Mechanism-Based Design of Efficient PET Hydrolases
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
35368328
PubMed Central
PMC8939324
DOI
10.1021/acscatal.1c05856
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Polyethylene terephthalate (PET) is the most widespread synthetic polyester, having been utilized in textile fibers and packaging materials for beverages and food, contributing considerably to the global solid waste stream and environmental plastic pollution. While enzymatic PET recycling and upcycling have recently emerged as viable disposal methods for a circular plastic economy, only a handful of benchmark enzymes have been thoroughly described and subjected to protein engineering for improved properties over the last 16 years. By analyzing the specific material properties of PET and the reaction mechanisms in the context of interfacial biocatalysis, this Perspective identifies several limitations in current enzymatic PET degradation approaches. Unbalanced enzyme-substrate interactions, limited thermostability, and low catalytic efficiency at elevated reaction temperatures, and inhibition caused by oligomeric degradation intermediates still hamper industrial applications that require high catalytic efficiency. To overcome these limitations, successful protein engineering studies using innovative experimental and computational approaches have been published extensively in recent years in this thriving research field and are summarized and discussed in detail here. The acquired knowledge and experience will be applied in the near future to address plastic waste contributed by other mass-produced polymer types (e.g., polyamides and polyurethanes) that should also be properly disposed by biotechnological approaches.
Zobrazit více v PubMed
Brown B. S.; Mills J.; Hulse J. M. Chemical and Biological Degradation of Waste Plastics. Nature 1974, 250, 161–163. 10.1038/250161a0. PubMed DOI
Wong C. S.; Green D. R.; Cretney W. J. Quantitative Tar and Plastic Waste Distributions in the Pacific Ocean. Nature 1974, 247, 30–32. 10.1038/247030a0. DOI
Borrelle S. B.; Ringma J.; Law K. L.; Monnahan C. C.; Lebreton L.; McGivern A.; Murphy E.; Jambeck J.; Leonard G. H.; Hilleary M. A.; Eriksen M.; Possingham H. P.; Frond H. D.; Gerber L. R.; Polidoro B.; Tahir A.; Bernard M.; Mallos N.; Barnes M.; Rochman C. M. Predicted Growth in Plastic Waste Exceeds Efforts to Mitigate Plastic Pollution. Science 2020, 369, 1515–1518. 10.1126/science.aba3656. PubMed DOI
MacLeod M.; Arp H. P. H.; Tekman M. B.; Jahnke A. The Global Threat from Plastic Pollution. Science 2021, 373, 61–65. 10.1126/science.abg5433. PubMed DOI
Meys R.; Kätelhön A.; Bachmann M.; Winter B.; Zibunas C.; Suh S.; Bardow A. Achieving Net-Zero Greenhouse Gas Emission Plastics by a Circular Carbon Economy. Science 2021, 374, 71–76. 10.1126/science.abg9853. PubMed DOI
Ellis L. D.; Rorrer N. A.; Sullivan K. P.; Otto M.; McGeehan J. E.; Román-Leshkov Y.; Wierckx N.; Beckham G. T. Chemical and Biological Catalysis for Plastics Recycling and Upcycling. Nat. Catal. 2021, 4, 539–556. 10.1038/s41929-021-00648-4. DOI
Kakadellis S.; Rosetto G. Achieving a Circular Bioeconomy for Plastics. Science 2021, 373, 49–50. 10.1126/science.abj3476. PubMed DOI
Coates G. W.; Getzler Y. D. Y. L. Chemical Recycling to Monomer for an Ideal, Circular Polymer Economy. Nat. Rev. Mater. 2020, 5, 501–516. 10.1038/s41578-020-0190-4. DOI
Wei R.; Tiso T.; Bertling J.; O’Connor K.; Blank L. M.; Bornscheuer U. T. Possibilities and Limitations of Biotechnological Plastic Degradation and Recycling. Nat. Catal. 2020, 3, 867–871. 10.1038/s41929-020-00521-w. DOI
Cornwall W. The Plastic Eaters. Science 2021, 373, 36–39. 10.1126/science.373.6550.36. PubMed DOI
Geyer R.; Jambeck J. R.; Law K. L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3, e170078210.1126/sciadv.1700782. PubMed DOI PMC
Inderthal H.; Tai S. L.; Harrison S. T. L. Non-Hydrolyzable Plastics - an Interdisciplinary Look at Plastic Bio-Oxidation. Trends Biotechnol. 2021, 39, 12–23. 10.1016/j.tibtech.2020.05.004. PubMed DOI
Li Z.; Wei R.; Gao M.; Ren Y.; Yu B.; Nie K.; Xu H.; Liu L. Biodegradation of Low-Density Polyethylene by Microbulbifer hydrolyticus IRE-31. J. Environ. Manage. 2020, 263, 110402.10.1016/j.jenvman.2020.110402. PubMed DOI
Yoon M.-Y.; Kellis J.; Poulose A. J. Enzymatic Modification of Polyester. AATCC Review 2002, 2, 33–36.
