Current Strategies for Noble Metal Nanoparticle Synthesis

. 2021 Mar 15 ; 16 (1) : 47. [epub] 20210315

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33721118

Grantová podpora
NPU I (LO1601, MSMT-43760/2015) Czech National Program of Sustainability

Odkazy

PubMed 33721118
PubMed Central PMC7960878
DOI 10.1186/s11671-021-03480-8
PII: 10.1186/s11671-021-03480-8
Knihovny.cz E-zdroje

Noble metals have played an integral part in human history for centuries; however, their integration with recent advances in nanotechnology and material sciences have provided new research opportunities in both academia and industry, which has resulted in a new array of advanced applications, including medical ones. Noble metal nanoparticles (NMNPs) have been of great importance in the field of biomedicine over the past few decades due to their importance in personalized healthcare and diagnostics. In particular, platinum, gold and silver nanoparticles have achieved the most dominant spot in the list, thanks to a very diverse range of industrial applications, including biomedical ones such as antimicrobial and antiviral agents, diagnostics, drug carriers and imaging probes. In particular, their superior resistance to extreme conditions of corrosion and oxidation is highly appreciated. Notably, in the past two decades there has been a tremendous advancement in the development of new strategies of more cost-effective and robust NMNP synthesis methods that provide materials with highly tunable physicochemical, optical and thermal properties, and biochemical functionalities. As a result, new advanced hybrid NMNPs with polymer, graphene, carbon nanotubes, quantum dots and core-shell systems have been developed with even more enhanced physicochemical characteristics that has led to exceptional diagnostic and therapeutic applications. In this review, we aim to summarize current advances in the synthesis of NMNPs (Au, Ag and Pt).

Zobrazit více v PubMed

Medici S, Peana M, Nurchi VM, Lachowicz JI, Crisponi G, Zoroddu MA. Noble metals in medicine: latest advances. Coord Chem Rev. 2015;284:329–350. doi: 10.1016/j.ccr.2014.08.002. DOI

Azharuddin M, et al. A repertoire of biomedical applications of noble metal nanoparticles. Chem Commun. 2019;55(49):6964–6996. doi: 10.1039/C9CC01741K. PubMed DOI

Conde J, Doria G, Baptista P. Noble metal nanoparticles applications in cancer. J Drug Deliv. 2012;2012:1–12. doi: 10.1155/2012/751075. PubMed DOI PMC

Balcerzak M (2015) Noble metals, analytical chemistry of. In: Encyclopedia of analytical chemistry. American Cancer Society, pp 1–29

Zhang Z, Wang H, Chen Z, Wang X, Choo J, Chen L. Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: Strategies and applications. Biosens Bioelectron. 2018;114:52–65. doi: 10.1016/j.bios.2018.05.015. PubMed DOI

Bhattacharyya S, Kudgus RA, Bhattacharya R, Mukherjee P. Inorganic nanoparticles in cancer therapy. Pharm Res. 2011;28(2):237–259. doi: 10.1007/s11095-010-0318-0. PubMed DOI PMC

Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu Rev Biomed Eng. 2007;9(1):257–288. doi: 10.1146/annurev.bioeng.9.060906.152025. PubMed DOI

Du R, Jin X, Hübner R, Fan X, Hu Y, Eychmüller A. Engineering self-supported noble metal foams toward electrocatalysis and beyond. Adv Energy Mater. 2020;10(11):1901945. doi: 10.1002/aenm.201901945. DOI

Sanvicens N, Marco MP. Multifunctional nanoparticles—properties and prospects for their use in human medicine. Trends Biotechnol. 2008;6:425–433. doi: 10.1016/j.tibtech.2008.04.005. PubMed DOI

Slepička P, Slepičková Kasálková N, Siegel J, Kolská Z, Švorčík V. Methods of gold and silver nanoparticles preparation. Materials (Basel) 2019;13(1):1. doi: 10.3390/ma13010001. PubMed DOI PMC

Rosarin FS, Mirunalini S. Nobel metallic nanoparticles with novel biomedical properties. J Bioanal Biomed. 2011;03(04):85–91. doi: 10.4172/1948-593X.1000049. DOI

Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine. 2007;2(5):681–693. doi: 10.2217/17435889.2.5.681. PubMed DOI

Dauthal P, Mukhopadhyay M. Noble metal nanoparticles: plant-mediated synthesis, mechanistic aspects of synthesis, and applications. Ind Eng Chem Res. 2016;55(36):9557–9577. doi: 10.1021/acs.iecr.6b00861. DOI

Darabdhara G, Das MR, Singh SP, Rengan AK, Szunerits S, Boukherroub R. Ag and Au nanoparticles/reduced graphene oxide composite materials: synthesis and application in diagnostics and therapeutics. Adv Colloid Interface Sci. 2019;271:101991. doi: 10.1016/j.cis.2019.101991. PubMed DOI

