.-Y. Research progress of breath figure method in device application. Chin. J. Anal. Chem. 2022;50:44–52. doi: 10.1016/j.cjac.2021.11.006. DOI

Shiohara A., Prieto-Simon B., Voelcker N.H. Porous polymeric membranes: Fabrication techniques and biomedical applications. J. Mater. Chem. B. 2021;9:2129–2154. doi: 10.1039/D0TB01727B. PubMed DOI

Davis M.E. Non-viral gene delivery systems. Curr. Opin. Biotechnol. 2002;13:128–131. doi: 10.1016/S0958-1669(02)00294-X. PubMed DOI

Wu L.W., Wan L.S., Ou Y., Zhu L.W., Xu Z.K. Fabrication of transferable perforated isoporous membranes on versatile solid substrates via the breath figure method. Adv. Mater. Interfaces. 2015;2:1500285. doi: 10.1002/admi.201500285. DOI

Yu B., Cong H., Li Z., Yuan H., Peng Q., Chi M., Yang S., Yang R., Ranil Wickramasinghe S., Tang J. Fabrication of highly ordered porous membranes of cellulose triacetate on ice substrates using breath figure method. J. Polym. Sci. Part B Polym. Phys. 2015;53:552–558. doi: 10.1002/polb.23667. DOI

Ou Y., Wang L.-Y., Zhu L.-W., Wan L.-S., Xu Z.-K. In-situ immobilization of silver nanoparticles on self-assembled honeycomb-patterned films enables surface-enhanced Raman scattering (SERS) substrates. J. Phys. Chem. C. 2014;118:11478–11484. doi: 10.1021/jp503166g. DOI

Yabu H., Shimomura M. Single-step fabrication of transparent superhydrophobic porous polymer films. Chem. Mater. 2005;17:5231–5234. doi: 10.1021/cm051281i. DOI

Vohra V., Bolognesi A., Calzaferri G., Botta C. Multilevel organization in hybrid thin films for optoelectronic applications. Langmuir. 2009;25:12019–12023. doi: 10.1021/la9032089. PubMed DOI

Biswal T. Biopolymers for tissue engineering applications: A review. Mater. Today Proc. 2021;41:397–402. doi: 10.1016/j.matpr.2020.09.628. DOI

Calejo M.T., Ilmarinen T., Skottman H., Kellomäki M. Breath figures in tissue engineering and drug delivery: State-of-the-art and future perspectives. Acta Biomater. 2018;66:44–66. PubMed

Bovey F. Macromolecules: An Introduction to Polymer Science. Elsevier; Amsterdam, The Netherlands: 2012.

Liang J., Ma Y., Sims S., Wu L. A patterned porous polymer film for localized capture of insulin and glucose-responsive release. J. Mater. Chem. B. 2015;3:1281–1288. doi: 10.1039/C4TB01537A. PubMed DOI

Yamazaki H., Kohashi S., Ito K., Ijiro K., Shimomura M. Production technology and applications of honeycomb films. Polym. J. 2022;54:107–120. doi: 10.1038/s41428-021-00549-0. DOI

Arai K., Tanaka M., Yamamoto S., Shimomura M. Effect of pore size of honeycomb films on the morphology, adhesion and cytoskeletal organization of cardiac myocytes. Colloids Surf. A Physicochem. Eng. Asp. 2008;313:530–535. doi: 10.1016/j.colsurfa.2007.04.128. DOI

Tanaka M., Takayama A., Ito E., Sunami H., Yamamoto S., Shimomura M. Effect of pore size of self-organized honeycomb-patterned polymer films on spreading, focal adhesion, proliferation, and function of endothelial cells. J. Nanosci. Nanotechnol. 2007;7:763–772. PubMed

Eniwumide J.O., Tanaka M., Nagai N., Morita Y., De Bruijn J., Yamamoto S., Onodera S., Kondo E., Yasuda K., Shimomura M. The morphology and functions of articular chondrocytes on a honeycomb-patterned surface. BioMed Res. Int. 2014;2014:710354. doi: 10.1155/2014/710354. PubMed DOI PMC

