Weakly hydrated anions bind to polymers but not monomers in aqueous solutions

. 2022 Jan ; 14 (1) : 40-45. [epub] 20211101

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid34725491
Odkazy

PubMed 34725491
DOI 10.1038/s41557-021-00805-z
PII: 10.1038/s41557-021-00805-z
Knihovny.cz E-zdroje

Weakly hydrated anions help to solubilize hydrophobic macromolecules in aqueous solutions, but small molecules comprising the same chemical constituents precipitate out when exposed to these ions. Here, this apparent contradiction is resolved by systematically investigating the interactions of NaSCN with polyethylene oxide oligomers and polymers of varying molecular weight. A combination of spectroscopic and computational results reveals that SCN- accumulates near the surface of polymers, but is excluded from monomers. This occurs because SCN- preferentially binds to the centre of macromolecular chains, where the local water hydrogen-bonding network is disrupted. These findings suggest a link between ion-specific effects and theories addressing how hydrophobic hydration is modulated by the size and shape of a hydrophobic entity.

Komentář v

PubMed

Zobrazit více v PubMed

Bye, J. W. & Falconer, R. J. Thermal stability of lysozyme as a function of ion concentration: a reappraisal of the relationship between the Hofmeister series and protein stability. Protein Sci. 22, 1563–1570 (2013). PubMed DOI PMC

Gibb, C. L. D. & Gibb, B. C. Anion binding to hydrophobic concavity is central to the salting-in effects of Hofmeister chaotropes. J. Am. Chem. Soc. 133, 7344–7347 (2011). PubMed DOI PMC

Ray, A. & Nemethy, G. Effects of ionic protein denaturants on micelle formation by nonionic detergents. J. Am. Chem. Soc. 93, 6787–6793 (1971). PubMed DOI

Zhang, Y. & Cremer, P. S. Interactions between macromolecules and ions: the Hofmeister series. Curr. Opin. Chem. Biol. 10, 658–663 (2006). PubMed DOI

Petersen, P. B. & Saykally, R. J. On the nature of ions at the liquid water surface. Annu. Rev. Phys. Chem. 57, 333–364 (2006). PubMed DOI

Tobias, D. J. & Hemminger, J. C. Getting specific about specific ion effects. Science 319, 1197–1198 (2008). PubMed DOI

Pegram, L. M. & Record, M. T. Thermodynamic origin of Hofmeister ion effects. J. Phys. Chem. B 112, 9428–9436 (2008). PubMed DOI PMC

Zhang, Y. & Cremer, P. S. Chemistry of Hofmeister anions and osmolytes. Annu. Rev. Phys. Chem. 61, 63–83 (2010). PubMed DOI

Lo Nostro, P. & Ninham, B. W. Hofmeister phenomena: an update on ion specificity in biology. Chem. Rev. 112, 2286–2322 (2012). PubMed DOI

Okur, H. I. et al. Beyond the Hofmeister series: ion-specific effects on proteins and their biological functions. J. Phys. Chem. B 121, 1997–2014 (2017). PubMed DOI

Zhang, Y., Furyk, S., Bergbreiter, D. E. & Cremer, P. S. Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series. J. Am. Chem. Soc. 127, 14505–14510 (2005). PubMed DOI

Cho, Y. et al. Effects of Hofmeister anions on the phase transition temperature of elastin-like polypeptides. J. Phys. Chem. B 112, 13765–13771 (2008). PubMed DOI PMC

Rembert, K. B. et al. Molecular mechanisms of ion-specific effects on proteins. J. Am. Chem. Soc. 134, 10039–10046 (2012). PubMed DOI

Rembert, K. B., Okur, H. I., Hilty, C. & Cremer, P. S. An NH moiety is not required for anion binding to amides in aqueous solution. Langmuir 31, 3459–3464 (2015). PubMed DOI

Dang, L. X. Computational study of ion binding to the liquid interface of water. J. Phys. Chem. B 106, 10388–10394 (2002). DOI

Jungwirth, P. & Tobias, D. J. Ions at the air/water interface. J. Phys. Chem. B 106, 6361–6373 (2002). DOI

Petersen, P. B., Saykally, R. J., Mucha, M. & Jungwirth, P. Enhanced concentration of polarizable anions at the liquid water surface: SHG spectroscopy and MD simulations of sodium thiocyanide. J. Phys. Chem. B 109, 10915–10921 (2005). PubMed DOI