Sharma G, et al. Applications of nanocomposite hydrogels for biomedical engineering and environmental protection. Environ Chem Lett. 2018;16(1):113–146. doi: 10.1007/s10311-017-0671-x. DOI

Lee J, Kim J, Kim S, Min D-H. Biosensors based on graphene oxide and its biomedical application. Adv Drug Deliv Rev. 2016;105:275–287. doi: 10.1016/j.addr.2016.06.001. PubMed DOI PMC

Zare Y, Shabani I. Polymer/metal nanocomposites for biomedical applications. Mater Sci Eng C. 2016;60:195–203. doi: 10.1016/j.msec.2015.11.023. PubMed DOI

Rai M, Ingle AP, Birla S, Yadav A, Dos Santos CA. Strategic role of selected noble metal nanoparticles in medicine. Crit Rev Microbiol. 2016;42(5):696–719. PubMed

Lee HC, et al. Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. RSC Adv. 2017;7(26):15644–15693. doi: 10.1039/C7RA00392G. DOI

Wu Y, Wang S, Komvopoulos K. A review of graphene synthesis by indirect and direct deposition methods. J Mater Res. 2020;35(1):76–89. doi: 10.1557/jmr.2019.377. DOI

Iravani S, Varma RS. Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review. Environ Chem Lett. 2020;18(3):703–727. doi: 10.1007/s10311-020-00984-0. PubMed DOI PMC

Wang T, Nie C, Ao Z, Wang S, An T. Recent progress in g-C3N4 quantum dots: synthesis, properties and applications in photocatalytic degradation of organic pollutants. J Mater Chem A. 2020;8(2):485–502. doi: 10.1039/C9TA11368A. DOI

Manikandan A, Chen Y-Z, Shen C-C, Sher C-W, Kuo H-C, Chueh Y-L. A critical review on two-dimensional quantum dots (2D QDs): from synthesis toward applications in energy and optoelectronics. Prog Quantum Electron. 2019;68:100226. doi: 10.1016/j.pquantelec.2019.100226. DOI

Negri V, Pacheco-Torres J, Calle D, López-Larrubia P. Carbon nanotubes in biomedicine. Top Curr Chem. 2020;378(1):15. doi: 10.1007/s41061-019-0278-8. PubMed DOI

Sajid MI, Jamshaid U, Jamshaid T, Zafar N, Fessi H, Elaissari A. Carbon nanotubes from synthesis to in vivo biomedical applications. Int J Pharm. 2016;501(1):278–299. doi: 10.1016/j.ijpharm.2016.01.064. PubMed DOI

Simon J, Flahaut E, Golzio M. Overview of carbon nanotubes for biomedical applications. Mater (Basel, Switzerland) 2019;12(4):624. doi: 10.3390/ma12040624. PubMed DOI PMC

Ruiz-Carmuega AI, et al. Electrochemical sensors modified with combinations of sulfur containing phthalocyanines and capped gold nanoparticles: a study of the influence of the nature of the interaction between sensing materials. Nanomaterials. 2019;9(11):1506. doi: 10.3390/nano9111506. PubMed DOI PMC

Lian W, et al. Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan–platinum nanoparticles/graphene–gold nanoparticles double nanocomposites modified electrode for detection of erythromycin. Biosens Bioelectron. 2012;38(1):163–169. doi: 10.1016/j.bios.2012.05.017. PubMed DOI

Luo X, Morrin A, Killard AJ, Smyth MR. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis. 2006;18(4):319–326. doi: 10.1002/elan.200503415. DOI

Yang W, Liang H, Ma S, Wang D, Huang J. Gold nanoparticle based photothermal therapy: development and application for effective cancer treatment. Sustain Mater Technol. 2019;22:e00109.

Kamran M, Haroon M, Popoola SA, Almohammedi AR, Al-Saadi AA, Saleh TA. Characterization of valeric acid using substrate of silver nanoparticles with SERS. J Mol Liq. 2019;273:536–542. doi: 10.1016/j.molliq.2018.10.037. DOI

Zhang A, et al. Spontaneous implantation of gold nanoparticles on graphene oxide for salivary SERS sensing. Anal Methods. 2019;11(40):5089–5097. doi: 10.1039/C9AY01500K. DOI

Zhang C, Gao Y, Yang N, You T, Chen H, Yin P. Direct determination of the tumor marker AFP via silver nanoparticle enhanced SERS and AFP-modified gold nanoparticles as capturing substrate. Microchim Acta. 2018;185(2):90. doi: 10.1007/s00604-017-2652-y. PubMed DOI

Cheng X, Sun R, Yin L, Chai Z, Shi H, Gao M. Light-triggered assembly of gold nanoparticles for photothermal therapy and photoacoustic imaging of tumors in vivo. Adv Mater. 2017;29(6):1604894. doi: 10.1002/adma.201604894. PubMed DOI

Sun M, et al. Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Nanoscale. 2016;8(8):4452–4457. doi: 10.1039/C6NR00056H. PubMed DOI