Birch M.A., Tanaka M., Kirmizidis G., Yamamoto S., Shimomura M. Microporous “honeycomb” films support enhanced bone formation in vitro. Tissue Eng. Part A. 2013;19:2087–2096. doi: 10.1089/ten.tea.2012.0729. PubMed DOI

Clement A.L., Moutinho T.J., Jr., Pins G.D. Micropatterned dermal–epidermal regeneration matrices create functional niches that enhance epidermal morphogenesis. Acta Biomater. 2013;9:9474–9484. doi: 10.1016/j.actbio.2013.08.017. PubMed DOI PMC

McMillan J.R., Akiyama M., Tanaka M., Yamamoto S., Goto M., Abe R., Sawamura D., Shimomura M., Shimizu H. Small-diameter porous Poly (ϵ-Caprolactone) films enhance adhesion and growth of human cultured epidermal keratinocyte and dermal fibroblast cells. Tissue Eng. 2007;13:789–798. doi: 10.1089/ten.2006.0321. PubMed DOI

Chen S., Lu X., Hu Y., Lu Q. Biomimetic honeycomb-patterned surface as the tunable cell adhesion scaffold. Biomater. Sci. 2015;3:85–93. doi: 10.1039/C4BM00233D. PubMed DOI

Li L., Chen C., Li J., Zhang A., Liu X., Xu B., Gao S., Jin G., Ma Z. Robust and hydrophilic polymeric films with honeycomb pattern and their cell scaffold applications. J. Mater. Chem. 2009;19:2789–2796. doi: 10.1039/b820279f. DOI

Tsuruma A., Tanaka M., Yamamoto S., Shimomura M. Control of neural stem cell differentiation on honeycomb films. Colloids Surf. A Physicochem. Eng. Asp. 2008;313:536–540. doi: 10.1016/j.colsurfa.2007.05.079. DOI

Liu Y., Xu J., Zhou Y., Ye Z., Tan W.-S. Layer-by-layer assembled polyelectrolytes on honeycomb-like porous poly (ε-caprolactone) films modulate the spatial distribution of mesenchymal stem cells. Mater. Sci. Eng. C. 2017;78:579–588. doi: 10.1016/j.msec.2017.04.140. PubMed DOI

Farzaneh Z., Pournasr B., Ebrahimi M., Aghdami N., Baharvand H. Enhanced functions of human embryonic stem cell-derived hepatocyte-like cells on three-dimensional nanofibrillar surfaces. Stem Cell Rev. Rep. 2010;6:601–610. doi: 10.1007/s12015-010-9179-5. PubMed DOI

Jeon G., Yang S.Y., Kim J.K. Functional nanoporous membranes for drug delivery. J. Mater. Chem. 2012;22:14814–14834. doi: 10.1039/c2jm32430j. DOI

Velayudhan S., Kumar P., Nair P.D. A novel, single step, highly sensitive in-vitro cell-based metabolic assay using honeycomb microporous polymer membranes. J. Biomed. Nanotechnol. 2015;11:590–599. doi: 10.1166/jbn.2015.2066. PubMed DOI

Huang X., Brazel C.S. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J. Control. Release. 2001;73:121–136. doi: 10.1016/S0168-3659(01)00248-6. PubMed DOI

Ponnusamy T., Lawson L.B., Freytag L.C., Blake D.A., Ayyala R.S., John V.T. In vitro degradation and release characteristics of spin coated thin films of PLGA with a “breath figure” morphology. Biomatter. 2012;2:77–86. doi: 10.4161/biom.20390. PubMed DOI PMC

Ponnusamy T., Yu H., John V.T., Ayyala R.S., Blake D.A. A novel antiproliferative drug coating for glaucoma drainage devices. J. Glaucoma. 2014;23:526–534. doi: 10.1097/IJG.0b013e318294869b. PubMed DOI

