Biopolymer Honeycomb Microstructures: A Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
36676507
PubMed Central
PMC9863042
DOI
10.3390/ma16020772
PII: ma16020772
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial properties, biopolymer, breath figure, honeycomb, improved phase separation, morphology, polymer, replication, surface modification, tissue engineering,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In this review, we present a comprehensive summary of the formation of honeycomb microstructures and their applications, which include tissue engineering, antibacterial materials, replication processes or sensors. The history of the honeycomb pattern, the first experiments, which mostly involved the breath figure procedure and the improved phase separation, the most recent approach to honeycomb pattern formation, are described in detail. Subsequent surface modifications of the pattern, which involve physical and chemical modifications and further enhancement of the surface properties, are also introduced. Different aspects influencing the polymer formation, such as the substrate influence, a particular polymer or solvent, which may significantly contribute to pattern formation, and thus influence the target structural properties, are also discussed.
Zobrazit více v PubMed
Tóth L.F. What the bees know and what they do not know. Bull. Am. Math. Soc. 1964;70:468–481. doi: 10.1090/S0002-9904-1964-11155-1. DOI
Munoz-Bonilla A., Fernandez-Garcia M., Rodriguez-Hernandez J. Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Prog. Polym. Sci. 2014;39:510–554. doi: 10.1016/j.progpolymsci.2013.08.006. DOI
Dong C., Hao J. Honeycomb films with ordered patterns and structures. In: Atwood J.L., editor. Comprehensive Supramolecular Chemistry II (Volume 9 Nanotechnology) Elsevier; Amsterdam, The Netherlands: 2017. pp. 207–229.
Cilliers L., Retief F.P. Bees, honey and health in antiquity. Akroterion. 2008;53:7–19. doi: 10.7445/53-0-36. DOI
Bulmer-Thomas I. Selections Illustrating the History of Greek Mathematics. Volume 2 Harvard University Press; Cambridge, MA, USA: 1939.
Kepler J. The Six-Cornered Snowflake. Paul Dry Books; Philadelphia, PA, USA: 2010.
Hales T.C. The honeycomb conjecture. Discret. Comput. Geom. 2001;25:1–22. doi: 10.1007/s004540010071. DOI
Gallo V., Chittka L. Cognitive aspects of comb-building in the honeybee? Front. Psychol. 2018;9:900. doi: 10.3389/fpsyg.2018.00900. PubMed DOI PMC
Wang Z., Zhang Y., Jiefu L. Comparison between Five Typical Reinforced Honeycomb Structures. Atlantic Press; Dordrecht, The Netherlands: 2015. pp. 704–707. DOI
Langstroth L. Langstroth’s The Hive and the Honey–Bee. Dover Publications Inc.; Mineola, NY, USA: 2004. originaly published in 1853.
Weaire D., Phelan R. Optimal design of honeycombs. Nature. 1994;367:123. doi: 10.1038/367123a0. DOI
Zhang Q., Yang X., Li P., Huang G., Feng S., Shen C., Han B., Zhang X., Jin F., Xu F. Bioinspired engineering of honeycomb structure–Using nature to inspire human innovation. Prog. Mater. Sci. 2015;74:332–400. doi: 10.1016/j.pmatsci.2015.05.001. DOI
MacDonald W.L. The Pantheon: Design, Meaning, and Progeny. Harvard University Press; Cambridge, MA, USA: 2002.
Hooke R. Micrographia. BoD–Books on Demand; Mumbai, India: 2020.
Wittenauer J., Norris B. Structural honeycomb materials for advanced aerospace designs. JOM. 1990;42:36–41. doi: 10.1007/BF03220895. DOI
Bitzer T. Honeycomb Technology: Materials, Design, Manufacturing, Applications and Testing. Springer Science & Business Media; Berlin/Heidelberg, Germany: 1997.
Höfler R., Renyi S. Plattenförmiger Baukörper. CompositesPRESS; Mennecy, France: 1914. DE355036.
Lee S.M. Handbook of Composite Reinforcements. John Wiley & Sons; Hoboken, NJ, USA: 1996.
Heng L., Wang B., Li M., Zhang Y., Jiang L. Advances in fabrication materials of honeycomb structure films by the breath-figure method. Materials. 2013;6:460–482. doi: 10.3390/ma6020460. PubMed DOI PMC
Male U., Jo E.J., Park J.Y. Surface functionalization of honeycomb-patterned porous poly (ε-caprolactone) films by interfacial polymerization of aniline. Polymer. 2016;99:623–632. doi: 10.1016/j.polymer.2016.07.040. DOI
Rodríguez-Hernández J., Bormashenko E. Breath Figures. Springer; Berlin/Heidelberg, Germany: 2020. Hierarchically Ordered Microporous Surfaces; pp. 169–187.