Kim HS, Lee DY. Photothermal therapy with gold nanoparticles as an anticancer medication. J Pharm Investig. 2017;47(1):19–26. doi: 10.1007/s40005-016-0292-6. DOI

Behnam MA, et al. Novel combination of silver nanoparticles and carbon nanotubes for plasmonic photo thermal therapy in melanoma cancer model. Adv Pharm Bull. 2018;8(1):49–55. doi: 10.15171/apb.2018.006. PubMed DOI PMC

Poudel BK, et al. In situ fabrication of mesoporous silica-coated silver-gold hollow nanoshell for remotely controllable chemo-photothermal therapy via phase-change molecule as gatekeepers. Int J Pharm. 2018;548(1):92–103. doi: 10.1016/j.ijpharm.2018.06.056. PubMed DOI

Manivannan K, Cheng C-C, Anbazhagan R, Tsai H-C, Chen J-K. Fabrication of silver seeds and nanoparticle on core-shell Ag@SiO2 nanohybrids for combined photothermal therapy and bioimaging. J Colloid Interface Sci. 2019;537:604–614. doi: 10.1016/j.jcis.2018.11.051. PubMed DOI

Zhao W, Karp JM, Ferrari M, Serda R. Bioengineering nanotechnology: towards the clinic. Nanotechnology. 2011;22(49):10–12. doi: 10.1088/0957-4484/22/49/490201. PubMed DOI

Conde J, Rosa J, Lima JC, Baptista PV. Nanophotonics for molecular diagnostics and therapy applications. Int J Photoenergy. 2012;2012:1–12. doi: 10.1155/2012/619530. DOI

Pannico M, Calarco A, Peluso G, Musto P. Functionalized gold nanoparticles as biosensors for monitoring cellular uptake and localization in normal and tumor prostatic cells. Biosensors. 2018;8(4):87. doi: 10.3390/bios8040087. PubMed DOI PMC

Rasheed PA, Sandhyarani N. Electrochemical DNA sensors based on the use of gold nanoparticles: a review on recent developments. Microchim Acta. 2017;184(4):981–1000. doi: 10.1007/s00604-017-2143-1. DOI

Chen H, Qiu Q, Sharif S, Ying S, Wang Y, Ying Y. Solution-phase synthesis of platinum nanoparticle-decorated metal-organic framework hybrid nanomaterials as biomimetic nanoenzymes for biosensing applications. ACS Appl Mater Interfaces. 2018;10(28):24108–24115. doi: 10.1021/acsami.8b04737. PubMed DOI

Borisova B, et al. Reduced graphene oxide-carboxymethylcellulose layered with platinum nanoparticles/PAMAM dendrimer/magnetic nanoparticles hybrids. Application to the preparation of enzyme electrochemical biosensors. Sensors Actuators B Chem. 2016;232:84–90. doi: 10.1016/j.snb.2016.02.106. DOI

Doria G, et al. Noble metal nanoparticles for biosensing applications. Sensors. 2012;12(2):1657–1687. doi: 10.3390/s120201657. PubMed DOI PMC

Zhao X, Zhao H, Yan L, Li N, Shi J, Jiang C. Recent developments in detection using noble metal nanoparticles. Crit Rev Anal Chem. 2020;50(2):97–110. doi: 10.1080/10408347.2019.1576496. PubMed DOI

Jain KK. Applications of nanobiotechnology in clinical diagnostics. Clin Chem. 2007;53(11):2002–2009. doi: 10.1373/clinchem.2007.090795. PubMed DOI

Valsami-Jones E, Lynch I. How safe are nanomaterials? Science (80-) 2015;350(6259):388LP–389LP. doi: 10.1126/science.aad0768. PubMed DOI

Fabiano B, Reverberi AP, Varbanov PS. Safety opportunities for the synthesis of metal nanoparticles and short-cut approach to workplace risk evaluation. J Clean Prod. 2019;209:297–308. doi: 10.1016/j.jclepro.2018.10.161. DOI

da Costa GM, Hussain CM (2020) 17 - Safety risk, ELSI (ethical, legal, social issues), and economics of nanomaterials. In: Hussain CM (ed) Handbook of Nanomaterials in Analytical Chemistry. Elsevier, pp 435–446. 10.1016/B978-0-12-816699-4.00017-7

Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. 2019;9(5):2673–2702. doi: 10.1039/C8RA08982E. PubMed DOI PMC

Kuntyi OI, et al. Electrochemical synthesis of silver nanoparticles by reversible current in solutions of sodium polyacrylate. Colloid Polym Sci. 2019;297(5):689–695. doi: 10.1007/s00396-019-04488-4. DOI

Huang H, Lai J, Lu J, Li Z. Pulsed laser ablation of bulk target and particle products in liquid for nanomaterial fabrication. AIP Adv. 2019;9(1):15307. doi: 10.1063/1.5082695. DOI

Hatakeyama Y, Onishi K, Nishikawa K. Effects of sputtering conditions on formation of gold nanoparticles in sputter deposition technique. RSC Adv. 2011;1(9):1815–1821. doi: 10.1039/c1ra00688f. DOI

Nunes D, et al. 2—Synthesis, design, and morphology of metal oxide nanostructures. In: Nunes D, Pimentel A, Santos L, Barquinha P, Pereira L, Fortunato E, Martins R, et al., editors. Metal oxides. New York: Elsevier; 2019. pp. 21–57.