Dai Z., Yu X., Hong J., Liu X., Sun J., Sun X. Development of a novel CsA-PLGA drug delivery system based on a glaucoma drainage device for the prevention of postoperative fibrosis. Mater. Sci. Eng. C. 2016;66:206–214. doi: 10.1016/j.msec.2016.04.077. PubMed DOI

Grabacka M., Waligorski P., Zapata A., Blake D., Wyczechowska D., Wilk A., Rutkowska M., Vashistha H., Ayyala R., Ponnusamy T. Fenofibrate subcellular distribution as a rationale for the intracranial delivery through biodegradable carrier. J. Physiol. Pharmacol. 2015;66:233. PubMed PMC

Zhuang C., Shi C., Tao F., Cui Y. Honeycomb structural composite polymer network of gelatin and functional cellulose ester for controlled release of omeprazole. Int. J. Biol. Macromol. 2017;105:1644–1653. doi: 10.1016/j.ijbiomac.2017.01.019. PubMed DOI

De León A.S., Molina M., Wedepohl S., Muñoz-Bonilla A., Rodríguez-Hernández J., Calderón M. Immobilization of stimuli-responsive nanogels onto honeycomb porous surfaces and controlled release of proteins. Langmuir. 2016;32:1854–1862. doi: 10.1021/acs.langmuir.5b04166. PubMed DOI

Su Y., Dang J., Zhang H., Zhang Y., Tian W. Supramolecular Host–Guest Interaction-Enhanced Adjustable Drug Release Based on β-Cyclodextrin-Functionalized Thermoresponsive Porous Polymer Films. Langmuir. 2017;33:7393–7402. doi: 10.1021/acs.langmuir.7b01502. PubMed DOI

Wang C., Liu Q., Shao X., Yang G., Xue H., Hu X. One step fabrication of nanoelectrode ensembles formed via amphiphilic block copolymers self-assembly and selective voltammetric detection of uric acid in the presence of high ascorbic acid content. Talanta. 2007;71:178–185. doi: 10.1016/j.talanta.2006.03.055. PubMed DOI

Wang Q., Wen X., Kong J. Recent progress on uric acid detection: A review. Crit. Rev. Anal. Chem. 2020;50:359–375. doi: 10.1080/10408347.2019.1637711. PubMed DOI

Chen P.C., Wan L.S., Ke B.B., Xu Z.K. Honeycomb-patterned film segregated with phenylboronic acid for glucose sensing. Langmuir. 2011;27:12597–12605. doi: 10.1021/la201911f. PubMed DOI

Ting S.S., Min E.H., Escale P., Save M., Billon L., Stenzel M.H. Lectin recognizable biomaterials synthesized via nitroxide-mediated polymerization of a methacryloyl galactose monomer. Macromolecules. 2009;42:9422–9434. doi: 10.1021/ma9019015. DOI

Munoz-Bonilla A., Ibarboure E., Bordegé V., Fernández-García M., Rodríguez-Hernández J. Fabrication of honeycomb-structured porous surfaces decorated with glycopolymers. Langmuir. 2010;26:8552–8558. doi: 10.1021/la904565d. PubMed DOI

Miller S., Bao Z. Fabrication of flexible pressure sensors with microstructured polydimethylsiloxane dielectrics using the breath figures method. J. Mater. Res. 2015;30:3584–3594. doi: 10.1557/jmr.2015.334. DOI

Hall-Stoodley L., Costerton J.W., Stoodley P. Bacterial biofilms: From the natural environment to infectious diseases. Nat. Rev. Microbiol. 2004;2:95–108. doi: 10.1038/nrmicro821. PubMed DOI

Yang M., Ding Y., Ge X., Leng Y. Control of bacterial adhesion and growth on honeycomb-like patterned surfaces. Colloids Surf. B Biointerfaces. 2015;135:549–555. doi: 10.1016/j.colsurfb.2015.08.010. PubMed DOI

Zhao Y., Shang Q., Yu J., Zhang Y., Liu S. Nanostructured 2D diporphyrin honeycomb film: Photoelectrochemistry, photodegradation, and antibacterial activity. ACS Appl. Mater. Interfaces. 2015;7:11783–11791. doi: 10.1021/acsami.5b03254. PubMed DOI