Slepička P., Neznalová K., Fajstavr D., Švorčík V. Nanostructuring of honeycomb-like polystyrene with excimer laser. Prog. Org. Coat. 2020;145:105670. doi: 10.1016/j.porgcoat.2020.105670. DOI
Neznalová K., Sajdl P., Švorčík V., Slepička P. Cellulose acetate honeycomb-like pattern created by improved phase separation. eXPRESS Polym. Lett. 2020;14:1078–1088. doi: 10.3144/expresspolymlett.2020.87. DOI
Hurtuková K., Juřicová V., Fajstavrová K., Fajstavr D., Slepičková Kasálková N., Rimpelová S., Švorčík V., Slepička P. Cytocompatibility of Polymethyl Methacrylate Honeycomb-like Pattern on Perfluorinated Polymer. Polymers. 2021;13:3663. doi: 10.3390/polym13213663. PubMed DOI PMC
Slepička P., Neznalová K., Fajstavr D., Slepičková Kasálková N., Švorčík V. Honeycomb-like pattern formation on perfluoroethylenepropylene enhanced by plasma treatment. Plasma Processes Polym. 2019;16:1900063. doi: 10.1002/ppap.201900063. DOI
Peng J., Han Y., Yang Y., Li B. The influencing factors on the macroporous formation in polymer films by water droplet templating. Polymer. 2004;45:447–452. doi: 10.1016/j.polymer.2003.11.019. DOI
Fajstavrová K., Rimpelová S., Fajstavr D., Švorčík V., Slepička P. Cell behavior of primary fibroblasts and osteoblasts on plasma-treated fluorinated polymer coated with honeycomb polystyrene. Materials. 2021;14:889. doi: 10.3390/ma14040889. PubMed DOI PMC
Stenzel M.H., Barner Kowollik C., Davis T.P. Formation of honeycomb-structured, porous films via breath figures with different polymer architectures. J. Polym. Sci. Part A Polym. Chem. 2006;44:2363–2375. doi: 10.1002/pola.21334. DOI
Yin H., Feng Y., Billon L. Directed Self-Assembly in “Breath Figure” Templating of Melamine-Based Amphiphilic Copolymers: Effect of Hydrophilic End-Chain on Honeycomb Film Formation and Wetting. Chem. Eur. J. 2018;24:425–433. doi: 10.1002/chem.201704369. PubMed DOI
Yabu H., Shimomura M. Surface properties of self-organized honeycomb-patterned films. Mol. Cryst. Liq. Cryst. 2006;445:125–129. doi: 10.1080/15421400500369518. DOI
Nurmawati M.H., Ajikumar P.K., Renu R., Valiyaveettil S. Hierarchical Self-Organization of Nanomaterials into Two-Dimensional Arrays Using Functional Polymer Scaffold. Adv. Funct. Mater. 2008;18:3213–3218. doi: 10.1002/adfm.200800396. DOI
Falconnet D., Csucs G., Grandin H.M., Textor M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials. 2006;27:3044–3063. doi: 10.1016/j.biomaterials.2005.12.024. PubMed DOI
Norman J.J., Desai T.A. Methods for fabrication of nanoscale topography for tissue engineering scaffolds. Ann. Biomed. Eng. 2006;34:89–101. doi: 10.1007/s10439-005-9005-4. PubMed DOI
Xue L., Han Y. Pattern formation by dewetting of polymer thin film. Prog. Polym. Sci. 2011;36:269–293. doi: 10.1016/j.progpolymsci.2010.07.004. DOI
Xue L., Zhang J., Han Y. Phase separation induced ordered patterns in thin polymer blend films. Prog. Polym. Sci. 2012;37:564–594. doi: 10.1016/j.progpolymsci.2011.09.001. DOI
Xie Y., Kocaefe D., Chen C., Kocaefe Y. Review of research on template methods in preparation of nanomaterials. J. Nanomater. 2016;2016:2302595. doi: 10.1155/2016/2302595. DOI
Wang D.M., Lai J.Y. Recent advances in preparation and morphology control of polymeric membranes formed by nonsolvent induced phase separation. Curr. Opin. Chem. Eng. 2013;2:229–237. doi: 10.1016/j.coche.2013.04.003. DOI
Guillen G.R., Pan Y., Li M., Hoek E.M. Preparation and characterization of membranes formed by nonsolvent induced phase separation: A review. Ind. Eng. Chem. Res. 2011;50:3798–3817. doi: 10.1021/ie101928r. DOI
Bui V.T., Ko S.H., Choi H.S. A surfactant-free bio-compatible film with a highly ordered honeycomb pattern fabricated via an improved phase separation method. Chem. Commun. 2014;50:3817–3819. doi: 10.1039/c3cc48654k. PubMed DOI
Liu Q., Tang Z., Ou B., Liu L., Zhou Z., Shen S., Duan Y. Design, preparation, and application of ordered porous polymer materials. Mater. Chem. Phys. 2014;144:213–225. doi: 10.1016/j.matchemphys.2014.01.013. DOI
Hsueh H.Y., Ho R.M. Bicontinuous ceramics with high surface area from block copolymer templates. Langmuir. 2012;28:8518–8529. doi: 10.1021/la3009706. PubMed DOI
Rodríguez-Hernández J. Surface Chemistry of Nanobiomaterials. Elsevier; Amsterdam, The Netherlands: 2016. Nano-microporous structured surfaces prepared by the breath figures approach and their biorelated applications; pp. 107–133.
