Antibacterial Properties of Plasma-Activated Perfluorinated Substrates with Silver Nanoclusters Deposition
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33450953
PubMed Central
PMC7828452
DOI
10.3390/nano11010182
PII: nano11010182
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial properties, fluorinated ethylene propylene, material morphology, nanostructured surface, plasma treatment, poly(L-lactic) acid, polytetrafluoroethylene, silver nanoclusters,
- Publikační typ
- časopisecké články MeSH
This article is focused on the evaluation of surface properties of polytetrafluoroethylene (PTFE) nanotextile and a tetrafluoroethylene-perfluoro(alkoxy vinyl ether) (PFA) film and their surface activation with argon plasma treatment followed with silver nanoclusters deposition. Samples were subjected to plasma modification for a different time exposure, silver deposition for different time periods, or their combination. As an alternative approach, the foils were coated with poly-L-lactic acid (PLLA) and silver. The following methods were used to study the surface properties of the polymers: goniometry, atomic force microscopy, and X-ray photoelectron microscopy. By combining the aforementioned methods for material surface modification, substrates with antibacterial properties eliminating the growth of Gram-positive and Gram-negative bacteria were prepared. Studies of antimicrobial activity showed that PTFE plasma-modified samples coated with PLLA and deposited with a thin layer of Ag had a strong antimicrobial effect, which was also observed for the PFA material against the bacterial strain of S. aureus. Significant antibacterial effect against S. aureus, Proteus sp. and E. coli has been demonstrated on PTFE nanotextile plasma-treated for 240 s, coated with PLLA, and subsequently sputtered with thin Ag layer.
Zobrazit více v PubMed
Elbourne A., Crawford R.J., Ivanova E.P. Nano-structured antimicrobial surfaces: From nature to synthetic analogues. J. Colloid Interface Sci. 2017;508:603–616. doi: 10.1016/j.jcis.2017.07.021. PubMed DOI
Wang M., Tang T. Surface treatment strategies to combat implant-related infection from the beginning. J. Orthop. Transl. 2019;17:42–54. doi: 10.1016/j.jot.2018.09.001. PubMed DOI PMC
Olmo J.A.-D., Ruiz-Rubio L., Pérez-Alvarez L., Sáez-Martínez V., Vilas-Vilela J.L. Antibacterial coatings for improving the performance of biomaterials. Coatings. 2020;10:139. doi: 10.3390/coatings10020139. DOI
Adlhart C., Verran J., Azeveda N.F., Olmez H., Keinänen-Toivola M.M., Gouveia I., Melo L.F., Crijns F. Surface modifications for antimicrobial effects in the healthcare setting: A critical overview. J. Hosp. Infect. 2018;99:239–249. doi: 10.1016/j.jhin.2018.01.018. PubMed DOI
Huang K., Yang C., Huang S., Chen C., Lu Y., Lin Y. Recent advances in antimicrobial polymers: A mini-review. Int. J. Mol. Sci. 2016;17:1578. doi: 10.3390/ijms17091578. PubMed DOI PMC
Bazaka K., Jacob M.V., Chrzanowski W., Ostrikov K. Anti-bacterial surfaces: Natural agents, mechanisms of action, and plasma surface modification. RSC Adv. 2015;5:48739–48759. doi: 10.1039/C4RA17244B. DOI
Hu Z., Chan W.L., Szeto Y.S. Nanocomposite of chitosan and silver oxide and its antibacterial property. J. Appl. Polym. Sci. 2007;108:52–56. doi: 10.1002/app.26822. DOI
Kumar N., Desagani D., Chandran G., Ghosh N.N., Karthikeyan G., Waigaonkar S. Biocompatible agarose-chitosan coated silver nanoparticle composite for soft tissue engineering applications. Artif. Cells Nanomed. Biotechnol. 2017;46:637–649. doi: 10.1080/21691401.2017.1337021. PubMed DOI
Slepička P., Slepičková Kasálková N., Stránská E., Bačáková L., Švorčík V. Surface characterization of plasma treated polymers for applications as biocompatible carriers. Express Polym. Lett. 2013;7:535–545. doi: 10.3144/expresspolymlett.2013.50. DOI
Slepička P., Peterková L., Rimpelová S., Pinkner A., Slepičková Kasálková N., Kolská Z., Ruml T., Švorčík V. Plasma activated perfluoroethylenepropylene for cytocompatibility enhancement. Polym. Degrad. Stab. 2016;130:277–287. doi: 10.1016/j.polymdegradstab.2016.06.017. DOI
Peterková L., Rimpelová S., Slepička P., Slepičková Kasálková N., Veselý M., Švorčík V., Ruml T. Bioinert fluorinated ethylene-propylene copolymer modified for keratinocyte adhesion. FEBS J. 2016;283:318.