Muñoz-Bonilla A., Cuervo-Rodríguez R., López-Fabal F., Gómez-Garcés J.L., Fernández-García M. Antimicrobial porous surfaces prepared by breath figures approach. Materials. 2018;11:1266. doi: 10.3390/ma11081266. PubMed DOI PMC

Wang Y., Liu Y., Li G., Hao J. Porphyrin-based honeycomb films and their antibacterial activity. Langmuir. 2014;30:6419–6426. doi: 10.1021/la501244s. PubMed DOI

Manabe K., Nishizawa S., Shiratori S. Porous surface structure fabricated by breath figures that suppresses Pseudomonas aeruginosa biofilm formation. ACS Appl. Mater. Interfaces. 2013;5:11900–11905. doi: 10.1021/am4035762. PubMed DOI

Vargas-Alfredo N., Santos-Coquillat A., Martínez-Campos E., Dorronsoro A., Cortajarena A.L., Del Campo A., Rodríguez-Hernández J. Highly efficient antibacterial surfaces based on bacterial/cell size selective microporous supports. ACS Appl. Mater. Interfaces. 2017;9:44270–44280. doi: 10.1021/acsami.7b11337. PubMed DOI

Huang C., Shen X., Liu X., Chen Z., Shu B., Wan L., Liu H., He J. Hybrid breath figure method: A new insight in Petri dishes for cell culture. J. Colloid Interface Sci. 2019;541:114–122. doi: 10.1016/j.jcis.2019.01.074. PubMed DOI

Slepička P., Fajstavr D., Krejčová M., Rimpelová S., Slepičková Kasálková N., Kolská Z., Švorčík V. Biopolymer Composites with Ti/Au Nanostructures and Their Antibacterial Properties. Pharmaceutics. 2021;13:826. doi: 10.3390/pharmaceutics13060826. PubMed DOI PMC

Hurtuková K., Fajstavrová K., Rimpelová S., Vokatá B., Fajstavr D., Slepičková Kasálková N., Siegel J., Švorčík V., Slepička P. Antibacterial properties of a honeycomb-like pattern with cellulose acetate and silver nanoparticles. Materials. 2021;14:4051. doi: 10.3390/ma14144051. PubMed DOI PMC

Tormena R.P.I., Rosa E.V., de Fátima Oliveira Mota B., Chaker J.A., Fagg C.W., Freire D.O., Martins P.M., da Silva I.C.R., Sousa M.H. Evaluation of the antimicrobial activity of silver nanoparticles obtained by microwave-assisted green synthesis using Handroanthus impetiginosus (Mart. ex DC.) Mattos underbark extract. RSC Adv. 2020;10:20676–20681. doi: 10.1039/D0RA03240A. PubMed DOI PMC

Jiang X., Zhang T., He S., Ling J., Gu N., Zhang Y., Zhou X., Wang X., Cheng L. Bacterial adhesion on honeycomb-structured poly (L-lactic acid) surface with Ag nanoparticles. J. Biomed. Nanotechnol. 2012;8:791–799. doi: 10.1166/jbn.2012.1432. PubMed DOI

Kim Y.W., Modigunta J.K.R., Male U. Effect of ferrocene on the fabrication of honeycomb-patterned porous polystyrene films and silver functionalization of the film. Polymer. 2019;166:55–62. doi: 10.1016/j.polymer.2019.01.046. DOI

Mirotsou M., Abe M., Lanza R. Principles of Tissue Engineering. Elsevier; Amsterdam, The Netherlands: 2020. Corneal replacement tissue; pp. 1135–1143.