Aitken J. Breath figures. Proc. R. Soc. Edinb. 1895;20:94–97. doi: 10.1017/S0370164600048434. DOI
Dou Y., Jin M., Zhou G., Shui L. Breath figure method for construction of honeycomb films. Membranes. 2015;5:399–424. doi: 10.3390/membranes5030399. PubMed DOI PMC
Li M., Xu S., Kumacheva E. Convection in polymeric fluids subjected to vertical temperature gradients. Macromolecules. 2000;33:4972–4978. doi: 10.1021/ma992156t. DOI
Wan L.S., Zhu L.W., Ou Y., Xu Z.K. Multiple interfaces in self-assembled breath figures. Chem. Commun. 2014;50:4024–4039. doi: 10.1039/C3CC49826C. PubMed DOI
Wong K.H., Hernández-Guerrero M., Granville A.M., Davis T.P., Barner-Kowollik C., Stenzel M.H. Water-assisted formation of honeycomb structured porous films. J. Porous Mater. 2006;13:213–223. doi: 10.1007/s10934-006-8007-4. DOI
Eslamian M., Soltani-Kordshuli F. Development of multiple-droplet drop-casting method for the fabrication of coatings and thin solid films. J. Coat. Technol. Res. 2018;15:271–280. doi: 10.1007/s11998-017-9975-9. DOI
Yabu H., Tanaka M., Ijiro K., Shimomura M. Preparation of honeycomb-patterned polyimide films by self-organization. Langmuir. 2003;19:6297–6300. doi: 10.1021/la034454w. DOI
Madej W., Budkowski A., Raczkowska J., Rysz J. Breath figures in polymer and polymer blend films spin-coated in dry and humid ambience. Langmuir. 2008;24:3517–3524. doi: 10.1021/la703363a. PubMed DOI
Pilati F., Montecchi M., Fabbri P., Synytska A., Messori M., Toselli M., Grundke K., Pospiech D. Design of surface properties of PET films: Effect of fluorinated block copolymers. J. Colloid Interface Sci. 2007;315:210–222. doi: 10.1016/j.jcis.2007.06.046. PubMed DOI
Bui V.T., Tran Q.C., Nguyen V.T., Dao V.D., Choi J.S., Choi H.S. Ordered honeycomb biocompatible polymer films via a one-step solution-immersion phase separation used as a scaffold for cell cultures. Chem. Eng. J. 2017;320:561–569. doi: 10.1016/j.cej.2017.03.086. DOI
Iqbal M., Dinh D.K., Abbas Q., Imran M., Sattar H., Ul Ahmad A. Controlled surface wettability by plasma polymer surface modification. Surfaces. 2019;2:349–371. doi: 10.3390/surfaces2020026. DOI
Morent R., De Geyter N., Desmet T., Dubruel P., Leys C. Plasma surface modification of biodegradable polymers: A review. Plasma Processes Polym. 2011;8:171–190. doi: 10.1002/ppap.201000153. DOI
Cheng Z., Teoh S.H. Surface modification of ultra thin poly (ε-caprolactone) films using acrylic acid and collagen. Biomaterials. 2004;25:1991–2001. doi: 10.1016/j.biomaterials.2003.08.038. PubMed DOI
Zelzer M., Scurr D., Abdullah B., Urquhart A.J., Gadegaard N., Bradley J.W., Alexander M.R. Influence of the plasma sheath on plasma polymer deposition in advance of a mask and down pores. J. Phys. Chem. B. 2009;113:8487–8494. doi: 10.1021/jp902137y. PubMed DOI
Shen H., Hu X., Yang F., Bei J., Wang S. Combining oxygen plasma treatment with anchorage of cationized gelatin for enhancing cell affinity of poly (lactide-co-glycolide) Biomaterials. 2007;28:4219–4230. doi: 10.1016/j.biomaterials.2007.06.004. PubMed DOI
Nishikawa T., Ookura R., Nishida J., Arai K., Hayashi J., Kurono N., Sawadaishi T., Hara M., Shimomura M. Fabrication of honeycomb film of an amphiphilic copolymer at the air− water interface. Langmuir. 2002;18:5734–5740. doi: 10.1021/la011451f. DOI
Wan L.S., Li J.W., Ke B.B., Xu Z.K. Ordered microporous membranes templated by breath figures for size-selective separation. J. Am. Chem. Soc. 2012;134:95–98. doi: 10.1021/ja2092745. PubMed DOI
Farbod F., Pourabbas B., Sharif M. Direct breath figure formation on PMMA and superhydrophobic surface using in situ perfluoro-modified silica nanoparticles. J. Polym. Sci. Part B: Polym. Phys. 2013;51:441–451. doi: 10.1002/polb.23238. DOI
Huang C., Kamra T., Chaudhary S., Shen X. Breath figure patterns made easy. ACS Appl. Mater. Interfaces. 2014;6:5971–5976. doi: 10.1021/am501096k. PubMed DOI
Wang Y., Liu Z., Huang Y., Han B., Yang G. Micropatterned polymer surfaces induced by nonsolvent. Langmuir. 2006;22:1928–1931. doi: 10.1021/la051646d. PubMed DOI
Hernández-Guerrero M., Stenzel M.H. Honeycomb structured polymer films via breath figures. Polym. Chem. 2012;3:563–577. doi: 10.1039/C1PY00219H. DOI
Bui V.T., Choi H.S. Surface morphology and wettability control of polymer Substrates: A comparison of water-miscible and water-immiscible mixture solvents. Eur. Polym. J. 2017;93:158–166. doi: 10.1016/j.eurpolymj.2017.05.039. DOI
Brien F. Biomaterials & scaffolds Every day thousands of surgical procedures are performed to replace. Mater. Today. 2011;14:88–95.