Colson P, Henrist C, Cloots R. Nanosphere lithography: a powerful method for the controlled manufacturing of nanomaterials. J Nanomater. 2013;2013:948510. doi: 10.1155/2013/948510. DOI

Salabat A, Mirhoseini F. A novel and simple microemulsion method for synthesis of biocompatible functionalized gold nanoparticles. J Mol Liq. 2018;268:849–853. doi: 10.1016/j.molliq.2018.07.112. DOI

Flores-Rojas GG, López-Saucedo F, Bucio E. Gamma-irradiation applied in the synthesis of metallic and organic nanoparticles: a short review. Radiat Phys Chem. 2020;169:107962. doi: 10.1016/j.radphyschem.2018.08.011. DOI

Jeyaraj M, Gurunathan S, Qasim M, Kang MH, Kim JH. A comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. Nanomaterials. 2019;9(12):1719. doi: 10.3390/nano9121719. PubMed DOI PMC

Jain KK. Nanomedicine: application of nanobiotechnology in medical practice. Med Princ Pract. 2008;17(2):89–101. doi: 10.1159/000112961. PubMed DOI

Košević MG, et al. Structural and electrochemical properties of nesting and core/shell Pt/TiO2 spherical particles synthesized by ultrasonic spray pyrolysis. Metals (Basel) 2019;10(1):11. doi: 10.3390/met10010011. DOI

Lusker KL, Li J-R, Garno JC. Nanostructures of functionalized gold nanoparticles prepared by particle lithography with organosilanes. Langmuir. 2011;27(21):13269–13275. doi: 10.1021/la202816k. PubMed DOI

Yu X, et al. Direct patterning of engineered ionic gold nanoparticles via nanoimprint lithography. Adv Mater. 2012;24(47):6330–6334. doi: 10.1002/adma.201202776. PubMed DOI

Davies G-L, O’Brien J, Gun’ko YK. Rare earth doped silica nanoparticles via thermolysis of a single source metallasilsesquioxane precursor. Sci Rep. 2017;7(1):45862. doi: 10.1038/srep45862. PubMed DOI PMC

Abedini A, Daud AR, Abdul Hamid MA, Kamil Othman N, Saion E. A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles. Nanoscale Res Lett. 2013;8(1):474. doi: 10.1186/1556-276X-8-474. PubMed DOI PMC

Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci. 2014;9(6):385–406. PubMed PMC

Mirzaei A, Neri G. Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: a review. Sens Actuators B Chem. 2016;237:749–775. doi: 10.1016/j.snb.2016.06.114. DOI

Hasan S. A review on nanoparticles: their synthesis and types. Res J Recent Sci Res J Recent Sci Uttar Pradesh Lucknow Campus. 2014;4:1–3.

Sun S. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv Mater. 2006;18(4):393–403. doi: 10.1002/adma.200501464. DOI

Booth SG, Uehara A, Chang SY, Mosselmans JFW, Schroeder SLM, Dryfe RAW. Gold deposition at a free-standing liquid/liquid interface: evidence for the formation of Au(I) by microfocus X-ray spectroscopy (μXRF and μXAFS) and cyclic voltammetry. J Phys Chem C. 2015;119(29):16785–16792. doi: 10.1021/acs.jpcc.5b05127. DOI

Starowicz M, Stypuła B. Electrochemical synthesis of ZnO nanoparticles. Eur J Inorg Chem. 2008;2008(6):869–872. doi: 10.1002/ejic.200700989. DOI

Ramimoghadam D, Bagheri S, Hamid SBA. Progress in electrochemical synthesis of magnetic iron oxide nanoparticles. J Magn Magn Mater. 2014;368:207–229. doi: 10.1016/j.jmmm.2014.05.015. DOI

Noman MT, Petru M, Militký J, Azeem M, Ashraf MA. One-pot sonochemical synthesis of ZnO nanoparticles for photocatalytic applications, modelling and optimization. Materials (Basel) 2019;13(1):14. doi: 10.3390/ma13010014. PubMed DOI PMC

Balachandramohan J, Sivasankar T, Sivakumar M. Facile sonochemical synthesis of Ag2O-guar gum nanocomposite as a visible light photocatalyst for the organic transformation reactions. J Hazard Mater. 2020;385:121621. doi: 10.1016/j.jhazmat.2019.121621. PubMed DOI

Sharma D, Kanchi S, Bisetty K. Biogenic synthesis of nanoparticles: a review. Arab J Chem. 2015;12:3576–3600. doi: 10.1016/j.arabjc.2015.11.002. DOI

Ahmad S, et al. Green nanotechnology: a review on green synthesis of silver nanoparticles—an ecofriendly approach. Int J Nanomed. 2019;14:5087–5107. doi: 10.2147/IJN.S200254. PubMed DOI PMC

Ealias AM, Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser Mater Sci Eng. 2017;263(3):032019.