Slepička P., Neznalová K., Fajstavr D., Švorčík V. Nanostructuring of honeycomb-like polystyrene with excimer laser. Prog. Org. Coat. 2020;145:105670. doi: 10.1016/j.porgcoat.2020.105670. DOI
Neznalová K., Sajdl P., Švorčík V., Slepička P. Cellulose acetate honeycomb-like pattern created by improved phase separation. Express Polym. Lett. 2020;14:1078–1088.
Neznalová K., Fajstavr D., Rimpelová S., Slepičková Kasálková N., Kolská Z., Švorčík V., Slepička P. Honeycomb-patterned poly(L-lactic) acid on plasma-activated FEP as cell culture scaffold. Polym. Degrad. Stab. 2020;181:109370. doi: 10.1016/j.polymdegradstab.2020.109370. DOI
Fajstavrová K., Rimpelová S., Fajstavr D., Švorčík V., Slepička P. PLLA honeycomb-like pattern on fluorinated ethylene propylene as a substrate for fibroblast growth. Polymers. 2020;12:2436. doi: 10.3390/polym12112436. PubMed DOI PMC
Feng S.S., Zhong Z.X., Wang Y., Xing W.H., Drioli E. Progress and perspectives in PTFE membrane: Preparation, modification, and applications. J. Membr. Sci. 2018;549:332–349. doi: 10.1016/j.memsci.2017.12.032. DOI
Kolská Z., Řezníčková A., Hnatowicz V., Švorčík V. PTFE surface modification by Ar plasma and its characterization. Vacuum. 2012;86:643–647. doi: 10.1016/j.vacuum.2011.07.015. DOI
Zhang S., Liang X., Gadd G.M., Zhao Q. Advanced titanium dioxide-polytetrafluorethylene (TiO2-PTFE) nanocomposite coatings on stainless steel surfaces with antibacterial and anti-corrosion properties. App. Surf. Sci. 2019;490:231–241. doi: 10.1016/j.apsusc.2019.06.070. DOI
Yoon H.J., Kim S.E., Kwon Y.K., Kim E.J., Lee J.C., Lee Y.S. Synthesis of silver nanostructures on polytetrafluoroethylene (PTFE) using electron beam irradiation for antimicrobacterial effect. J. Ind. Eng. Chem. 2012;18:586–590. doi: 10.1016/j.jiec.2011.10.007. DOI
Guo R., Yin G., Sha X., Zhao Q., Wei L., Wamg H. The significant adhesion enhancement of Ag–polytetrafluoroethylene antibacterial coatings by using of molecular bridge. Appl. Surf. Sci. 2015;341:13–18. doi: 10.1016/j.apsusc.2015.02.131. DOI
Akinci A., Cobanoglu E. Coating of Al mould surfaces with polytetrafluoroethylene (PTFE), fluorinated ethylene propylene (FEP), perfluoroalkoxy (PFA) and ethylene-tetrafluoroethylene (ETFE) e-Polymers. 2009;9:1–7. doi: 10.1515/epoly.2009.9.1.401. DOI
Sprang N., Theirich D., Engemann J. Surface modification of fluoropolymers by microwave plasmas: FTIR investigations. Surf. Coat. Technol. 1998;98:865–871. doi: 10.1016/S0257-8972(97)00362-9. DOI
Zhaia M., Gong Y., Chena X., Xiao T., Zhang G., Xu L., Li H. Mass-producible hydrophobic perfluoroalkoxy/nano-silver coatings bysuspensionflame spraying for antifouling and dragreduction applications. Surf. Coat. Technol. 2017;328:115–120. doi: 10.1016/j.surfcoat.2017.08.049. DOI