Chen S., Gao S., Jing J., Lu Q. Designing 3D Biological Surfaces via the Breath-Figure Method. Adv. Healthc. Mater. 2018;7:1701043. doi: 10.1002/adhm.201701043. PubMed DOI
Nishikawa T., Nonomura M., Arai K., Hayashi J., Sawadaishi T., Nishiura Y., Hara M., Shimomura M. Micropatterns based on deformation of a viscoelastic honeycomb mesh. Langmuir. 2003;19:6193–6201. doi: 10.1021/la0300129. DOI
Zhang A., Bai H., Li L. Breath figure: A nature-inspired preparation method for ordered porous films. Chem. Rev. 2015;115:9801–9868. doi: 10.1021/acs.chemrev.5b00069. PubMed DOI
Du M., Zhu P., Yan X., Su Y., Song W., Li J. Honeycomb self-assembled peptide scaffolds by the breath figure method. Chem. Eur. J. 2011;17:4238–4245. doi: 10.1002/chem.201003021. PubMed DOI
Li J., Peng J., Huang W., Wu Y., Fu J., Cong Y., Xue L., Han Y. Ordered honeycomb-structured gold nanoparticle films with changeable pore morphology: From circle to ellipse. Langmuir. 2005;21:2017–2021. doi: 10.1021/la047625l. PubMed DOI
Wu X., Wang S. Regulating MC3T3-E1 cells on deformable poly (ε-caprolactone) honeycomb films prepared using a surfactant-free breath figure method in a water-miscible solvent. ACS Appl. Mater. Interfaces. 2012;4:4966–4975. doi: 10.1021/am301334s. PubMed DOI
Kasuya J., Sudo R., Tamogami R., Masuda G., Mitaka T., Ikeda M., Tanishita K. Reconstruction of 3D stacked hepatocyte tissues using degradable, microporous poly (d, l-lactide-co-glycolide) membranes. Biomaterials. 2012;33:2693–2700. doi: 10.1016/j.biomaterials.2011.12.039. PubMed DOI
Fajstavrová K., Rimpelová S., Fajstavr D., Švorčík V., Slepička P. PLLA honeycomb-like pattern on fluorinated ethylene propylene as a substrate for fibroblast growth. Polymers. 2020;12:2436. doi: 10.3390/polym12112436. PubMed DOI PMC
Bunz U.H.F. Breath figures as a dynamic templating method for polymers and nanomaterials. Adv. Mater. 2006;18:973–989. doi: 10.1002/adma.200501131. DOI
Kuroda K., Caputo G.A., DeGrado W.F. The role of hydrophobicity in the antimicrobial and hemolytic activities of polymethacrylate derivatives. Chem. Eur. J. 2009;15:1123–1133. doi: 10.1002/chem.200801523. PubMed DOI PMC
Lin C.L., Tung P.H., Chang F.C. Synthesis of rod-coil diblock copolymers by ATRP and their honeycomb morphologies formed by the ‘breath figures’ method. Polymer. 2005;46:9304–9313. doi: 10.1016/j.polymer.2005.07.051. DOI
Deepak V., Asha S. Self-organization-induced three-dimensional honeycomb pattern in structure-controlled bulky methacrylate polymers: Synthesis, morphology, and mechanism of pore formation. J. Phys. Chem. B. 2006;110:21450–21459. doi: 10.1021/jp063469a. PubMed DOI
Wu X., Jones M.D., Davidson M.G., Chaudhuri J.B., Ellis M.J. Surfactant-free poly (lactide-co-glycolide) honeycomb films for tissue engineering: Relating solvent, monomer ratio and humidity to scaffold structure. Biotechnol. Lett. 2011;33:423–430. doi: 10.1007/s10529-010-0438-y. PubMed DOI
Fukuhira Y., Yabu H., Ijiro K., Shimomura M. Interfacial tension governs the formation of self-organized honeycomb-patterned polymer films. Soft Matter. 2009;5:2037–2041. doi: 10.1039/b821183c. DOI
Yabu H. Fabrication of honeycomb films by the breath figure technique and their applications. Sci. Technol. Adv. Mater. 2018;19:802–822. doi: 10.1080/14686996.2018.1528478. DOI
Bui V.T., Ko S.H., Choi H.S. Large-scale fabrication of commercially available, nonpolar linear polymer film with a highly ordered honeycomb pattern. ACS Appl. Mater. Interfaces. 2015;7:10541–10547. doi: 10.1021/acsami.5b02097. PubMed DOI
Nishikawa T., Nishida J., Ookura R., Nishimura S.I., Scheumann V., Zizlsperger M., Lawall R., Knoll W., Shimomura M. Web-structured films of an amphiphilic polymer from water in oil emulsion: Fabrication and characterization. Langmuir. 2000;16:1337–1342. doi: 10.1021/la9809170. DOI
Ferrari E., Fabbri P., Pilati F. Solvent and substrate contributions to the formation of breath figure patterns in polystyrene films. Langmuir. 2011;27:1874–1881. doi: 10.1021/la104500j. PubMed DOI
Jiang X., Zhang T., Xu L., Wang C., Zhou X., Gu N. Surfactant-induced formation of honeycomb pattern on micropipette with curvature gradient. Langmuir. 2011;27:5410–5419. doi: 10.1021/la200375t. PubMed DOI
Connal L.A., Vestberg R., Hawker C.J., Qiao G.G. Fabrication of reversibly crosslinkable, 3-dimensionally conformal polymeric microstructures. Adv. Funct. Mater. 2008;18:3315–3322. doi: 10.1002/adfm.200800333. DOI
Ucar I.O., Erbil H.Y. Dropwise condensation rate of water breath figures on polymer surfaces having similar surface free energies. Appl. Surf. Sci. 2012;259:515–523. doi: 10.1016/j.apsusc.2012.07.076. DOI
Lee J., Cuddihy M.J., Kotov N.A. Three-dimensional cell culture matrices: State of the art. Tissue Eng. Part B Rev. 2008;14:61–86. doi: 10.1089/teb.2007.0150. PubMed DOI
Gloria A., De Santis R., Ambrosio L. Polymer-based composite scaffolds for tissue engineering. J. Appl. Biomater. Biomech. 2010;8:57–67. PubMed
