Polymer-Metal Bilayer with Alkoxy Groups for Antibacterial Improvement
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
22-25734S
Czech Science Foundation
PubMed
38399886
PubMed Central
PMC10892951
DOI
10.3390/polym16040508
PII: polym16040508
Knihovny.cz E-zdroje
- Klíčová slova
- PEG coating, alkoxy amine, bacterial adhesion, diazotization, grafting, medical devices, polymer layer, stainless steel, titanium,
- Publikační typ
- časopisecké články MeSH
Many bio-applicable materials, medical devices, and prosthetics combine both polymer and metal components to benefit from their complementary properties. This goal is normally achieved by their mechanical bonding or casting only. Here, we report an alternative easy method for the chemical grafting of a polymer on the surfaces of a metal or metal alloys using alkoxy amine salt as a coupling agent. The surface morphology of the created composites was studied by various microscopy methods, and their surface area and porosity were determined by adsorption/desorption nitrogen isotherms. The surface chemical composition was also examined by various spectroscopy techniques and electrokinetic analysis. The distribution of elements on the surface was determined, and the successful bonding of the metal/alloys on one side with the polymer on the other by alkoxy amine was confirmed. The composites show significantly increased hydrophilicity, reliable chemical stability of the bonding, even interaction with solvent for thirty cycles, and up to 95% less bacterial adhesion for the modified samples in comparison with pristine samples, i.e., characteristics that are promising for their application in the biomedical field, such as for implants, prosthetics, etc. All this uses universal, two-step procedures with minimal use of energy and the possibility of production on a mass scale.
Zobrazit více v PubMed
Medici S., Peana M., Nurchi V.M., Lachowicz J.I., Crisponi G., Zoroddu M.A. Noble Metals in Medicine: Latest Advances. Coord. Chem. Rev. 2015;284:329–350. doi: 10.1016/j.ccr.2014.08.002. DOI
Ramezani M., Monroe M.B.B. Bacterial protease-responsive shape memory polymers for infection surveillance and biofilm inhibition in chronic wounds. J. Biomed. Mater. Res. A. 2023;7:921–937. doi: 10.1002/jbm.a.37527. PubMed DOI
Banerjee D., Nayakawde N.B., Antony D., Deshmukh M., Ghosh S., Sihlbom C., Berger E., Ul Haq U., Olausson M. Characterization of Decellularized Implants for Extracellular Matrix Integrity and Immune Response Elicitation. Tissue Eng. Part A. 2022;28:621–639. doi: 10.1089/ten.tea.2021.0146. PubMed DOI
Powell S.K., Cruz R.L.J., Ross M.T., Woodruff M.A. Past, Present, and Future of Soft-Tissue Prosthetics: Advanced Polymers and Advanced Manufacturing. Adv. Mater. 2020;32:2001122. doi: 10.1002/adma.202001122. PubMed DOI
Williams J.O.D., Solan G.A., Xu J., Allen J., Harris R.C., Timmermann V.M. Investigating Branched Polyethylene Sensors for Applications in Prosthetics. Macromol. Chem. Phys. 2021;222:2100206. doi: 10.1002/macp.202100206. DOI
Hogan K.J., Mikos A.G. Biodegradable Thermoresponsive Polymers: Applications in Drug Delivery and Tissue Engineering. Polymer. 2020;211:123063. doi: 10.1016/j.polymer.2020.123063. DOI
Liu L., Tang H., Wang Y. Polymeric biomaterials: Advanced drug delivery systems in osteoarthritis treatment. Heliyon. 2023;9:e21544. doi: 10.1016/j.heliyon.2023.e21544. PubMed DOI PMC
Kutová A., Staňková L., Vejvodová K., Kvítek O., Vokatá B., Fajstavr D., Kolská Z., Brož A., Bačáková L., Švorčík V. Influence of Drying Method and Argon Plasma Modification of Bacterial Nanocellulose on Keratinocyte Adhesion and Growth. Nanomaterials. 2021;11:1916. doi: 10.3390/nano11081916. PubMed DOI PMC
Sawadkar P., Mandakhbayar N., Patel K.D., Buitrago J.O., Kim T.H., Rajasekar P., Lali F., Kyriakidis C., Rahmani B., Mohanakrishnan J., et al. Three Dimensional Porous Scaffolds Derived from Collagen, Elastin and Fibrin Proteins Orchestrate Adipose Tissue Regeneration. J. Tissue Eng. 2021;12:204173142110192. doi: 10.1177/20417314211019238. PubMed DOI PMC
Jiang X., Zhang K., Huang Y., Xu B., Xu X., Zhang J., Zhang G. Conjugated Microporous Polymer with C≡C and C–F Bonds: Achieving Remarkable Stability and Super Anhydrous Proton Conductivity. ACS Appl. Mater. Interfaces. 2021;13:15536–15541. doi: 10.1021/acsami.1c02355. PubMed DOI
Gao S., Tang G., Hua D., Xiong R., Han J., Jiang S., Zhang Q., Huang C. Stimuli-Responsive Bio-Based Polymeric Systems and Their Applications. J. Mater. Chem. B. 2019;7:709–729. doi: 10.1039/C8TB02491J. PubMed DOI
Chan D., Maikawa C.L., D’Aquino A.I., Raghavan S.S., Troxell M.L., Appel E.A. Polyacrylamide-based hydrogel coatings improve biocompatibility of implanted pump devices. J. Biomed. Mater. Res. A. 2023;7:910–920. doi: 10.1002/jbm.a.37521. PubMed DOI PMC
Robert C., Mamalis D., Obande W., Koutsos V., Ó Brádaigh C.M., Ray D. Interlayer Bonding between Thermoplastic Composites and Metals by IN-SITU Polymerization Technique. J. Appl. Polym. Sci. 2021;138:51188. doi: 10.1002/app.51188. DOI
Idriss H., Elashnikov R., Rimpelová S., Vokatá B., Haušild P., Kolská Z., Lyukatov O., Švorčík V. Printable Resin Modified by Grafted Silver Nanoparticles for Preparation of Antifouling Microstructures with Antibacterial Effect. Polymers. 2021;13:3838. doi: 10.3390/polym13213838. PubMed DOI PMC
Xu R., Xie Y., Li R., Zhang J., Zhou T. Direct Bonding of Polymer and Metal with an Ultrahigh Strength: Laser Treatment and Mechanical Interlocking. Adv. Eng. Mater. 2021;23:2001288. doi: 10.1002/adem.202001288. DOI
Kafkopoulos G., Padberg C., Duvigneau J., Vancso G. Adhesion Engineering in Polymer–Metal Comolded Joints with Biomimetic Polydopamine, ACS Appl. Mater. Interfaces. 2021;13:19244–19253. doi: 10.1021/acsami.1c01070. PubMed DOI PMC
Singh G., Santhanakrishnan S. Fabrication and Characterization of Composite PMMA/HA Scaffold Using Freeze Casting Method. Adv. Perform. Mater. 2021;37:1734–1741. doi: 10.1080/10667857.2021.1978640. DOI
Lu X., Lin X., Chiumenti M., Cervera M., Hu Y., Ji X., Ma L., Huang W. In Situ Measurements and Thermo-Mechanical Simulation of Ti–6Al–4V Laser Solid Forming Processes. Int. J. Mech. Sci. 2019;153–154:119–130. doi: 10.1016/j.ijmecsci.2019.01.043. DOI
Mahouche-Chergui S., Gam-Derouich S., Mangeney C., Chehimi M.M. Aryl Diazonium Salts: A New Class of Coupling Agents for Bonding Polymers, Biomacromolecules and Nanoparticles to Surfaces. Chem. Soc. Rev. 2011;40:4143. doi: 10.1039/c0cs00179a. PubMed DOI
Idriss H., Guselnikova O., Postnikov P., Kolska Z., Haušild P., Čech J., Lyutakov O., Švorčík V. Versatile and Scalable Icephobization of Airspace Composite by Surface Morphology and Chemistry Tuning. ACS Appl. Polym. Mater. 2020;2:977–986. doi: 10.1021/acsapm.9b01185. DOI
Kim J., Choi J.-H., Sung M., Yu W.-R. Improved Adhesion of Metal–Polymer Sandwich Composites Using a Spontaneous Polymer Grafting Process. Funct. Compos. Struct. 2019;1:025004. doi: 10.1088/2631-6331/ab267b. DOI
Idriss H., Elashnikov R., Guselnikova O., Postnikov P., Kolska Z., Lyutakov O., Švorčík V. Reversible wettability switching of piezo-responsive nanostructured polymer fibers by electric field. Chem. Pap. 2020;75:191–196. doi: 10.1007/s11696-020-01290-3. DOI
Ma G.L., Candra H., Pang L.M., Xiong J., Ding Y.C., Tran H.T., Low Z.J., Ye H., Liu M., Zheng J., et al. Biosynthesis of Tasikamides via Pathway Coupling and Diazonium-Mediated Hydrazone Formation. J. Am. Chem. Soc. 2022;144:1622–1633. doi: 10.1021/jacs.1c10369. PubMed DOI
Alageel O., Abdallah M.N., Luo Z.Y., Del-Rio-Highsmith J., Cerruti M., Tamimi F. Bonding metals to poly (methyl methacrylate) using aryldiazonium salts. Dent. Mater. 2015;31:105–114. doi: 10.1016/j.dental.2014.11.002. PubMed DOI
Martin K.L., Parvulescu M.J.S., Patel T.A., Mogilevsky P., Key T.S., Thompson C.M., Dickerson M.B. Bioinspired Cross-Linking of Preceramic Polymers via Metal Ion Coordination Bonding. J. Eur. Ceram. Soc. 2021;41:6366–6376. doi: 10.1016/j.jeurceramsoc.2021.05.046. DOI
Zheng X., Wei J., Lin W., Ji K., Wang C., Chen M. Bridging Li7La3Zr2O12 Nanofibers with Poly(Ethylene Oxide) by Coordination Bonds to Enhance the Cycling Stability of All-Solid-State Lithium Metal Batteries. ACS Appl. Mater. Interfaces. 2022;14:5346–5354. doi: 10.1021/acsami.1c21131. PubMed DOI
Audran G., Brémond P., Joly J.-P., Marque S.R.A., Yamasaki T. C–ON Bond Homolysis in Alkoxyamines. Part 12: The Effect of the Para-Substituent in the 1-Phenylethyl Fragment. Org. Biomol. Chem. 2016;14:3574–3583. doi: 10.1039/C6OB00384B. PubMed DOI
Gehan H., Fillaud L., Chehimi M.M., Aubard J., Hohenau A., Felidj N., Mangeney C. Thermo-Induced Electromagnetic Coupling in Gold/Polymer Hybrid Plasmonic Structures Probed by Surface-Enhanced Raman Scattering. ACS Nano. 2010;4:6491–6500. doi: 10.1021/nn101451q. PubMed DOI
Hurtuková K., Fajstavrová K., Rimpelová S., Vokatá B., Fajstavr D., Kasálková N.S., Siegel J., Švorčík V., Slepička P. Antibacterial Properties of a Honeycomb-like Pattern with Cellulose Acetate and Silver Nanoparticles. Materials. 2021;14:4051. doi: 10.3390/ma14144051. PubMed DOI PMC
Slepička P., Rimpelová S., Slepičková Kasálková N., Fajstavr D., Sajdl P., Kolská Z., Švorčík V. Antibacterial Properties of Plasma-Activated Perfluorinated Substrates with Silver Nanoclusters Deposition. Nanomaterials. 2021;11:182. doi: 10.3390/nano11010182. PubMed DOI PMC
Aggarwal D., Kumar V., Sharma S. Drug-loaded biomaterials for orthopedic applications: A review. J. Control. Release. 2022;344:113–133. doi: 10.1016/j.jconrel.2022.02.029. PubMed DOI
Rodríguez-Sánchez J., Pacha-Olivenza M.A., González-Martín M.L. Bactericidal effect of magnesium ions over planktonic and sessile Staphylococcus epidermidis and Escherichia coli. Mater. Chem. Phys. 2019;221:342–348. doi: 10.1016/j.matchemphys.2018.09.050. DOI
Slepička P., Michaljaničová I., Rimpelová S., Švorčík V. Surface Roughness in Action–Cells in Opposition. Mater. Sci. Eng. C. 2017;76:818–826. doi: 10.1016/j.msec.2017.03.061. PubMed DOI
Slepička P., Peterková L., Rimpelová S., Pinkner A., Slepičková Kasálková N., Kolská Z., Ruml T., Švorčík V. Plasma Activated Perfluoroethylenepropylene for Cytocompatibility Enhancement. Polym. Degrad. Stab. 2016;130:277–287. doi: 10.1016/j.polymdegradstab.2016.06.017. DOI
Socrates G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. 3rd ed. Wiley; Chichester, UK: New York, NY, USA: 2001.
Kosmulski M., Maczka E. Zeta potential in dispersions of titania nanoparticles in moderately polar solvents stabilized with anionic surfactants. J. Mol. Liq. 2022;355:118972. doi: 10.1016/j.molliq.2022.118972. DOI
Elfazazi K., Zahir H., Tankiouine S., Mayoussi B., Zanane C., Lekchiri S., Ellouali M., Mliji E.M., Latrache H. Adhesion Behavior of Escherichia coli Strains on Glass: Role of Cell Surface Qualitative and Quantitative Hydrophobicity in Their Attachment Ability. Int. J. Microbiol. 2021;2021:5580274. doi: 10.1155/2021/5580274. PubMed DOI PMC
Cerca N., Pier G.B., Vilanova M., Oliveira R., Azeredo J. Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis. Res. Microbiol. 2005;156:506–514. doi: 10.1016/j.resmic.2005.01.007. PubMed DOI PMC
Du C., Zuo K., Ma Z., Zhao M., Li Y., Tian S., Lu Y., Xiao G. Effect of Substrates Performance on the Microstructure and Properties of Phosphate Chemical Conversion Coatings on Metal Surfaces. Molecules. 2022;27:6434. doi: 10.3390/molecules27196434. PubMed DOI PMC
Martínez I., Santillán R., Fuentes Camargo I., Rodríguez J.L., Andraca Adame J.A., Gutiérrez H.M. Synthesis and Characterization of Poly(2-vinylpyridine) and Poly(4-vinylpyridine) with Metal Oxide (TiO2, ZnO) Films for the Photocatalytic Degradation of Methyl Orange and Benzoic Acid. Polymers. 2022;14:4666. doi: 10.3390/polym14214666. PubMed DOI PMC
Chih Y.-K., You J.-L., Lin W.-H., Chang Y.-H., Tseng C.-C., Ger M.-D. A Novel Method for the Fabrication of Antibacterial Stainless Steel with Uniform Silver Dispersions by Silver Nanoparticle/Polyethyleneimine Composites. Materials. 2023;16:3719. doi: 10.3390/ma16103719. PubMed DOI PMC