Wei R.; Zimmermann W. Biocatalysis as a Green Route for Recycling the Recalcitrant Plastic Polyethylene Terephthalate. Microb. Biotechnol. 2017, 10, 1302–1307. 10.1111/1751-7915.12714. PubMed DOI PMC
Tournier V.; Topham C. M.; Gilles A.; David B.; Folgoas C.; Moya-Leclair E.; Kamionka E.; Desrousseaux M. L.; Texier H.; Gavalda S.; Cot M.; Guémard E.; Dalibey M.; Nomme J.; Cioci G.; Barbe S.; Chateau M.; André I.; Duquesne S.; Marty A. An Engineered PET Depolymerase to Break Down and Recycle Plastic Bottles. Nature 2020, 580, 216–219. 10.1038/s41586-020-2149-4. PubMed DOI
Kawai F. Emerging Strategies in Polyethylene Terephthalate Hydrolase Research for Biorecycling. ChemSusChem 2021, 14, 4115–4122. 10.1002/cssc.202100740. PubMed DOI
Jog J. P. Crystallization of Polyethyleneterephthalate. J. Macromol. Sci. Part C 1995, 35, 531–553. 10.1080/15321799508014598. DOI
Xin J.; Zhang Q.; Huang J.; Huang R.; Jaffery Q. Z.; Yan D.; Zhou Q.; Xu J.; Lu X. Progress in the Catalytic Glycolysis of Polyethylene Terephthalate. J. Environ. Manage. 2021, 296, 113267.10.1016/j.jenvman.2021.113267. PubMed DOI
Welle F. Twenty Years of PET Bottle to Bottle Recycling—an Overview. Resour. Conserv. Recycl. 2011, 55, 865–875. 10.1016/j.resconrec.2011.04.009. DOI
Jönsson C.; Wei R.; Biundo A.; Landberg J.; Schwarz Bour L.; Pezzotti F.; Toca A.; M. Jacques L.; Bornscheuer U. T.; Syrén P.-O. Biocatalysis in the Recycling Landscape for Synthetic Polymers and Plastics Towards Circular Textiles. ChemSusChem 2021, 14, 4028–4040. 10.1002/cssc.202002666. PubMed DOI PMC
Nicholson S. R.; Rorrer N. A.; Carpenter A. C.; Beckham G. T. Manufacturing Energy and Greenhouse Gas Emissions Associated with Plastics Consumption. Joule 2021, 5, 673–686. 10.1016/j.joule.2020.12.027. DOI
Karacan I. An in Depth Study of Crystallinity, Crystallite Size and Orientation Measurements of a Selection of Poly(Ethylene Terephthalate)Fibers. Fibers Polym. 2005, 6, 186–199. 10.1007/BF02875642. DOI
Bashir Z.; Al-Aloush I.; Al-Raqibah I.; Ibrahim M. Evaluation of Three Methods for the Measurement of Crystallinity of PET Resins, Preforms, and Bottles. Polym. Eng. Sci. 2000, 40, 2442–2455. 10.1002/pen.11376. DOI
Webb H. K.; Arnott J.; Crawford R. J.; Ivanova E. P. Plastic Degradation and Its Environmental Implications with Special Reference to Poly(Ethylene Terephthalate). Polymers 2013, 5, 1–18. 10.3390/polym5010001. DOI
Suaria G.; Achtypi A.; Perold V.; Lee J. R.; Pierucci A.; Bornman T. G.; Aliani S.; Ryan P. G. Microfibers in Oceanic Surface Waters: A Global Characterization. Sci. Adv. 2020, 6, eaay849310.1126/sciadv.aay8493. PubMed DOI PMC