Yuan M.-S., Xu W., He Q.-G., Cheng J.G., Fu Y.-Y. Research progress of breath figure method in device application. Chin. J. Anal. Chem. 2022;50:44–52. doi: 10.1016/j.cjac.2021.11.006. DOI
Shiohara A., Prieto-Simon B., Voelcker N.H. Porous polymeric membranes: Fabrication techniques and biomedical applications. J. Mater. Chem. B. 2021;9:2129–2154. doi: 10.1039/D0TB01727B. PubMed DOI
Davis M.E. Non-viral gene delivery systems. Curr. Opin. Biotechnol. 2002;13:128–131. doi: 10.1016/S0958-1669(02)00294-X. PubMed DOI
Wu L.W., Wan L.S., Ou Y., Zhu L.W., Xu Z.K. Fabrication of transferable perforated isoporous membranes on versatile solid substrates via the breath figure method. Adv. Mater. Interfaces. 2015;2:1500285. doi: 10.1002/admi.201500285. DOI
Yu B., Cong H., Li Z., Yuan H., Peng Q., Chi M., Yang S., Yang R., Ranil Wickramasinghe S., Tang J. Fabrication of highly ordered porous membranes of cellulose triacetate on ice substrates using breath figure method. J. Polym. Sci. Part B Polym. Phys. 2015;53:552–558. doi: 10.1002/polb.23667. DOI
Ou Y., Wang L.-Y., Zhu L.-W., Wan L.-S., Xu Z.-K. In-situ immobilization of silver nanoparticles on self-assembled honeycomb-patterned films enables surface-enhanced Raman scattering (SERS) substrates. J. Phys. Chem. C. 2014;118:11478–11484. doi: 10.1021/jp503166g. DOI
Yabu H., Shimomura M. Single-step fabrication of transparent superhydrophobic porous polymer films. Chem. Mater. 2005;17:5231–5234. doi: 10.1021/cm051281i. DOI
Vohra V., Bolognesi A., Calzaferri G., Botta C. Multilevel organization in hybrid thin films for optoelectronic applications. Langmuir. 2009;25:12019–12023. doi: 10.1021/la9032089. PubMed DOI
Biswal T. Biopolymers for tissue engineering applications: A review. Mater. Today Proc. 2021;41:397–402. doi: 10.1016/j.matpr.2020.09.628. DOI
Calejo M.T., Ilmarinen T., Skottman H., Kellomäki M. Breath figures in tissue engineering and drug delivery: State-of-the-art and future perspectives. Acta Biomater. 2018;66:44–66. PubMed
Bovey F. Macromolecules: An Introduction to Polymer Science. Elsevier; Amsterdam, The Netherlands: 2012.
Liang J., Ma Y., Sims S., Wu L. A patterned porous polymer film for localized capture of insulin and glucose-responsive release. J. Mater. Chem. B. 2015;3:1281–1288. doi: 10.1039/C4TB01537A. PubMed DOI
Yamazaki H., Kohashi S., Ito K., Ijiro K., Shimomura M. Production technology and applications of honeycomb films. Polym. J. 2022;54:107–120. doi: 10.1038/s41428-021-00549-0. DOI
Arai K., Tanaka M., Yamamoto S., Shimomura M. Effect of pore size of honeycomb films on the morphology, adhesion and cytoskeletal organization of cardiac myocytes. Colloids Surf. A Physicochem. Eng. Asp. 2008;313:530–535. doi: 10.1016/j.colsurfa.2007.04.128. DOI
Tanaka M., Takayama A., Ito E., Sunami H., Yamamoto S., Shimomura M. Effect of pore size of self-organized honeycomb-patterned polymer films on spreading, focal adhesion, proliferation, and function of endothelial cells. J. Nanosci. Nanotechnol. 2007;7:763–772. PubMed
Eniwumide J.O., Tanaka M., Nagai N., Morita Y., De Bruijn J., Yamamoto S., Onodera S., Kondo E., Yasuda K., Shimomura M. The morphology and functions of articular chondrocytes on a honeycomb-patterned surface. BioMed Res. Int. 2014;2014:710354. doi: 10.1155/2014/710354. PubMed DOI PMC
Birch M.A., Tanaka M., Kirmizidis G., Yamamoto S., Shimomura M. Microporous “honeycomb” films support enhanced bone formation in vitro. Tissue Eng. Part A. 2013;19:2087–2096. doi: 10.1089/ten.tea.2012.0729. PubMed DOI
Clement A.L., Moutinho T.J., Jr., Pins G.D. Micropatterned dermal–epidermal regeneration matrices create functional niches that enhance epidermal morphogenesis. Acta Biomater. 2013;9:9474–9484. doi: 10.1016/j.actbio.2013.08.017. PubMed DOI PMC
McMillan J.R., Akiyama M., Tanaka M., Yamamoto S., Goto M., Abe R., Sawamura D., Shimomura M., Shimizu H. Small-diameter porous Poly (ϵ-Caprolactone) films enhance adhesion and growth of human cultured epidermal keratinocyte and dermal fibroblast cells. Tissue Eng. 2007;13:789–798. doi: 10.1089/ten.2006.0321. PubMed DOI
Chen S., Lu X., Hu Y., Lu Q. Biomimetic honeycomb-patterned surface as the tunable cell adhesion scaffold. Biomater. Sci. 2015;3:85–93. doi: 10.1039/C4BM00233D. PubMed DOI
Li L., Chen C., Li J., Zhang A., Liu X., Xu B., Gao S., Jin G., Ma Z. Robust and hydrophilic polymeric films with honeycomb pattern and their cell scaffold applications. J. Mater. Chem. 2009;19:2789–2796. doi: 10.1039/b820279f. DOI
Tsuruma A., Tanaka M., Yamamoto S., Shimomura M. Control of neural stem cell differentiation on honeycomb films. Colloids Surf. A Physicochem. Eng. Asp. 2008;313:536–540. doi: 10.1016/j.colsurfa.2007.05.079. DOI
Liu Y., Xu J., Zhou Y., Ye Z., Tan W.-S. Layer-by-layer assembled polyelectrolytes on honeycomb-like porous poly (ε-caprolactone) films modulate the spatial distribution of mesenchymal stem cells. Mater. Sci. Eng. C. 2017;78:579–588. doi: 10.1016/j.msec.2017.04.140. PubMed DOI