Slepicka P., Slepickova Kasalkova N., Siegel J., Kolska Z., Bacakova L., Svorcik V. Nano-structured and functionalized surfaces for cytocompatibility improvement and bactericidal action. Biotechnol. Adv. 2015;33:1120–1129. doi: 10.1016/j.biotechadv.2015.01.001. PubMed DOI

Slepička P., Siegel J., Lyutakov O., Slepičková Kasálková N., Kolská Z., Bačáková L., Švorčík V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. doi: 10.1016/j.biotechadv.2017.12.011. PubMed DOI

Toncheva A., Mincheva R., Kancheva M., Manolova N., Rashkov I., Dubois P., Markova N. Antibacterial PLA/PEG electrospun fibers: Comparative study between grafting and blending PEG. Eur. Polym. J. 2016;75:223–233. doi: 10.1016/j.eurpolymj.2015.12.019. DOI

Yim E.K., Pang S.W., Leong K.W. Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp. Cell Res. 2007;313:1820–1829. doi: 10.1016/j.yexcr.2007.02.031. PubMed DOI PMC

Xia L., Wei Z., Wan M. Conducting polymer nanostructures and their application in biosensors. J. Colloid Interface Sci. 2010;341:1–11. doi: 10.1016/j.jcis.2009.09.029. PubMed DOI

Michaljaničová I., Slepička P., Rimpelová S., Slepičková Kasálková N., Švorčík V. Regular pattern formation on surface of aromatic polymers and its cytocompatibility. Appl. Surf. Sci. 2016;370:131–141. doi: 10.1016/j.apsusc.2016.02.160. DOI

Slepička P., Michaljaničová I., Slepičková Kasálková N., Kolská Z., Rimpelová S., Ruml T., Švorčík V. Poly-l-lactic acid modified by etching and grafting with gold nanoparticles. J. Mater. Sci. 2013;48:5871–5879. doi: 10.1007/s10853-013-7383-9. DOI

Kasálková Slepičková N., Slepička P., Kolská Z., Hodačová P., Kučková Š., Švorčík V. Grafting of bovine serum albumin proteins on plasma-modified polymers for potential application in tissue engineering. Nanoscale Res. Lett. 2014;9:161. doi: 10.1186/1556-276X-9-161. PubMed DOI PMC

Yang Y.W., Wu J.Y., Liu C.T., Liao G.C., Huang H.Y., Hsu R.Q., Chiang M.H., Wu J.S. Fast incorporation of primary amine group into polylactide surface for improving C2C12 cell proliferation using nitrogen-based atmospheric-pressure plasma jets. J. Biomed. Mater. Res. Part A. 2014;102:160–169. doi: 10.1002/jbm.a.34681. PubMed DOI

Cheng K.Y., Chang C.H., Yang Y.W., Liao G.C., Liu C.T., Wu J.S. Enhancement of cell growth on honeycomb-structured polylactide surface using atmospheric-pressure plasma jet modification. Appl. Surf. Sci. 2017;394:534–542. doi: 10.1016/j.apsusc.2016.10.093. DOI

González-Henríquez C., Rodríguez-Hernández J. Wrinkled Polymer Surfaces: Strategies, Methods and Applications. Springer; Berlin/Heidelberg, Germany: 2019.

Slepička P., Neděla O., Sajdl P., Kolská Z., Švorčík V. Polyethylene naphthalate as an excellent candidate for ripple nanopatterning. Appl. Surf. Sci. 2013;285:885–892. doi: 10.1016/j.apsusc.2013.09.007. DOI

Fajstavr D., Slepička P., Švorčík V. LIPSS with gold nanoclusters prepared by combination of heat treatment and KrF exposure. Appl. Surf. Sci. 2019;465:919–928. doi: 10.1016/j.apsusc.2018.09.167. DOI

Yabu H., Matsui J., Matsuo Y. Site-Selective Wettability Control of Honeycomb Films by UV–O3-Assisted Sol–Gel Coating. Langmuir. 2020;36:12023–12029. doi: 10.1021/acs.langmuir.0c02401. PubMed DOI

Lišková J., Slepičková Kasálková N., Slepička P., Švorčík V., Bačáková L. Heat-treated carbon coatings on poly (L-lactide) foils for tissue engineering. Mater. Sci. Eng. C. 2019;100:117–128. doi: 10.1016/j.msec.2019.02.105. PubMed DOI