Deng H.; Wei R.; Luo W.; Hu L.; Li B.; Di Y.; Shi H. Microplastic Pollution in Water and Sediment in a Textile Industrial Area. Environ. Pollut. 2020, 258, 113658.10.1016/j.envpol.2019.113658. PubMed DOI
Worm B.; Lotze H. K.; Jubinville I.; Wilcox C.; Jambeck J. Plastic as a Persistent Marine Pollutant. Annu. Rev. Environ. Resour. 2017, 42, 1–26. 10.1146/annurev-environ-102016-060700. DOI
Tokiwa Y.; Suzuki T. Hydrolysis of Polyesters by Lipases. Nature 1977, 270, 76–78. 10.1038/270076a0. PubMed DOI
Sato M. Deterioration of Filaments and Films of Polyethyleneterephthalate with Enzyme of Cladosporium Cladosporioides FERM J-8. Sen-i Gakkaishi 1983, 39, 67–77. 10.2115/fiber.39.5_T209. DOI
Mueller R.-J.; Schrader H.; Profe J.; Dresler K.; Deckwer W.-D. Enzymatic Degradation of Poly(Ethylene Terephthalate): Rapid Hydrolyse Using a Hydrolase from T. fusca. Macromol. Rapid Commun. 2005, 26, 1400–1405. 10.1002/marc.200500410. DOI
Tiso T.; Winter B.; Wei R.; Hee J.; de Witt J.; Wierckx N.; Quicker P.; Bornscheuer U. T.; Bardow A.; Nogales J.; Blank L. M. The Metabolic Potential of Plastics as Biotechnological Carbon Sources – Review and Targets for the Future. Metab. Eng. 2021, 1.10.1016/j.ymben.2021.12.006. PubMed DOI
Sulaiman S.; Yamato S.; Kanaya E.; Kim J. J.; Koga Y.; Takano K.; Kanaya S. Isolation of a Novel Cutinase Homolog with Polyethylene Terephthalate-Degrading Activity from Leaf-Branch Compost by Using a Metagenomic Approach. Appl. Environ. Microbiol. 2012, 78, 1556–1562. 10.1128/AEM.06725-11. PubMed DOI PMC
Yoshida S.; Hiraga K.; Takehana T.; Taniguchi I.; Yamaji H.; Maeda Y.; Toyohara K.; Miyamoto K.; Kimura Y.; Oda K. A Bacterium That Degrades and Assimilates Poly(Ethylene Terephthalate). Science 2016, 351, 1196–1199. 10.1126/science.aad6359. PubMed DOI
Kan Y.; He L.; Luo Y.; Bao R. IsPETase Is a Novel Biocatalyst for Poly(Ethylene Terephthalate) (PET) Hydrolysis. ChemBioChem. 2021, 22, 1706–1716. 10.1002/cbic.202000767. PubMed DOI
Bornscheuer U. T. Feeding on Plastic. Science 2016, 351, 1154–1155. 10.1126/science.aaf2853. PubMed DOI
Fujiwara R.; Sanuki R.; Ajiro H.; Fukui T.; Yoshida S. Direct Fermentative Conversion of Poly(Ethylene Terephthalate) into Poly(Hydroxyalkanoate) by Ideonella sakaiensis. Sci. Rep. 2021, 11, 19991.10.1038/s41598-021-99528-x. PubMed DOI PMC
Kawai F.; Kawabata T.; Oda M. Current State and Perspectives Related to the Polyethylene Terephthalate Hydrolases Available for Biorecycling. ACS Sustain. Chem. Eng. 2020, 8, 8894–8908. 10.1021/acssuschemeng.0c01638. DOI