Park S-I, et al. A review on fabrication processes for electrochromic devices. Int J Precis Eng Manuf Technol. 2016;3(4):397–421. doi: 10.1007/s40684-016-0049-8. DOI

Nguyen MT, Yonezawa T. Sputtering onto a liquid: interesting physical preparation method for multi-metallic nanoparticles. Sci Technol Adv Mater. 2018;19(1):883–898. doi: 10.1080/14686996.2018.1542926. DOI

Wender H, Migowski P, Feil AF, Teixeira SR, Dupont J. Sputtering deposition of nanoparticles onto liquid substrates: recent advances and future trends. Coord Chem Rev. 2013;257(17):2468–2483. doi: 10.1016/j.ccr.2013.01.013. DOI

Yap FL, Zhang Y. Protein and cell micropatterning and its integration with micro/nanoparticles assembly. Biosens Bioelectron. 2007;22(6):775–788. doi: 10.1016/j.bios.2006.03.016. PubMed DOI

Chen J, Mela P, Möller M, Lensen MC. Microcontact deprinting: a technique to pattern gold nanoparticles. ACS Nano. 2009;3(6):1451–1456. doi: 10.1021/nn9002924. PubMed DOI

Park S, et al. Micropatterning of metal nanoparticle ink by laser-induced thermocapillary flow. Nanomaterials. 2018;8(9):645. doi: 10.3390/nano8090645. PubMed DOI PMC

Walters G, Parkin IP. The incorporation of noble metal nanoparticles into host matrix thin films: synthesis, characterisation and applications. J Mater Chem. 2009;19(5):574–590. doi: 10.1039/B809646E. DOI

Yesildag C, Ouyang Z, Zhang Z, Lensen MC. Micro-patterning of PEG-based hydrogels with gold nanoparticles using a reactive micro-contact-printing approach. Front Chem. 2019;6:667. doi: 10.3389/fchem.2018.00667. PubMed DOI PMC

Xu C, De S, Balu AM, Ojeda M, Luque R. Mechanochemical synthesis of advanced nanomaterials for catalytic applications. Chem Commun. 2015;51(31):6698–6713. doi: 10.1039/C4CC09876E. PubMed DOI

Schreyer H, Eckert R, Immohr S, de Bellis J, Felderhoff M, Schüth F. Milling down to nanometers: a general process for the direct dry synthesis of supported metal catalysts. Angew Chemie Int Ed. 2019;58(33):11262–11265. doi: 10.1002/anie.201903545. PubMed DOI

Blázquez JS, et al. Ball milling as a way to produce magnetic and magnetocaloric materials: a review. J Mater Sci. 2017;52(20):11834–11850. doi: 10.1007/s10853-017-1089-3. DOI

Korshed P, Li L, Ngo D. Effect of storage conditions on the long-term stability of bactericidal effects for laser generated silver nanoparticles. Nanomaterials (Basel) 2018;8(4):218. doi: 10.3390/nano8040218. PubMed DOI PMC

Korshed P, Li L, Liu Z, Wang T. The molecular mechanisms of the antibacterial effect of picosecond laser generated silver nanoparticles and their toxicity to human cells. PLoS ONE. 2016;11(8):1–23. doi: 10.1371/journal.pone.0160078. PubMed DOI PMC

Semaltianos NG. Nanoparticles by laser ablation. Crit Rev Solid State Mater Sci. 2010;35(2):105–124. doi: 10.1080/10408431003788233. DOI

Sportelli M, et al. The pros and cons of the use of laser ablation synthesis for the production of silver nano-antimicrobials. Antibiotics. 2018;7(3):67. doi: 10.3390/antibiotics7030067. PubMed DOI PMC

Correard F, et al. Gold nanoparticles prepared by laser ablation in aqueous biocompatible solutions: assessment of safety and biological identity for nanomedicine applications. Int J Nanomed. 2014;9:5415–5430. PubMed PMC

Mutisya S, Franzel L, Barnstein BO, Faber TW, Ryan JJ, Bertino MF. Comparison of in situ and ex situ bioconjugation of Au nanoparticles generated by laser ablation. Appl Surf Sci. 2013;264:27–30. doi: 10.1016/j.apsusc.2012.09.064. DOI

Odularu AT. Metal nanoparticles: thermal decomposition, biomedicinal applications to cancer treatment, and future perspectives. Bioinorg Chem Appl. 2018;2018:9354708. doi: 10.1155/2018/9354708. PubMed DOI PMC