Farzaneh Z., Pournasr B., Ebrahimi M., Aghdami N., Baharvand H. Enhanced functions of human embryonic stem cell-derived hepatocyte-like cells on three-dimensional nanofibrillar surfaces. Stem Cell Rev. Rep. 2010;6:601–610. doi: 10.1007/s12015-010-9179-5. PubMed DOI
Jeon G., Yang S.Y., Kim J.K. Functional nanoporous membranes for drug delivery. J. Mater. Chem. 2012;22:14814–14834. doi: 10.1039/c2jm32430j. DOI
Velayudhan S., Kumar P., Nair P.D. A novel, single step, highly sensitive in-vitro cell-based metabolic assay using honeycomb microporous polymer membranes. J. Biomed. Nanotechnol. 2015;11:590–599. doi: 10.1166/jbn.2015.2066. PubMed DOI
Huang X., Brazel C.S. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J. Control. Release. 2001;73:121–136. doi: 10.1016/S0168-3659(01)00248-6. PubMed DOI
Ponnusamy T., Lawson L.B., Freytag L.C., Blake D.A., Ayyala R.S., John V.T. In vitro degradation and release characteristics of spin coated thin films of PLGA with a “breath figure” morphology. Biomatter. 2012;2:77–86. doi: 10.4161/biom.20390. PubMed DOI PMC
Ponnusamy T., Yu H., John V.T., Ayyala R.S., Blake D.A. A novel antiproliferative drug coating for glaucoma drainage devices. J. Glaucoma. 2014;23:526–534. doi: 10.1097/IJG.0b013e318294869b. PubMed DOI
Dai Z., Yu X., Hong J., Liu X., Sun J., Sun X. Development of a novel CsA-PLGA drug delivery system based on a glaucoma drainage device for the prevention of postoperative fibrosis. Mater. Sci. Eng. C. 2016;66:206–214. doi: 10.1016/j.msec.2016.04.077. PubMed DOI
Grabacka M., Waligorski P., Zapata A., Blake D., Wyczechowska D., Wilk A., Rutkowska M., Vashistha H., Ayyala R., Ponnusamy T. Fenofibrate subcellular distribution as a rationale for the intracranial delivery through biodegradable carrier. J. Physiol. Pharmacol. 2015;66:233. PubMed PMC
Zhuang C., Shi C., Tao F., Cui Y. Honeycomb structural composite polymer network of gelatin and functional cellulose ester for controlled release of omeprazole. Int. J. Biol. Macromol. 2017;105:1644–1653. doi: 10.1016/j.ijbiomac.2017.01.019. PubMed DOI
De León A.S., Molina M., Wedepohl S., Muñoz-Bonilla A., Rodríguez-Hernández J., Calderón M. Immobilization of stimuli-responsive nanogels onto honeycomb porous surfaces and controlled release of proteins. Langmuir. 2016;32:1854–1862. doi: 10.1021/acs.langmuir.5b04166. PubMed DOI
Su Y., Dang J., Zhang H., Zhang Y., Tian W. Supramolecular Host–Guest Interaction-Enhanced Adjustable Drug Release Based on β-Cyclodextrin-Functionalized Thermoresponsive Porous Polymer Films. Langmuir. 2017;33:7393–7402. doi: 10.1021/acs.langmuir.7b01502. PubMed DOI
Wang C., Liu Q., Shao X., Yang G., Xue H., Hu X. One step fabrication of nanoelectrode ensembles formed via amphiphilic block copolymers self-assembly and selective voltammetric detection of uric acid in the presence of high ascorbic acid content. Talanta. 2007;71:178–185. doi: 10.1016/j.talanta.2006.03.055. PubMed DOI
Wang Q., Wen X., Kong J. Recent progress on uric acid detection: A review. Crit. Rev. Anal. Chem. 2020;50:359–375. doi: 10.1080/10408347.2019.1637711. PubMed DOI
Chen P.C., Wan L.S., Ke B.B., Xu Z.K. Honeycomb-patterned film segregated with phenylboronic acid for glucose sensing. Langmuir. 2011;27:12597–12605. doi: 10.1021/la201911f. PubMed DOI
Ting S.S., Min E.H., Escale P., Save M., Billon L., Stenzel M.H. Lectin recognizable biomaterials synthesized via nitroxide-mediated polymerization of a methacryloyl galactose monomer. Macromolecules. 2009;42:9422–9434. doi: 10.1021/ma9019015. DOI
Munoz-Bonilla A., Ibarboure E., Bordegé V., Fernández-García M., Rodríguez-Hernández J. Fabrication of honeycomb-structured porous surfaces decorated with glycopolymers. Langmuir. 2010;26:8552–8558. doi: 10.1021/la904565d. PubMed DOI
Miller S., Bao Z. Fabrication of flexible pressure sensors with microstructured polydimethylsiloxane dielectrics using the breath figures method. J. Mater. Res. 2015;30:3584–3594. doi: 10.1557/jmr.2015.334. DOI
Hall-Stoodley L., Costerton J.W., Stoodley P. Bacterial biofilms: From the natural environment to infectious diseases. Nat. Rev. Microbiol. 2004;2:95–108. doi: 10.1038/nrmicro821. PubMed DOI
Yang M., Ding Y., Ge X., Leng Y. Control of bacterial adhesion and growth on honeycomb-like patterned surfaces. Colloids Surf. B Biointerfaces. 2015;135:549–555. doi: 10.1016/j.colsurfb.2015.08.010. PubMed DOI
Zhao Y., Shang Q., Yu J., Zhang Y., Liu S. Nanostructured 2D diporphyrin honeycomb film: Photoelectrochemistry, photodegradation, and antibacterial activity. ACS Appl. Mater. Interfaces. 2015;7:11783–11791. doi: 10.1021/acsami.5b03254. PubMed DOI
Muñoz-Bonilla A., Cuervo-Rodríguez R., López-Fabal F., Gómez-Garcés J.L., Fernández-García M. Antimicrobial porous surfaces prepared by breath figures approach. Materials. 2018;11:1266. doi: 10.3390/ma11081266. PubMed DOI PMC
Wang Y., Liu Y., Li G., Hao J. Porphyrin-based honeycomb films and their antibacterial activity. Langmuir. 2014;30:6419–6426. doi: 10.1021/la501244s. PubMed DOI