Wei Y.; Swenson L.; Castro C.; Derewenda U.; Minor W.; Arai H.; Aoki J.; Inoue K.; Servin-Gonzalez L.; Derewenda Z. S. Structure of a Microbial Homologue of Mammalian Platelet-Activating Factor Acetylhydrolases: Streptomyces exfoliatus Lipase at 1.9 Å Resolution. Structure 1998, 6, 511–519. 10.1016/S0969-2126(98)00052-5. PubMed DOI
Carr P. D.; Ollis D. L. Alpha/Beta Hydrolase Fold: An Update. Protein Pept. Lett. 2009, 16, 1137–1148. 10.2174/092986609789071298. PubMed DOI
Chen S.; Su L.; Chen J.; Wu J. Cutinase: Characteristics, Preparation, and Application. Biotechnol. Adv. 2013, 31, 1754–1767. 10.1016/j.biotechadv.2013.09.005. PubMed DOI
Ronkvist Ã. S. M.; Xie W.; Lu W.; Gross R. A. Cutinase-Catalyzed Hydrolysis of Poly(Ethylene Terephthalate). Macromolecules 2009, 42, 5128–5138. 10.1021/ma9005318. DOI
de Castro A. M.; Carniel A.; Nicomedes Junior J.; da Conceição Gomes A.; Valoni É. Screening of Commercial Enzymes for Poly(Ethylene Terephthalate) (PET) Hydrolysis and Synergy Studies on Different Substrate Sources. J. Ind. Microbiol. Biotechnol. 2017, 44, 835–844. 10.1007/s10295-017-1942-z. PubMed DOI
Kaabel S.; Therien J. P. D.; Deschênes C. E.; Duncan D.; Friščić T.; Auclair K. Enzymatic Depolymerization of Highly Crystalline Polyethylene Terephthalate Enabled in Moist-Solid Reaction Mixtures. Proc. Nat. Acad. Sci. U.S.A. 2021, 118, e202645211810.1073/pnas.2026452118. PubMed DOI PMC
Carniel A.; Gomes A. d. C.; Coelho M. A. Z.; de Castro A. M. Process Strategies to Improve Biocatalytic Depolymerization of Post-Consumer PET Packages in Bioreactors, and Investigation on Consumables Cost Reduction. Bioprocess Biosyst. Eng. 2021, 44, 507–516. 10.1007/s00449-020-02461-y. PubMed DOI
Mueller R.-J. Biological Degradation of Synthetic Polyesters--Enzymes as Potential Catalysts for Polyester Recycling. Process Biochem. 2006, 41, 2124–2128. 10.1016/j.procbio.2006.05.018. DOI
Maurya A.; Bhattacharya A.; Khare S. K. Enzymatic Remediation of Polyethylene Terephthalate (PET)–Based Polymers for Effective Management of Plastic Wastes: An Overview. Front. Bioeng. Biotechnol. 2020, 8, 602325.10.3389/fbioe.2020.602325. PubMed DOI PMC
Takashima S.; Ohno M.; Hidaka M.; Nakamura A.; Masaki H.; Uozumi T. Correlation between Cellulose Binding and Activity of Cellulose-Binding Domain Mutants of Humicola grisea Cellobiohydrolase 1. FEBS Lett. 2007, 581, 5891–5896. 10.1016/j.febslet.2007.11.068. PubMed DOI
Hsieh C.-W. C.; Cannella D.; Jørgensen H.; Felby C.; Thygesen L. G. Cellulase Inhibition by High Concentrations of Monosaccharides. J. Agric. Food Chem. 2014, 62, 3800–3805. 10.1021/jf5012962. PubMed DOI