Dias DA, Urban S, Roessner U. A Historical overview of natural products in drug discovery. Metabolites. 2012;2(2):303–336. doi: 10.3390/metabo2020303. PubMed DOI PMC

Daruich De Souza C, Ribeiro Nogueira B, Rostelato MECM. Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction. J. Alloys Compd. 2019;798:714–740. doi: 10.1016/j.jallcom.2019.05.153. DOI

Ranoszek-Soliwoda K, et al. The role of tannic acid and sodium citrate in the synthesis of silver nanoparticles. J Nanopart Res. 2017;19(8):273. doi: 10.1007/s11051-017-3973-9. PubMed DOI PMC

Alqadi MK, Abo Noqtah OA, Alzoubi FY, Alzouby J, Aljarrah K. PH effect on the aggregation of silver nanoparticles synthesized by chemical reduction. Mater Sci Pol. 2014;32(1):107–111. doi: 10.2478/s13536-013-0166-9. DOI

Rashid MU, Bhuiyan KH, Quayum ME. Synthesis of silver nano particles (Ag-NPs) and their uses for quantitative analysis of vitamin C tablets. J Pharm Sci. 2013;12(1):29–35.

Izak-Nau E, et al. Impact of storage conditions and storage time on silver nanoparticles’ physicochemical properties and implications for their biological effects. RSC Adv. 2015;5(102):84172–84185. doi: 10.1039/C5RA10187E. DOI

Kang H, et al. Stabilization of silver and gold nanoparticles: preservation and improvement of plasmonic functionalities. Chem Rev. 2019;119(1):664–699. doi: 10.1021/acs.chemrev.8b00341. PubMed DOI

Tyagi H, Kushwaha A, Kumar A, Aslam M. A facile pH controlled citrate-based reduction method for gold nanoparticle synthesis at room temperature. Nanoscale Res Lett. 2016;11(1):362. doi: 10.1186/s11671-016-1576-5. PubMed DOI PMC

Agnihotri S, Mukherji S, Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2014;4(8):3974–3983. doi: 10.1039/C3RA44507K. DOI

Hou Z, Li M, Han M, Zeng J, Liao S. Aqueous phase synthesis and characterizations of Pt nanoparticles by a modified citrate reduction method assisted by inorganic salt stabilization for PEMFCs. Electrochim Acta. 2014;134:187–192. doi: 10.1016/j.electacta.2014.04.125. DOI

Malik MA, Wani MY, Hashim MA. Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials: 1st nano update. Arab J Chem. 2012;5(4):397–417. doi: 10.1016/j.arabjc.2010.09.027. DOI

Tojo C, Buceta D, López-Quintela MA. Slowing down kinetics in microemulsions for nanosegregation control: a simulation study. J Phys Chem C. 2018;122(34):20006–20018. doi: 10.1021/acs.jpcc.8b06057. DOI

Muñoz-Flores BM, Kharisov BI, Jiménez-Pérez VM, Elizondo Martínez P, López ST. Recent advances in the synthesis and main applications of metallic nanoalloys. Ind Eng Chem Res. 2011;50(13):7705–7721. doi: 10.1021/ie200177d. DOI

Solanki JN, Murthy ZVP. Controlled size silver nanoparticles synthesis with water-in-oil microemulsion method: a topical review. Ind Eng Chem Res. 2011;50(22):12311–12323. doi: 10.1021/ie201649x. DOI

Yanilkin VV, Nasretdinova GR, Kokorekin VA. Mediated electrochemical synthesis of metal nanoparticles. Russ Chem Rev. 2018;87(11):1080–1110. doi: 10.1070/RCR4827. DOI

Li C, Sato T, Yamauchi Y. Electrochemical synthesis of one-dimensional mesoporous Pt nanorods using the assembly of surfactant micelles in confined space. Angew Chem Int Ed. 2013;52(31):8050–8053. doi: 10.1002/anie.201303035. PubMed DOI

Zou C, et al. Electrochemical synthesis of gold nanoparticles decorated flower-like graphene for high sensitivity detection of nitrite. J Colloid Interface Sci. 2017;488:135–141. doi: 10.1016/j.jcis.2016.10.088. PubMed DOI

Abedini A, Bakar AAA, Larki F, Menon PS, Islam MS, Shaari S. Recent advances in shape-controlled synthesis of noble metal nanoparticles by radiolysis route. Nanoscale Res Lett. 2016;11(1):287. doi: 10.1186/s11671-016-1500-z. PubMed DOI PMC

Freitas de Freitas L, Varca GHC, Dos Santos Batista JG, Benévolo Lugão A. An overview of the synthesis of gold nanoparticles using radiation technologies. Nanomater (Basel, Switzerland) 2018;8(11):939. doi: 10.3390/nano8110939. PubMed DOI PMC

Wu S, Li M, Sun Y. In situ synchrotron X-ray characterization shining light on the nucleation and growth kinetics of colloidal nanoparticles. Angew Chemie Int Ed. 2019;58(27):8987–8995. doi: 10.1002/anie.201900690. PubMed DOI

Čubová K, Čuba V. Synthesis of inorganic nanoparticles by ionizing radiation—a review. Radiat Phys Chem. 2020;169:108774. doi: 10.1016/j.radphyschem.2020.108774. DOI

Bekhit M, Abu el-naga MN, Sokary R, Fahim RA, El-Sawy NM. Radiation-induced synthesis of tween 80 stabilized silver nanoparticles for antibacterial applications. J Environ Sci Health Part A. 2020;55(10):1210–1217. doi: 10.1080/10934529.2020.1784656. PubMed DOI

Kokel A, Schäfer C, Török B. Microwave-assisted reactions in green chemistry. In: Meyers RA, editor. Encyclopedia of sustainability science and technology. New York: Springer; 2018. pp. 1–40.

Gangrade D, Sd L, Al M. Overview on microwave synthesis—Important tool for green Chemistry. Int J Res Pharm Sci. 2015;5(2):37–42.

Kostyukhin EM, Nissenbaum VD, Abkhalimov EV, Kustov AL, Ershov BG, Kustov LM. Microwave-assisted synthesis of water-dispersible humate-coated magnetite nanoparticles: relation of coating process parameters to the properties of nanoparticles. Nanomater (Basel, Switzerland) 2020;10(8):1558. doi: 10.3390/nano10081558. PubMed DOI PMC

Tripathi V, Kumar H, Agarwal A, Panchakarla LS. Microwave-induced electric discharges on metal particles for the synthesis of inorganic nanomaterials under solvent-free conditions. Beilstein J Nanotechnol. 2020;11:1019–1025. doi: 10.3762/bjnano.11.86. PubMed DOI PMC

Siddiqi KS, Husen A, Rao RAK. A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol. 2018;16:14. doi: 10.1186/s12951-018-0334-5. PubMed DOI PMC

Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P. ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnology. 2018;16(1):1–24. doi: 10.1186/s12951-018-0408-4. PubMed DOI PMC

Syafiuddin A, Salmiati S, Salim MR, Beng Hong Kueh A, Hadibarata T, Nur H. A review of silver nanoparticles: research trends, global consumption, synthesis, properties, and future challenges. J Chin Chem Soc. 2017;64(7):732–756. doi: 10.1002/jccs.201700067. DOI

Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J. Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale. 2011;3(2):635–641. doi: 10.1039/C0NR00656D. PubMed DOI

Rafique M, Sadaf I, Rafique MS, Tahir MB. A review on green synthesis of silver nanoparticles and their applications. Artif Cells Nanomed Biotechnol. 2017;45(7):1272–1291. doi: 10.1080/21691401.2016.1241792. PubMed DOI

Panáček A, et al. Bacterial resistance to silver nanoparticles and how to overcome it. Nat Nanotechnol. 2018;13(1):65–71. doi: 10.1038/s41565-017-0013-y. PubMed DOI

Klaus T, Joerger R, Olsson E, Granqvist C-G. Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci. 1999;96(24):13611–13614. doi: 10.1073/pnas.96.24.13611. PubMed DOI PMC

Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S. “Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed Nanotechnol Biol Med. 2007;3(2):168–171. doi: 10.1016/j.nano.2007.02.001. PubMed DOI

Hulkoti NI, Taranath TC. Biosynthesis of nanoparticles using microbes—a review. Colloids Surf B Biointerfaces. 2014;121:474–483. doi: 10.1016/j.colsurfb.2014.05.027. PubMed DOI

Mukherjee K, Gupta R, Kumar G, Kumari S, Biswas S, Padmanabhan P. Synthesis of silver nanoparticles by Bacillus clausii and computational profiling of nitrate reductase enzyme involved in production. J Genet Eng Biotechnol. 2018;16(2):527–536. doi: 10.1016/j.jgeb.2018.04.004. PubMed DOI PMC

Shanthi S, David Jayaseelan B, Velusamy P, Vijayakumar S, Chih CT, Vaseeharan B. Biosynthesis of silver nanoparticles using a probiotic Bacillus licheniformis Dahb1 and their antibiofilm activity and toxicity effects in Ceriodaphnia cornuta. Microb. Pathog. 2016;93:70–77. doi: 10.1016/j.micpath.2016.01.014. PubMed DOI

Abdel-Raouf N, Al-Enazi NM, Ibraheem IBM. Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab J Chem. 2017;10:S3029–S3039. doi: 10.1016/j.arabjc.2013.11.044. DOI

Lee KX, et al. Recent developments in the facile bio-synthesis of gold nanoparticles (AuNPs) and their biomedical applications. Int J Nanomed. 2020;15:275–300. doi: 10.2147/IJN.S233789. PubMed DOI PMC

Konishi Y, et al. Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol. 2007;128(3):648–653. doi: 10.1016/j.jbiotec.2006.11.014. PubMed DOI

Wadhwani SA, Shedbalkar UU, Singh R, Vashisth P, Pruthi V, Chopade BA. Kinetics of synthesis of gold nanoparticles by Acinetobacter sp. SW30 isolated from environment. Indian J Microbiol. 2016;56(4):439–444. doi: 10.1007/s12088-016-0598-0. PubMed DOI PMC

Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett. 2007;61(6):1413–1418. doi: 10.1016/j.matlet.2006.07.042. DOI

Balakumaran MD, Ramachandran R, Kalaichelvan PT. Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities. Microbiol Res. 2015;178:9–17. doi: 10.1016/j.micres.2015.05.009. PubMed DOI

Rauwel P, Küünal S, Ferdov S, Rauwel E. A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv Mater Sci Eng. 2015;2015:682749.