Slepičková Kasálková N., Slepička P., Kolská Z., Hodačová P., Kučková Š., Švorčík V. Grafting of bovine serum albumin proteins on plasma-modified polymers for potential application in tissue engineering. Nanoscale Res. Lett. 2014;9:161–167. doi: 10.1186/1556-276X-9-161. PubMed DOI PMC
Neděla O., Slepička P., Sajdl P., Veselý M., Švorčík V. Surface analysis of ripple pattern on PS and PEN induced with ring-shaped mask due to KrF laser treatment. Surf. Interface Anal. 2017;49:25–33. doi: 10.1002/sia.6054. DOI
Slepicka P., Siegel J., Lyutakov O., Slepickova Kasalkova N., Kolska Z., Bacakova L., Svorcik V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. doi: 10.1016/j.biotechadv.2017.12.011. PubMed DOI
Liu F., Hashim N.A., Liu Y., Mhgareg Abed M.R., Li K. Progress in the production and modification of PVDF membranes. J. Membr. Sci. 2011;375:1–27. doi: 10.1016/j.memsci.2011.03.014. DOI
Liu C., Wu L., Zhang C., Chen W., Luo S. Surface hydrophilic modification of PVDF membranes by trace amounts of tannin and polyethyleneimine. Appl. Surf. Sci. 2018;457:695–704. doi: 10.1016/j.apsusc.2018.06.131. DOI
Lim S.J., Shin I.H. Graft copolymerization of GMA and EDMA on PVDF to hydrophilic surface modification by electron beam irradiation. Nucl. Eng. Technol. 2020;52:373–380. doi: 10.1016/j.net.2019.07.018. DOI
Yavari M., Okamoto Y., Lin H. The role of halogens in polychlorotrifluoroethylene (PCTFE) in membrane gas separations. J. Membr. Sci. 2018;548:380–389. doi: 10.1016/j.memsci.2017.11.043. DOI
Ebnesajjad S. Applied Plastics Engineering Handbook. William Andrew Publishing; Norwich, UK: 2017. Introduction to fluoropolymers; pp. 55–71.
Brobbey K.J., Haapanen J., Makela J.M., Gunell M., Eerola E., Rosqvist E., Peltonen J., Saarinen J.J., Tuominen M., Toivakka M. Effect of plasma coating on antibacterial activity of silver nanoparticles. Thin Solid Film. 2019;672:75–82. doi: 10.1016/j.tsf.2018.12.049. DOI
Okubo M., Tahara M., Saeki N., Yamamoto T. Surface modification of fluorocarbon polymer films for improved adhesion using atmospheric-pressure nonthermal plasma graft-polymerization. Thin Solid Film. 2008;516:6592–6597. doi: 10.1016/j.tsf.2007.11.033. DOI
Tripathi J., Sharma S., Tripathi S., Bisen R., Agrawal L. Modifications in optical and structural properties of PMMA/PCTFE blend films as a function of PCTFE concentration. Mater. Chem. Phys. 2017;194:172–181. doi: 10.1016/j.matchemphys.2017.03.036. DOI
Shan D., Grhard E., Zhang C., Tierney J.W., Xie D., Liu Z., Yang J. Polymeric biomaterials for biophotonic applications. Bioact. Mater. 2018;3:434–445. doi: 10.1016/j.bioactmat.2018.07.001. PubMed DOI PMC
Korzinskas T., Jung O., Smeets R., Stojanovic S., Najman S., Glenske K., Barbeck M. In vivo analysis of the biocompatibility and macrophage response of a non-resorbable PTFE membrane for guided bone regeneration. Int. J. Mol. Sci. 2018;19:2952. doi: 10.3390/ijms19102952. PubMed DOI PMC
