Effects of End Group Termination on Salting-Out Constants for Triglycine
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
R01 GM070622
NIGMS NIH HHS - United States
PubMed
24466388
PubMed Central
PMC3898588
DOI
10.1021/jz4022238
Knihovny.cz E-zdroje
- Klíčová slova
- Hofmeister series, NMR, ions, molecular dynamics, triglycine,
- Publikační typ
- časopisecké články MeSH
Salting out constants for triglycine were calculated for a series of Hofmeister salts using molecular dynamics simulations. Three variants of the peptide were considered with both termini capped, just the N-terminus capped, and without capping. The simulations were supported by NMR and FTIR measurements. The data provide strong evidence that earlier experimental values of salting out constants assigned to the fully capped peptide (as previously assumed) should have been assigned to the half-capped peptide instead. Therefore, these values cannot be used to directly establish Hofmeister ordering of ions at the peptide backbone, since they are strongly influenced by interactions of the ions with the negatively charged C-terminus.
Chemistry Department Penn State University University Park PA 16802 USA
Chemistry Department Texas A and M University College Station TX 77843
Zobrazit více v PubMed
Kirkwood JG, Buff FP. The Statistical Mechanical Theory of Solutions 1. J. Chem. Phys. 1951;19:774–777.
Smith PE, Mazo RA. On the theory of solute solubility in mixed solvents. J. Phys. Chem. B. 2008;112:7875–7884. PubMed PMC
Hofmeister F. Zur Lehre von der Wirkung der Salze. Arch. Exp. Pathol. Pharmakol. 1888;24:247–260.
Kunz W, Henle J, Ninham BW. 'Zur Lehre von der Wirkung der Salze' (about the science of the effect of salts): Franz Hofmeister's historical papers. Current Opinion Colloid & Interface Sci. 2004;9:19–37.
Rembert KB, Paterova J, Heyda J, Hilty C, Jungwirth P, Cremer PS. Molecular Mechanisms of Ion-Specific Effects on Proteins. J. Am. Chem. Soc. 2012;134:10039–10046. PubMed
Nandi PK, Robinson DR. Effects of Salts on Free-Energy of Peptide Group. J. Am. Chem. Soc. 1972;94:1299–1308. PubMed
Venkatesu P, Lee MJ, Lin HM. Transfer free energies of peptide backbone unit from water to aqueous electrolyte solutions at 298.15 K. Biochem. Eng. J. 2006;32:157–170.
Paterova J, Rembert KB, Heyda J, Kurra Y, Okur HI, Liu WR, Hilty C, Cremer PS, Jungwirth P. Reversal of the Hofmeister Series: Specific Ion Effects on Peptides. J. Phys. Chem. B. 2013;117:8150–8158. PubMed
Pegram LM, Record MT. Thermodynamic origin of Hofmeister ion effects. J. Phys. Chem. B. 2008;112:9428–9436. PubMed PMC
Pegram LM, Wendorff T, Erdmann R, Shkel I, Bellissimo D, Felitsky DJ, Record MT. Why Hofmeister effects of many salts favor protein folding but not DNA helix formation. Proc. Nat. Acad. Sci. USA. 2010;107:7716–7721. PubMed PMC
Chi EY, Krishnan S, Randolph TW, Carpenter JF. Physical stability of proteins in aqueous solution: Mechanism and driving forces in nonnative protein aggregation. Pharmaceutical Res. 2003;20:1325–1336. PubMed
Record MT, Guinn E, Pegram L, Capp M. Introductory Lecture: Interpreting and predicting Hofmeister salt ion and solute effects on biopolymer and model processes using the solute partitioning model. Faraday Discuss. 2013;160:9–44. PubMed PMC
Cho YH, Zhang YJ, Christensen T, Sagle LB, Chilkoti A, Cremer PS. Effects of Hofmeister Anions on the Phase Transition Temperature of Elastin-like Polypeptides. J. Phys. Chem. B. 2008;112:13765–13771. PubMed PMC
Barth A, Zscherp C. What vibrations tell us about proteins. Quarterly Rev. Biophys. 2002;35:369–430. PubMed
Okur HI, Kherb J, Cremer PS. Cations Bind Only Weakly to Amides in Aqueous Solutions. J. Am. Chem. Soc. 2013;135:5062–5067. PubMed
Kim MK, Martell AE. Infrared Spectra od Aqueous solutions 4. Glycine and Glycine Peptides. J. Am. Chem. Soc. 1963;85:3080–3083.
Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. J. Comput. Chem. 2004;25:1157–1174. PubMed
Caldwell JW, Kollman PA. Structure and Properties of Neat Liquids Using Nonadditive Molecular-Dynamics - Water, Methanol, and N-Methylacetamide. J. Phys. Chem. 1995;99:6208–6219.
Berendsen HJC, Grigera JR, Straatsma TP. The Missing Term in Effective Pair Potentials. J. Phys. Chem. 1987;91:6269–6271.
Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995;103:8577–8593.
Ryckaert JP, Ciccotti G, Berendsen HJC. Numerical-Integration of Cartesian Equations of Motion of a System with Constraints - Molecular-Dynamics of N-Alkanes. J. Comput. Phys. 1977;23:327–341.
Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR. Molecular-Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984;81:3684–3690.
Case DAD, Cheatham TE, III, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, et al. AMBER. Vol. 11. San Francisco: University of California; 2010.
Liu ML, Mao XA, Ye CH, Huang H, Nicholson JK, Lindon JC. Improved WATERGATE pulse sequences for solvent suppression in NMR spectroscopy. J. Magnetic Resonance. 1998;132:125–129.
Wuthrich K. NMR of Proteins and Nucleic Acids. New York: Wiley-Interscience; 1986.
Hadden CE, Martin GE, Krishnamurthy VV. Improved performance accordion heteronuclear multiple-bond correlation spectroscopy - IMPEACH-MBC. J. Magnetic Resonance. 1999;140:274–280. PubMed