Otten, D. E., Shaffer, P. R., Geissler, P. L. & Saykally, R. J. Elucidating the mechanism of selective ion adsorption to the liquid water surface. Proc. Natl Acad. Sci. USA 109, 701–705 (2012). PubMed DOI PMC

Fox, J. M. et al. Interactions between Hofmeister anions and the binding pocket of a protein. J. Am. Chem. Soc. 137, 3859–3866 (2015). PubMed DOI PMC

McCaffrey, D. L. et al. Mechanism of ion adsorption to aqueous interfaces: graphene/water vs. air/water. Proc. Natl Acad. Sci. USA 114, 13369–13373 (2017). PubMed DOI PMC

Sokkalingam, P., Shraberg, J., Rick, S. W. & Gibb, B. C. Binding hydrated anions with hydrophobic pockets. J. Am. Chem. Soc. 138, 48–51 (2016). PubMed DOI

Sullivan, M. R., Yao, W., Tang, D., Ashbaugh, H. S. & Gibb, B. C. The thermodynamics of anion complexation to nonpolar pockets. J. Phys. Chem. B 122, 1702–1713 (2018). PubMed DOI

Rankin, B. M. & Ben-Amotz, D. Expulsion of ions from hydrophobic hydration shells. J. Am. Chem. Soc. 135, 8818–8821 (2013). PubMed DOI

Balos, V., Kim, H., Bonn, M. & Hunger, J. Dissecting Hofmeister effects: direct anion–amide interactions are weaker than cation–amide binding. Angew. Chem. Int. Ed. 55, 8125–8128 (2016). DOI

Long, F. A. & McDevit, W. F. Activity coefficients of nonelectrolyte solutes in aqueous salt solutions. Chem. Rev. 51, 119–169 (1952). DOI

Stillinger, F. H. Structure in aqueous solutions of nonpolar solutes from the standpoint of scaled-particle theory. J. Solution Chem. 2, 141–158 (1973). DOI

Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005). PubMed DOI

Davis, J. G., Gierszal, K. P., Wang, P. & Ben-Amotz, D. Water structural transformation at molecular hydrophobic interfaces. Nature 491, 582–585 (2012). PubMed DOI

Hande, V. R. & Chakrabarty, S. Structural order of water molecules around hydrophobic solutes: length-scale dependence and solute–solvent coupling. J. Phys. Chem. B 119, 11346–11357 (2015). PubMed DOI

Pierce, V., Kang, M., Aburi, M., Weerasinghe, S. & Smith, P. E. Recent applications of Kirkwood–Buff theory to biological systems. Cell Biochem. Biophys. 50, 1–22 (2008). PubMed DOI

Knowles, D. B. et al. Chemical interactions of polyethylene glycols (PEGs) and glycerol with protein functional groups: applications to effects of PEG and glycerol on protein processes. Biochemistry 54, 3528–3542 (2015). PubMed DOI

Fega, K. R., Wilcox, A. S. & Ben-Amotz, D. Application of Raman multivariate curve resolution to solvation-shell spectroscopy. Appl. Spectrosc. 66, 282–288 (2012). PubMed DOI

Walrafen, G. E., Fisher, M. R., Hokmabadi, M. S. & Yang, W. ‐H. Temperature dependence of the low- and high-frequency Raman scattering from liquid water. J. Chem. Phys. 85, 6970–6982 (1986). DOI

D’Arrigo, G., Maisano, G., Mallamace, F., Migliardo, P. & Wanderlingh, F. Raman scattering and structure of normal and supercooled water. J. Chem. Phys. 75, 4264–4270 (1981). DOI

Sun, Q. Local statistical interpretation for water structure. Chem. Phys. Lett. 568–569, 90–94 (2013). DOI

Harada, Y. et al. Probing the OH stretch in different local environments in liquid water. J. Phys. Chem. Lett. 8, 5487–5491 (2017). PubMed DOI

Morawietz, T. et al. The interplay of structure and dynamics in the Raman spectrum of liquid water over the full frequency and temperature range. J. Phys. Chem. Lett. 9, 851–857 (2018). PubMed DOI

Duboué-Dijon, E. & Laage, D. Characterization of the local structure in liquid water by various order parameters. J. Phys. Chem. B 119, 8406–8418 (2015). PubMed DOI PMC