Abbasian M., Massoumi B., Mohammad-Rezaei R., Samadian H., Jaymand B. Scaffolding polymeric biomaterials: Are naturally occurring biological macromolecules more appropriate for tissue engineering? Int. J. Biol. Macromol. 2019;134:673–694. doi: 10.1016/j.ijbiomac.2019.04.197. PubMed DOI
Faustino C.M.C., Lemos S.M.C., Monge N., Ribeiro I.A.C. A scope at antifouling strategies to prevent catheter-associated infections. Adv. Colloid Interface Sci. 2020;284:102230. doi: 10.1016/j.cis.2020.102230. PubMed DOI
Cardoso V.F., Correia D.M., Ribeiro C., Fernandes M.M., Lanceros-Méndez S. Fluorinated polymers as smart materials for advanced biomedical applications. Polymers. 2018;10:161. doi: 10.3390/polym10020161. PubMed DOI PMC
Dhandayuthapani B., Sakthi Kumar D. Biomaterials for Biomedical Applications. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2016. pp. 1–20.
Gomes M.F., Amorim J.B., Jianassi L.C., Castillo Salgado M.A. Biomaterials for Tissue Engineering Applications in Diabetes Mellitus. InTech; London, UK: 2018.
Shao H.J., Chen C.S., Lee I.C., Wang J.H., Young T.H. Designing a three-dimensional expanded polytetrafluoroethylene-poly(lactic-co-glycolic acid) scaffold for tissue engineering. Artif. Organs. 2009;33:309–317. doi: 10.1111/j.1525-1594.2009.00721.x. PubMed DOI
Banoriya D., Purohit R., Dwivedi R.K. Advanced application of polymer based biomaterials. Mater. Today Proc. 2017;4:3534–3541. doi: 10.1016/j.matpr.2017.02.244. DOI
Lv J., He B., Yu J., Wang Y., Wang C., Zhang S., Wang H., Hu J., Zhang Q., Cheng Y. Fluoropolymers for intracellular and in vivo protein delivery. Biomaterials. 2018;182:167–175. doi: 10.1016/j.biomaterials.2018.08.023. PubMed DOI
Tokiwa Y., Calabia B.P. Biodegradability and biodegradation of poly(lactide) Appl. Microbiol. Biotechnol. 2006;72:244–251. doi: 10.1007/s00253-006-0488-1. PubMed DOI
Sohrabnezhad S., Pourahmad A., Mehdipour Moghaddam M.J., Sadeghi A. Study of Antibacterial Activity of Ag and Ag2CO3 Nanoparticles Stabilized Over Montmorillonite. Spectrochim. Acta Part A. 2015;136:1728–1733. doi: 10.1016/j.saa.2014.10.074. PubMed DOI
Lok C.N., Ho C.M., Chen R., He Q.Y., Yu W.Y., Sun H., Tam P.K., Chiu J.F., Che C.M. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 2006;5:916–924. doi: 10.1021/pr0504079. PubMed DOI
Feng Q.L., Wu J., Chen G.Q., Cui F.Z., Kim T.N., Kim J.Q. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 2000;52:662–668. doi: 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3. PubMed DOI
Liau S.Y., Read D.C., Pugh W.J., Furr J.R., Russell A.D. Interaction of silver nitrate with readily identifiable groups: Relationship to the antibacterial action of silver ions. Lett. Appl. Microbiol. 1997;25:279–283. doi: 10.1046/j.1472-765X.1997.00219.x. PubMed DOI
Zhang X., Wangband L., Levanen E. Superhydrophobic surfaces for the reduction of bacterial adhesion. RSC Adv. 2013;3:12003–12020. doi: 10.1039/c3ra40497h. DOI
Polymer-Metal Bilayer with Alkoxy Groups for Antibacterial Improvement
Biopolymer Honeycomb Microstructures: A Review