Manabe K., Nishizawa S., Shiratori S. Porous surface structure fabricated by breath figures that suppresses Pseudomonas aeruginosa biofilm formation. ACS Appl. Mater. Interfaces. 2013;5:11900–11905. doi: 10.1021/am4035762. PubMed DOI
Vargas-Alfredo N., Santos-Coquillat A., Martínez-Campos E., Dorronsoro A., Cortajarena A.L., Del Campo A., Rodríguez-Hernández J. Highly efficient antibacterial surfaces based on bacterial/cell size selective microporous supports. ACS Appl. Mater. Interfaces. 2017;9:44270–44280. doi: 10.1021/acsami.7b11337. PubMed DOI
Huang C., Shen X., Liu X., Chen Z., Shu B., Wan L., Liu H., He J. Hybrid breath figure method: A new insight in Petri dishes for cell culture. J. Colloid Interface Sci. 2019;541:114–122. doi: 10.1016/j.jcis.2019.01.074. PubMed DOI
Slepička P., Fajstavr D., Krejčová M., Rimpelová S., Slepičková Kasálková N., Kolská Z., Švorčík V. Biopolymer Composites with Ti/Au Nanostructures and Their Antibacterial Properties. Pharmaceutics. 2021;13:826. doi: 10.3390/pharmaceutics13060826. PubMed DOI PMC
Hurtuková K., Fajstavrová K., Rimpelová S., Vokatá B., Fajstavr D., Slepičková Kasálková N., Siegel J., Švorčík V., Slepička P. Antibacterial properties of a honeycomb-like pattern with cellulose acetate and silver nanoparticles. Materials. 2021;14:4051. doi: 10.3390/ma14144051. PubMed DOI PMC
Tormena R.P.I., Rosa E.V., de Fátima Oliveira Mota B., Chaker J.A., Fagg C.W., Freire D.O., Martins P.M., da Silva I.C.R., Sousa M.H. Evaluation of the antimicrobial activity of silver nanoparticles obtained by microwave-assisted green synthesis using Handroanthus impetiginosus (Mart. ex DC.) Mattos underbark extract. RSC Adv. 2020;10:20676–20681. doi: 10.1039/D0RA03240A. PubMed DOI PMC
Jiang X., Zhang T., He S., Ling J., Gu N., Zhang Y., Zhou X., Wang X., Cheng L. Bacterial adhesion on honeycomb-structured poly (L-lactic acid) surface with Ag nanoparticles. J. Biomed. Nanotechnol. 2012;8:791–799. doi: 10.1166/jbn.2012.1432. PubMed DOI
Kim Y.W., Modigunta J.K.R., Male U. Effect of ferrocene on the fabrication of honeycomb-patterned porous polystyrene films and silver functionalization of the film. Polymer. 2019;166:55–62. doi: 10.1016/j.polymer.2019.01.046. DOI
Mirotsou M., Abe M., Lanza R. Principles of Tissue Engineering. Elsevier; Amsterdam, The Netherlands: 2020. Corneal replacement tissue; pp. 1135–1143.
Slepicka P., Slepickova Kasalkova N., Siegel J., Kolska Z., Bacakova L., Svorcik V. Nano-structured and functionalized surfaces for cytocompatibility improvement and bactericidal action. Biotechnol. Adv. 2015;33:1120–1129. doi: 10.1016/j.biotechadv.2015.01.001. PubMed DOI
Slepička P., Siegel J., Lyutakov O., Slepičková Kasálková N., Kolská Z., Bačáková L., Švorčík V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. doi: 10.1016/j.biotechadv.2017.12.011. PubMed DOI
Toncheva A., Mincheva R., Kancheva M., Manolova N., Rashkov I., Dubois P., Markova N. Antibacterial PLA/PEG electrospun fibers: Comparative study between grafting and blending PEG. Eur. Polym. J. 2016;75:223–233. doi: 10.1016/j.eurpolymj.2015.12.019. DOI
Yim E.K., Pang S.W., Leong K.W. Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp. Cell Res. 2007;313:1820–1829. doi: 10.1016/j.yexcr.2007.02.031. PubMed DOI PMC
Xia L., Wei Z., Wan M. Conducting polymer nanostructures and their application in biosensors. J. Colloid Interface Sci. 2010;341:1–11. doi: 10.1016/j.jcis.2009.09.029. PubMed DOI
Michaljaničová I., Slepička P., Rimpelová S., Slepičková Kasálková N., Švorčík V. Regular pattern formation on surface of aromatic polymers and its cytocompatibility. Appl. Surf. Sci. 2016;370:131–141. doi: 10.1016/j.apsusc.2016.02.160. DOI
Slepička P., Michaljaničová I., Slepičková Kasálková N., Kolská Z., Rimpelová S., Ruml T., Švorčík V. Poly-l-lactic acid modified by etching and grafting with gold nanoparticles. J. Mater. Sci. 2013;48:5871–5879. doi: 10.1007/s10853-013-7383-9. DOI
Kasálková Slepičková N., Slepička P., Kolská Z., Hodačová P., Kučková Š., Švorčík V. Grafting of bovine serum albumin proteins on plasma-modified polymers for potential application in tissue engineering. Nanoscale Res. Lett. 2014;9:161. doi: 10.1186/1556-276X-9-161. PubMed DOI PMC
Yang Y.W., Wu J.Y., Liu C.T., Liao G.C., Huang H.Y., Hsu R.Q., Chiang M.H., Wu J.S. Fast incorporation of primary amine group into polylactide surface for improving C2C12 cell proliferation using nitrogen-based atmospheric-pressure plasma jets. J. Biomed. Mater. Res. Part A. 2014;102:160–169. doi: 10.1002/jbm.a.34681. PubMed DOI
Cheng K.Y., Chang C.H., Yang Y.W., Liao G.C., Liu C.T., Wu J.S. Enhancement of cell growth on honeycomb-structured polylactide surface using atmospheric-pressure plasma jet modification. Appl. Surf. Sci. 2017;394:534–542. doi: 10.1016/j.apsusc.2016.10.093. DOI
González-Henríquez C., Rodríguez-Hernández J. Wrinkled Polymer Surfaces: Strategies, Methods and Applications. Springer; Berlin/Heidelberg, Germany: 2019.