Mukherjee P, et al. Bioreduction of AuCl4—ions by the Fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chemie Int Ed. 2001;40(19):3585–3588. doi: 10.1002/1521-3773(20011001)40:19<3585::AID-ANIE3585>3.0.CO;2-K. PubMed DOI

Vahabi K, Mansoori GA, Karimi S. Biosynthesis of silver nanoparticles by Fungus Trichoderma Reesei (a route for large-scale production of AgNPs) Insciences J. 2011;1(1):65–79. doi: 10.5640/insc.010165. DOI

Balakumaran MD, Ramachandran R, Balashanmugam P, Mukeshkumar DJ, Kalaichelvan PT. Mycosynthesis of silver and gold nanoparticles: optimization, characterization and antimicrobial activity against human pathogens. Microbiol Res. 2016;182:8–20. doi: 10.1016/j.micres.2015.09.009. PubMed DOI

Dahoumane SA, et al. Algae-mediated biosynthesis of inorganic nanomaterials as a promising route in nanobiotechnology – a review. Green Chem. 2017;19(3):552–587. doi: 10.1039/C6GC02346K. DOI

Hosea M, Greene B, Mcpherson R, Henzl M, Dale Alexander M, Darnall DW. Accumulation of elemental gold on the alga Chlorella vulgaris. Inorganica Chim Acta. 1986;123(3):161–165. doi: 10.1016/S0020-1693(00)86339-2. DOI

Velgosova O, Čižmárová E, Málek J, Kavuličova J. Effect of storage conditions on long-term stability of Ag nanoparticles formed via green synthesis. Int J Miner Metall Mater. 2017;24(10):1177–1182. doi: 10.1007/s12613-017-1508-0. DOI

Stranska-Zachariasova M, et al. Bioprospecting of turbinaria macroalgae as a potential source of health protective compounds. Chem Biodivers. 2017;14(2):e1600192. doi: 10.1002/cbdv.201600192. PubMed DOI

Mason C, Vivekanandhan S, Misra M, Mohanty AK. Switchgrass (Panicum virgatum) extract mediated green synthesis of silver nanoparticles. World J Nano Sci Eng. 2012;2(June):47–52. doi: 10.4236/wjnse.2012.22008. DOI

Lengke MF, Fleet ME, Southam G. Synthesis of platinum nanoparticles by reaction of filamentous cyanobacteria with platinum(IV)-chloride complex. Langmuir. 2006;22(17):7318–7323. doi: 10.1021/la060873s. PubMed DOI

Gopinath V, et al. Biogenic synthesis, characterization of antibacterial silver nanoparticles and its cell cytotoxicity. Arab J Chem. 2015;1:10.

Keshavarzi M, Davoodi D, Pourseyedi S, Taghizadeh S. The effects of three types of alfalfa plants (Medicago sativa) on the biosynthesis of gold nanoparticles: an insight into phytomining. Gold Bull. 2018;51(3):99–110. doi: 10.1007/s13404-018-0237-0. DOI

Balashanmugam P, Kalaichelvan PT. Biosynthesis characterization of silver nanoparticles using Cassia roxburghii DC. aqueous extract, and coated on cotton cloth for effective antibacterial activity. Int J Nanomed. 2015;10:87–97. doi: 10.2147/IJN.S79984. PubMed DOI PMC

Shankar SS, Rai A, Ahmad A, Sastry M. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci. 2004;275(2):496–502. doi: 10.1016/j.jcis.2004.03.003. PubMed DOI

Banerjee P, Satapathy M, Mukhopahayay A, Das P. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour Bioprocess. 2014;1(1):3. doi: 10.1186/s40643-014-0003-y. DOI

Tripathy A, Raichur AM, Chandrasekaran N, Prathna TC, Mukherjee A. Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. J Nanoparticle Res. 2010;12(1):237–246. doi: 10.1007/s11051-009-9602-5. DOI

Kumar V, Singh DK, Mohan S, Hasan SH. Photo-induced biosynthesis of silver nanoparticles using aqueous extract of Erigeron bonariensis and its catalytic activity against Acridine Orange. J Photochem Photobiol B Biol. 2016;155:39–50. doi: 10.1016/j.jphotobiol.2015.12.011. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...