Printable Resin Modified by Grafted Silver Nanoparticles for Preparation of Antifouling Microstructures with Antibacterial Effect

. 2021 Nov 06 ; 13 (21) : . [epub] 20211106

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34771393

The usage of three-dimensional (3D) printed materials in many bioapplications has been one of the fastest-growing sectors in the nanobiomaterial industry in the last couple of years. In this work, we present a chemical approach for grafting silver nanoparticles (AgNPs) into a resin matrix, which is convenient for 3D printing. In this way, the samples can be prepared and are able to release silver ions (Ag+) with excellent antibacterial effect against bacterial strains of E. coli and S. epidermidis. By the proposed process, the AgNPs are perfectly mixed and involved in the polymerization process and their distribution in the matrix is homogenous. It was also demonstrated that this approach does not affect the printing resolution and the resin is therefore suitable for the construction of microstructures enabling controlled silver ion release and antifouling properties. At the same time the physical properties of the material, such as viscosity and elasticity modulus are preserved. The described approach can be used for the fabrication of facile, low-cost 3D printed resin with antifouling-antibacterial properties with the possibility to control the release of Ag+ through microstructuring.

Zobrazit více v PubMed

Rafique M., Sadaf I., Tahir M.B., Nabi G., Iqbal T., Sughra K. Novel and facile synthesis of silver nanoparticles using Albizia procera leaf extract for dye degradation and antibacterial applications. Mater. Sci. Eng. C. 2019;99:1313–1324. doi: 10.1016/j.msec.2019.02.059. PubMed DOI

Liao S., Zhang Y., Pan X., Zhu F., Jiang C., Liu Q., Cheng Z., Dai G., Wu G., Wang L., et al. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int. J. Nanomed. 2019;14:1469–1487. doi: 10.2147/IJN.S191340. PubMed DOI PMC

Sofi H.S., Akram T., Tamboli A.H., Majeed A., Shabir N., Sheikh F.A. Novel lavender oil and silver nanoparticles simultaneously loaded onto polyurethane nanofibers for wound-healing applications. Int. J. Pharm. 2019;569:118590. doi: 10.1016/j.ijpharm.2019.118590. PubMed DOI

Kaur A., Goyal D., Kumar R. Surfactant mediated interaction of vancomycin with silver nanoparticles. Appl. Surf. Sci. 2018;449:23–30. doi: 10.1016/j.apsusc.2017.12.066. DOI

Elashnikov R., Slepička P., Rimpelova S., Ulbrich P., Švorčík V., Lyutakov O. Temperature-responsive PLLA/PNIPAM nanofibers for switchable release. Mater. Sci. Eng. C. 2017;72:293–300. doi: 10.1016/j.msec.2016.11.028. PubMed DOI

Baldino L., Aragón J., Mendoza G., Irusta S., Cardea S., Reverchon E. Production, characterization and testing of antibacterial PVA membranes loaded with HA-Ag3 PO4 nanoparticles, produced by SC-CO2 phase inversion. J. Chem. Technol. Biotechnol. 2018;94:98–108. doi: 10.1002/jctb.5749. DOI

Celebioglu A., Topuz F., Yildiz Z.I., Uyar T. One-step green synthesis of antibacterial silver nanoparticles embedded in electrospun cyclodextrin nanofibers. Carbohydr. Polym. 2018;207:471–479. doi: 10.1016/j.carbpol.2018.12.008. PubMed DOI

Gomez-Carretero S., Nybom R., Richter-Dahlfors A. Electroenhanced Antimicrobial Coating Based on Conjugated Polymers with Covalently Coupled Silver Nanoparticles Prevents Staphylococcus aureus Biofilm Formation. Adv. Heal. Mater. 2017;6:1700435. doi: 10.1002/adhm.201700435. PubMed DOI

Lyutakov O., Goncharova I., Rimpelova S., Kolarova K., Svanda J., Svorcik V. Silver release and antimicrobial properties of PMMA films doped with silver ions, nano-particles and complexes. Mater. Sci. Eng. C. 2015;49:534–540. doi: 10.1016/j.msec.2015.01.022. PubMed DOI

Qian H., Yang J., Lou Y., Rahman O.U., Li Z., Ding X., Gao J., Du C., Zhang D. Mussel-inspired superhydrophilic surface with enhanced antimicrobial properties under immersed and atmospheric conditions. Appl. Surf. Sci. 2018;465:267–278. doi: 10.1016/j.apsusc.2018.09.173. DOI

Pant B., Park M., Park S.-J. One-Step Synthesis of Silver Nanoparticles Embedded Polyurethane Nano-Fiber/Net Structured Membrane as an Effective Antibacterial Medium. Polymers. 2019;11:1185. doi: 10.3390/polym11071185. PubMed DOI PMC