Barth M.; Oeser T.; Wei R.; Then J.; Schmidt J.; Zimmermann W. Effect of Hydrolysis Products on the Enzymatic Degradation of Polyethylene Terephthalate Nanoparticles by a Polyester Hydrolase from Thermobifida fusca. Biochem. Eng. J. 2015, 93, 222–228. 10.1016/j.bej.2014.10.012. DOI
Carniel A.; Waldow V. d. A.; Castro A. M. d. A Comprehensive and Critical Review on Key Elements to Implement Enzymatic PET Depolymerization for Recycling Purposes. Biotechnol. Adv. 2021, 52, 107811.10.1016/j.biotechadv.2021.107811. PubMed DOI
Sulaiman S.; You D. J.; Kanaya E.; Koga Y.; Kanaya S. Crystal Structure and Thermodynamic and Kinetic Stability of Metagenome-Derived LC-Cutinase. Biochemistry 2014, 53, 1858–1869. 10.1021/bi401561p. PubMed DOI
Wei R.; Breite D.; Song C.; Gräsing D.; Ploss T.; Hille P.; Schwerdtfeger R.; Matysik J.; Schulze A.; Zimmermann W. Biocatalytic Degradation Efficiency of Postconsumer Polyethylene Terephthalate Packaging Determined by Their Polymer Microstructures. Adv. Sci. 2019, 6, 1900491.10.1002/advs.201900491. PubMed DOI PMC
Son H. F.; Cho I. J.; Joo S.; Seo H.; Sagong H.-Y.; Choi S. Y.; Lee S. Y.; Kim K.-J. Rational Protein Engineering of Thermo-Stable PETase from Ideonella sakaiensis for Highly Efficient PET Degradation. ACS Catal. 2019, 9, 3519–3526. 10.1021/acscatal.9b00568. DOI
Cui Y.; Chen Y.; Liu X.; Dong S.; Tian Y. e.; Qiao Y.; Mitra R.; Han J.; Li C.; Han X.; Liu W.; Chen Q.; Wei W.; Wang X.; Du W.; Tang S.; Xiang H.; Liu H.; Liang Y.; Houk K. N.; Wu B. Computational Redesign of a PETase for Plastic Biodegradation under Ambient Condition by the GRAPE Strategy. ACS Catal. 2021, 11, 1340–1350. 10.1021/acscatal.0c05126. DOI
Brott S.; Pfaff L.; Schuricht J.; Schwarz J.-N.; Böttcher D.; Badenhorst C. P. S.; Wei R.; Bornscheuer U. T. Engineering and Evaluation of Thermostable IsPETase Variants for PET Degradation. Eng. Life Sci. 2021, 1.10.1002/elsc.202100105. PubMed DOI PMC
Witt U.; Yamamoto M.; Seeliger U.; Müller R.-J.; Warzelhan V. Biodegradable Polymeric Materials—Not the Origin but the Chemical Structure Determines Biodegradability. Angew. Chem., Int. Ed. 1999, 38, 1438–1442. 10.1002/(SICI)1521-3773(19990517)38:10<1438::AID-ANIE1438>3.0.CO;2-U. PubMed DOI
Marten E.; Müller R.-J.; Deckwer W.-D. Studies on the Enzymatic Hydrolysis of Polyesters. II. Aliphatic-Aromatic Copolyesters. Polym. Degrad. Stab. 2005, 88, 371–381. 10.1016/j.polymdegradstab.2004.12.001. DOI
Keller A.; Lester G. R.; Morgan L. B. Crystallization Phenomena in Polymers. I. Preliminary Investigation of the Crystallization Characteristics of Polyethylene Terephthalate. Philos. Trans. Royal Soc. A 1954, 247, 1–12.