Slepička P., Neděla O., Sajdl P., Kolská Z., Švorčík V. Polyethylene naphthalate as an excellent candidate for ripple nanopatterning. Appl. Surf. Sci. 2013;285:885–892. doi: 10.1016/j.apsusc.2013.09.007. DOI
Fajstavr D., Slepička P., Švorčík V. LIPSS with gold nanoclusters prepared by combination of heat treatment and KrF exposure. Appl. Surf. Sci. 2019;465:919–928. doi: 10.1016/j.apsusc.2018.09.167. DOI
Yabu H., Matsui J., Matsuo Y. Site-Selective Wettability Control of Honeycomb Films by UV–O3-Assisted Sol–Gel Coating. Langmuir. 2020;36:12023–12029. doi: 10.1021/acs.langmuir.0c02401. PubMed DOI
Lišková J., Slepičková Kasálková N., Slepička P., Švorčík V., Bačáková L. Heat-treated carbon coatings on poly (L-lactide) foils for tissue engineering. Mater. Sci. Eng. C. 2019;100:117–128. doi: 10.1016/j.msec.2019.02.105. PubMed DOI
Yabu H., Hirai Y., Shimomura M. Electroless plating of honeycomb and pincushion polymer films prepared by self-organization. Langmuir. 2006;22:9760–9764. doi: 10.1021/la062228r. PubMed DOI
Yabu H., Inoue K., Shimomura M. Multiple-periodic structures of self-organized honeycomb-patterned films and polymer nanoparticles hybrids. Colloids Surf. A Physicochem. Eng. Asp. 2006;284:301–304. doi: 10.1016/j.colsurfa.2005.10.082. DOI
Slepička P., Rimpelová S., Slepičková Kasálková N., Fajstavr D., Sajdl P., Kolská Z., Švorčík V. Antibacterial properties of plasma-activated perfluorinated substrates with silver nanoclusters deposition. Nanomaterials. 2021;11:182. doi: 10.3390/nano11010182. PubMed DOI PMC
Kabuto T., Hashimoto Y., Karthaus O. Thermally stable and solvent resistant mesoporous honeycomb films from a crosslinkable polymer. Adv. Funct. Mater. 2007;17:3569–3573. doi: 10.1002/adfm.200700249. DOI
Karikari A.S., Williams S.R., Heisey C.L., Rawlett A.M., Long T.E. Porous thin films based on photo-cross-linked star-shaped poly (D, L-lactide) s. Langmuir. 2006;22:9687–9693. doi: 10.1021/la0603020. PubMed DOI
Bolognesi A., Galeotti F., Moreau J., Giovanella U., Porzio W., Scavia G., Bertini F. Unsoluble ordered polymeric pattern by breath figure approach. J. Mater. Chem. 2010;20:1483–1488. doi: 10.1039/b917267j. DOI
Slepička P., Siegel J., Šlouf M., Fajstavr D., Fajstavrová K., Kolská Z., Švorčík V. The Functionalization of a Honeycomb Polystyrene Pattern by Excimer Treatment in Liquid. Polymers. 2022;14:4944–4955. doi: 10.3390/polym14224944. PubMed DOI PMC
Xu W.Z., Zhang X., Kadla J.F. Design of functionalized cellulosic honeycomb films: Site-specific biomolecule modification via “click chemistry”. Biomacromolecules. 2012;13:350–357. doi: 10.1021/bm201364r. PubMed DOI
Nishida J., Nishikawa K., Nishimura S.-I., Wada S., Karino T., Nishikawa T., Ijiro K., Shimomura M. Preparation of self-organized micro-patterned polymer films having cell adhesive ligands. Polym. J. 2002;34:166–174. doi: 10.1295/polymj.34.166. DOI
Cha T. Surface Chemical Modification for the Immobilization of Biomolecules. University of Minnesota; Minneapolis, MN, USA: 2005.
Min E., Wong K.H., Stenzel M.H. Microwells with patterned proteins by a self-assembly process using honeycomb-structured porous films. Adv. Mater. 2008;20:3550–3556. doi: 10.1002/adma.200800569. DOI
Ke B.B., Wan L.S., Xu Z.K. Controllable construction of carbohydrate microarrays by site-directed grafting on self-organized porous films. Langmuir. 2010;26:8946–8952. doi: 10.1021/la904729b. PubMed DOI
Nystrom D., Malmstrom E., Hult A., Blakey I., Boyer C., Davis T.P., Whittaker M.R. Biomimetic surface modification of honeycomb films via a “grafting from” approach. Langmuir. 2010;26:12748–12754. doi: 10.1021/la1011567. PubMed DOI
Zhang Y., Wang C. Micropatterning of Proteins on 3D Porous Polymer Film Fabricated by Using the Breath-Figure Method. Adv. Mater. 2007;19:913–916.
Hernández-Guerrero M., Min E., Barner-Kowollik C., Müller A.H., Stenzel M.H. Grafting thermoresponsive polymers onto honeycomb structured porous films using the RAFT process. J. Mater. Chem. 2008;18:4718–4730. doi: 10.1039/b807495j. DOI