Chen W.-C., Shiao J.-H., Tsai T.-L., Jiang D.-H., Chen L.-C., Chang C.-H., Lin B.-H., Lin J.H., Kuo C.C. Multiple Scattering from Electrospun Nanofibers with Embedded Silver Nanoparticles of Tunable Shape for Random Lasers and White-Light-Emitting Diodes. ACS Appl. Mater. Interfaces. 2020;12:2783–2792. doi: 10.1021/acsami.9b16059. PubMed DOI

Kuo Y.-Y., Cheng C.-H., Hung S.-K. 3D-Printed Linear Positioner with Micrometer Accuracy. MATEC Web Conf. 2017;95:10005. doi: 10.1051/matecconf/20179510005. DOI

Ertugrul I. The Fabrication of Micro Beam from Photopolymer by Digital Light Processing 3D Printing Technology. Micromachines. 2020;11:518. doi: 10.3390/mi11050518. PubMed DOI PMC

Idriss H., Elashnikov R., Guselnikova O., Postnikov P., Kolska Z., Lyutakov O., Švorčík V. Reversible wettability switching of piezo-responsive nanostructured polymer fibers by electric field. Chem. Pap. 2020;75:191–196. doi: 10.1007/s11696-020-01290-3. DOI

Sikder M., Lead J.R., Chandler G.T., Baalousha M. A rapid approach for measuring silver nanoparticle concentration and dissolution in seawater by UV-Vis, Sci. Total Environ. 2018;618:597–607. doi: 10.1016/j.scitotenv.2017.04.055. PubMed DOI

Paramelle D., Sadovoy A., Gorelik S., Free P., Hobley J., Fernig D.G. A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst. 2014;19:4855–4861. doi: 10.1039/C4AN00978A. PubMed DOI

Idriss H., Guselnikova O., Postnikov P., Kolská Z., Haušild P., Lyutakov O., Švorčík V. Polymer icephobic surface by graphite coating and chemical grafting with diazonium salts. Surf. Interfaces. 2021;25:101226. doi: 10.1016/j.surfin.2021.101226. DOI

Oliver W., Pharr G. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992;7:1564–1583. doi: 10.1557/JMR.1992.1564. DOI

Socrates G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. 3rd ed. Wiley; Hoboken, NJ, USA: 2004. pp. 154–196.

Kolarova K., Vosmanská V., Rimpelova S., Švorčík V. Effect of plasma treatment on cellulose fiber. Cellulose. 2013;20:953–961. doi: 10.1007/s10570-013-9863-0. DOI

Herigstad B., Hamilton M., Heersink J. How to optimize the drop plate method for enumerating bacteria. J. Microbiol. Methods. 2001;44:121–129. doi: 10.1016/S0167-7012(00)00241-4. PubMed DOI

Pišlová M., Kolářová K., Vokatá B., Brož A., Ulbrich P., Bačáková L., Kolská Z., Švorčík V. A new way to prepare gold nanoparticles by sputtering—Sterilization, stability and other properties. Mater. Sci. Eng. C. 2020;115:111087. doi: 10.1016/j.msec.2020.111087. PubMed DOI

Polívková M., Štrublová V., Hubáček T., Rimpelová S., Švorčík V., Siegel J. Surface characterization and antibacterial response of silver nanowire arrays supported on laser-treated polyethylene naphthalate. Mater. Sci. Eng. C. 2017;72:512–518. doi: 10.1016/j.msec.2016.11.072. PubMed DOI

Kennedy A.J., Vasudevan R., Pappas D.D., A Weiss C., Hendrix S.H., Baney R.H. Efficacy of non-toxic surfaces to reduce bioadhesion in terrestrial gastropods. Pest Manag. Sci. 2011;67:318–327. doi: 10.1002/ps.2068. PubMed DOI

Vasudevan R., Kennedy A.J., Merritt M., Crocker F.H., Baney R.H. Microscale patterned surfaces reduce bacterial fouling-microscopic and theoretical analysis. Colloids Surfaces B Biointerfaces. 2014;117:225–232. doi: 10.1016/j.colsurfb.2014.02.037. PubMed DOI

Děkanovský L., Elashnikov R., Kubiková M., Vokatá B., Švorčík V., Lyutakov O. Dual-Action Flexible Antimicrobial Material: Switchable Self-Cleaning, Antifouling, and Smart Drug Release. Adv. Funct. Mater. 2019;29:1901880. doi: 10.1002/adfm.201901880. DOI

Wen X., Almousa R., Anderson G.G., Xie D. Developing a novel antibacterial dental resin composite with improved properties. J. Compos. Mater. 2018;53:3085–3092. doi: 10.1177/0021998319839134. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Polymer-Metal Bilayer with Alkoxy Groups for Antibacterial Improvement

. 2024 Feb 13 ; 16 (4) : . [epub] 20240213

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...