Langevin D.; Grenet J.; Saiter J. M. Moisture Sorption in PET Influence on the Thermokinetic Parameters. Eur. Polym. J. 1994, 30, 339–345. 10.1016/0014-3057(94)90297-6. DOI
Alves N. M.; Mano J. F.; Balaguer E.; Meseguer Dueñas J. M.; Gómez Ribelles J. L. Glass Transition and Structural Relaxation in Semi-Crystalline Poly(Ethylene Terephthalate): A DSC Study. Polymer 2002, 43, 4111–4122. 10.1016/S0032-3861(02)00236-7. DOI
Wellen R. M. R.; Canedo E.; Rabello M. S. Nonisothermal Cold Crystallization of Poly(Ethylene Terephthalate). J. Mater. Res. 2011, 26, 1107–1115. 10.1557/jmr.2011.44. DOI
Wei R.; Oeser T.; Barth M.; Weigl N.; Lübs A.; Schulz-Siegmund M.; Hacker M.; Zimmermann W. Turbidimetric Analysis of the Enzymatic Hydrolysis of Polyethylene Terephthalate Nanoparticles. J. Mol. Catal. B-Enzym. 2014, 103, 72–78. 10.1016/j.molcatb.2013.08.010. DOI
Gamerith C.; Zartl B.; Pellis A.; Guillamot F.; Marty A.; Acero E. H.; Guebitz G. M. Enzymatic Recovery of Polyester Building Blocks from Polymer Blends. Process Biochem. 2017, 59, 58–64. 10.1016/j.procbio.2017.01.004. DOI
Austin H. P.; Allen M. D.; Donohoe B. S.; Rorrer N. A.; Kearns F. L.; Silveira R. L.; Pollard B. C.; Dominick G.; Duman R.; El Omari K.; Mykhaylyk V.; Wagner A.; Michener W. E.; Amore A.; Skaf M. S.; Crowley M. F.; Thorne A. W.; Johnson C. W.; Woodcock H. L.; McGeehan J. E.; Beckham G. T. Characterization and Engineering of a Plastic-Degrading Aromatic Polyesterase. Proc. Nat. Acad. Sci. U.S.A. 2018, 115, E4350–E4357. 10.1073/pnas.1718804115. PubMed DOI PMC
Ito E.; Kobayashi Y. Effects of Absorbed Water on Physical Properties of Polyesters. J. Appl. Polym. Sci. 1980, 25, 2145–2157. 10.1002/app.1980.070251001. DOI
Jabarin S. A.; Lofgren E. A. Effects of Water Absorption on Physical Properties and Degree of Molecular Orientation of Poly (Ethylene Terephthalate). Polym. Eng. Sci. 1986, 26, 620–625. 10.1002/pen.760260907. DOI
Bianchi R.; Chiavacci P.; Vosa R.; Guerra G. Effect of Moisture on the Crystallization Behavior of PET from the Quenched Amorphous Phase. J. Appl. Polym. Sci. 1991, 43, 1087–1089. 10.1002/app.1991.070430608. DOI
Launay A.; Thominette F.; Verdu J. Water Sorption in Amorphous Poly(Ethylene Terephthalate). J. Appl. Polym. Sci. 1999, 73, 1131–1137. 10.1002/(SICI)1097-4628(19990815)73:7<1131::AID-APP4>3.0.CO;2-U. DOI
Shinotsuka K.; Bliznyuk V. N.; Assender H. E. Near-Surface Crystallization of PET. Polymer 2012, 53, 5554–5559. 10.1016/j.polymer.2012.09.048. DOI
Zuo B.; Liu Y.; Liang Y.; Kawaguchi D.; Tanaka K.; Wang X. Glass Transition Behavior in Thin Polymer Films Covered with a Surface Crystalline Layer. Macromolecules 2017, 50, 2061–2068. 10.1021/acs.macromol.6b02740. DOI