Yabu H., Hirai Y., Shimomura M. Electroless plating of honeycomb and pincushion polymer films prepared by self-organization. Langmuir. 2006;22:9760–9764. doi: 10.1021/la062228r. PubMed DOI

Yabu H., Inoue K., Shimomura M. Multiple-periodic structures of self-organized honeycomb-patterned films and polymer nanoparticles hybrids. Colloids Surf. A Physicochem. Eng. Asp. 2006;284:301–304. doi: 10.1016/j.colsurfa.2005.10.082. DOI

Slepička P., Rimpelová S., Slepičková Kasálková N., Fajstavr D., Sajdl P., Kolská Z., Švorčík V. Antibacterial properties of plasma-activated perfluorinated substrates with silver nanoclusters deposition. Nanomaterials. 2021;11:182. doi: 10.3390/nano11010182. PubMed DOI PMC

Kabuto T., Hashimoto Y., Karthaus O. Thermally stable and solvent resistant mesoporous honeycomb films from a crosslinkable polymer. Adv. Funct. Mater. 2007;17:3569–3573. doi: 10.1002/adfm.200700249. DOI

Karikari A.S., Williams S.R., Heisey C.L., Rawlett A.M., Long T.E. Porous thin films based on photo-cross-linked star-shaped poly (D, L-lactide) s. Langmuir. 2006;22:9687–9693. doi: 10.1021/la0603020. PubMed DOI

Bolognesi A., Galeotti F., Moreau J., Giovanella U., Porzio W., Scavia G., Bertini F. Unsoluble ordered polymeric pattern by breath figure approach. J. Mater. Chem. 2010;20:1483–1488. doi: 10.1039/b917267j. DOI

Slepička P., Siegel J., Šlouf M., Fajstavr D., Fajstavrová K., Kolská Z., Švorčík V. The Functionalization of a Honeycomb Polystyrene Pattern by Excimer Treatment in Liquid. Polymers. 2022;14:4944–4955. doi: 10.3390/polym14224944. PubMed DOI PMC

Xu W.Z., Zhang X., Kadla J.F. Design of functionalized cellulosic honeycomb films: Site-specific biomolecule modification via “click chemistry”. Biomacromolecules. 2012;13:350–357. doi: 10.1021/bm201364r. PubMed DOI

Nishida J., Nishikawa K., Nishimura S.-I., Wada S., Karino T., Nishikawa T., Ijiro K., Shimomura M. Preparation of self-organized micro-patterned polymer films having cell adhesive ligands. Polym. J. 2002;34:166–174. doi: 10.1295/polymj.34.166. DOI

Cha T. Surface Chemical Modification for the Immobilization of Biomolecules. University of Minnesota; Minneapolis, MN, USA: 2005.

Min E., Wong K.H., Stenzel M.H. Microwells with patterned proteins by a self-assembly process using honeycomb-structured porous films. Adv. Mater. 2008;20:3550–3556. doi: 10.1002/adma.200800569. DOI

Ke B.B., Wan L.S., Xu Z.K. Controllable construction of carbohydrate microarrays by site-directed grafting on self-organized porous films. Langmuir. 2010;26:8946–8952. doi: 10.1021/la904729b. PubMed DOI

Nystrom D., Malmstrom E., Hult A., Blakey I., Boyer C., Davis T.P., Whittaker M.R. Biomimetic surface modification of honeycomb films via a “grafting from” approach. Langmuir. 2010;26:12748–12754. doi: 10.1021/la1011567. PubMed DOI

Zhang Y., Wang C. Micropatterning of Proteins on 3D Porous Polymer Film Fabricated by Using the Breath-Figure Method. Adv. Mater. 2007;19:913–916.

Hernández-Guerrero M., Min E., Barner-Kowollik C., Müller A.H., Stenzel M.H. Grafting thermoresponsive polymers onto honeycomb structured porous films using the RAFT process. J. Mater. Chem. 2008;18:4718–4730. doi: 10.1039/b807495j. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...