Mackay, D. & Shiu, W. Y. A critical review of Henry’s Law constants for chemicals of environmental interest. J. Phys. Chem. Ref. Data 10, 1175–1199 (1981). DOI

Meyer, D. E. & Chilkoti, A. Quantification of the effects of chain length and concentration on the thermal behavior of elastin-like polypeptides. Biomacromolecules 5, 846–851 (2004). PubMed DOI

Lee, C., McCammon, J. A. & Rossky, P. J. The structure of liquid water at an extended hydrophobic surface. J. Chem. Phys. 80, 4448–4455 (1984). DOI

Lum, K., Chandler, D. & Weeks, J. D. Hydrophobicity at small and large length scales. J. Phys. Chem. B 103, 4570–4577 (1999). DOI

Laage, D., Stirnemann, G. & Hynes, J. T. Why water reorientation slows without iceberg formation around hydrophobic solutes. J. Phys. Chem. B 113, 2428–2435 (2009). PubMed DOI

Petersen, C., Tielrooij, K.-J. & Bakker, H. J. Strong temperature dependence of water reorientation in hydrophobic hydration shells. J. Chem. Phys. 130, 214511 (2009). PubMed DOI

Xi, E. et al. Hydrophobicity of proteins and nanostructured solutes is governed by topographical and chemical context. Proc. Natl Acad. Sci. USA 114, 13345–13350 (2017). PubMed DOI PMC

Li, I. T. S. & Walker, G. C. Signature of hydrophobic hydration in a single polymer. Proc. Natl Acad. Sci. USA 108, 16527–16532 (2011). PubMed DOI PMC

von Hippel, P. H. & Wong, K.-Y. On the conformational stability of globular proteins. The effects of various electrolytes and nonelectrolytes on the thermal ribonuclease transition. J. Biol. Chem. 240, 3909–3923 (1965). PubMed DOI

Hwang, T. L. & Shaka, A. J. Water suppression that works. Excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J. Magn. Reson. A 112, 275–279 (1995). DOI

Lee, H., Venable, R. M., MacKerell, A. D. & Pastor, R. W. Molecular dynamics studies of polyethylene oxide and polyethylene glycol: hydrodynamic radius and shape anisotropy. Biophys. J. 95, 1590–1599 (2008). PubMed DOI PMC

Chudoba, R., Heyda, J. & Dzubiella, J. Temperature-dependent implicit-solvent model of polyethylene glycol in aqueous solution. J. Chem. Theory Comput. 13, 6317–6327 (2017). PubMed DOI

Berendsen, H. J. C., Grigera, J. R. & Straatsma, T. P. The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987). DOI

Heyda, J., Vincent, J. C., Tobias, D. J., Dzubiella, J. & Jungwirth, P. Ion specificity at the peptide bond: molecular dynamics simulations of N-methylacetamide in aqueous salt solutions. J. Phys. Chem. B 114, 1213–1220 (2010). PubMed DOI

Křížek, T. et al. Electrophoretic mobilities of neutral analytes and electroosmotic flow markers in aqueous solutions of Hofmeister salts. Electrophoresis 35, 617–624 (2014). PubMed DOI

Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015). DOI

Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 14101 (2007). DOI

Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981). DOI

Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995). DOI

Hess, B. P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 4, 116–122 (2008). PubMed DOI

Paterová, J. et al. Reversal of the Hofmeister series: specific ion effects on peptides. J. Phys. Chem. B 117, 8150–8158 (2013). PubMed DOI

Errington, J. R. & Debenedetti, P. G. Relationship between structural order and the anomalies of liquid water. Nature 409, 318–321 (2001). PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Unveiling the Borohydride Ion through Force-Field Development

. 2024 Feb 13 ; 20 (3) : 1263-1273. [epub] 20240116

Salt Effects on Caffeine across Concentration Regimes

. 2023 Dec 07 ; 127 (48) : 10253-10265. [epub] 20231121

Mechanism-Based Design of Efficient PET Hydrolases

. 2022 Mar 18 ; 12 (6) : 3382-3396. [epub] 20220228

Anion-cation contrast of small molecule solvation in salt solutions

. 2022 Feb 02 ; 24 (5) : 3238-3249. [epub] 20220202

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace