Reversal of the hofmeister series: specific ion effects on peptides
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23768138
DOI
10.1021/jp405683s
Knihovny.cz E-zdroje
- MeSH
- ionty chemie MeSH
- magnetická rezonanční spektroskopie MeSH
- oligopeptidy chemie MeSH
- peptidy chemie MeSH
- simulace molekulární dynamiky MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glycyl-glycyl-glycine MeSH Prohlížeč
- ionty MeSH
- oligopeptidy MeSH
- peptidy MeSH
Ion-specific effects on salting-in and salting-out of proteins, protein denaturation, as well as enzymatic activity are typically rationalized in terms of the Hofmeister series. Here, we demonstrate by means of NMR spectroscopy and molecular dynamics simulations that the traditional explanation of the Hofmeister ordering of ions in terms of their bulk hydration properties is inadequate. Using triglycine as a model system, we show that the Hofmeister series for anions changes from a direct to a reversed series upon uncapping the N-terminus. Weakly hydrated anions, such as iodide and thiocyanate, interact with the peptide bond, while strongly hydrated anions like sulfate are repelled from it. In contrast, reversed order in interactions of anions is observed at the positively charged, uncapped N-terminus, and by analogy, this should also be the case at side chains of positively charged amino acids. These results demonstrate that the specific chemical and physical properties of peptides and proteins play a fundamental role in ion-specific effects. The present study thus provides a molecular rationalization of Hofmeister ordering for the anions. It also provides a route for tuning these interactions by titration or mutation of basic amino acid residues on the protein surface.
Citace poskytuje Crossref.org
Anion-cation contrast of small molecule solvation in salt solutions
Weakly hydrated anions bind to polymers but not monomers in aqueous solutions
Guanidinium can both Cause and Prevent the Hydrophobic Collapse of Biomacromolecules
Effects of End Group Termination on Salting-Out Constants for Triglycine