Falkenstein P.; Gräsing D.; Bielytskyi P.; Zimmermann W.; Matysik J.; Wei R.; Song C. UV Pretreatment Impairs the Enzymatic Degradation of Polyethylene Terephthalate. Front. Microbiol. 2020, 11, 1.10.3389/fmicb.2020.00689. PubMed DOI PMC
Baker P. J.; Poultney C.; Liu Z.; Gross R.; Montclare J. K. Identification and Comparison of Cutinases for Synthetic Polyester Degradation. Appl. Microbiol. Biotechnol. 2012, 93, 229–240. 10.1007/s00253-011-3402-4. PubMed DOI
Kawai F. The Current State of Research on PET Hydrolyzing Enzymes Available for Biorecycling. Catalysts 2021, 11, 206.10.3390/catal11020206. DOI
Danso D.; Schmeisser C.; Chow J.; Zimmermann W.; Wei R.; Leggewie C.; Li X.; Hazen T.; Streit W. R. New Insights into the Function and Global Distribution of Polyethylene Terephthalate (PET)-Degrading Bacteria and Enzymes in Marine and Terrestrial Metagenomes. Appl. Environ. Microbiol. 2018, 84, e02773-0271710.1128/AEM.02773-17. PubMed DOI PMC
Miyakawa T.; Mizushima H.; Ohtsuka J.; Oda M.; Kawai F.; Tanokura M. Structural Basis for the Ca2+-Enhanced Thermostability and Activity of PET-Degrading Cutinase-Like Enzyme from Saccharomonospora viridis AHK190. Appl. Microbiol. Biotechnol. 2015, 99, 4297–4307. 10.1007/s00253-014-6272-8. PubMed DOI
Then J.; Wei R.; Oeser T.; Gerdts A.; Schmidt J.; Barth M.; Zimmermann W. A Disulfide Bridge in the Calcium Binding Site of a Polyester Hydrolase Increases Its Thermal Stability and Activity against Polyethylene Terephthalate. FEBS Open Bio 2016, 6, 425–432. 10.1002/2211-5463.12053. PubMed DOI PMC
Oda M.; Yamagami Y.; Inaba S.; Oida T.; Yamamoto M.; Kitajima S.; Kawai F. Enzymatic Hydrolysis of PET: Functional Roles of Three Ca2+ Ions Bound to a Cutinase-Like Enzyme, Cut190*, and Its Engineering for Improved Activity. Appl. Microbiol. Biotechnol. 2018, 102, 10067–10077. 10.1007/s00253-018-9374-x. PubMed DOI
Then J.; Wei R.; Oeser T.; Barth M.; Belisário-Ferrari M. R.; Schmidt J.; Zimmermann W. Ca2+ and Mg2+ Binding Site Engineering Increases the Degradation of Polyethylene Terephthalate Films by Polyester Hydrolases from Thermobifida fusca. Biotechnol. J. 2015, 10, 592–598. 10.1002/biot.201400620. PubMed DOI
Numoto N.; Kamiya N.; Bekker G.-J.; Yamagami Y.; Inaba S.; Ishii K.; Uchiyama S.; Kawai F.; Ito N.; Oda M. Structural Dynamics of the PET-Degrading Cutinase-Like Enzyme from Saccharomonospora viridis AHK190 in Substrate-Bound States Elucidates the Ca2+-Driven Catalytic Cycle. Biochemistry 2018, 57, 5289–5300. 10.1021/acs.biochem.8b00624. PubMed DOI
Emori M.; Numoto N.; Senga A.; Bekker G.-J.; Kamiya N.; Kobayashi Y.; Ito N.; Kawai F.; Oda M. Structural Basis of Mutants of PET-Degrading Enzyme from Saccharomonospora viridis AHK190 with High Activity and Thermal Stability. Proteins 2021, 89, 502–511. 10.1002/prot.26034. PubMed DOI
Baker P.; Grossman R. F. Properties and Reactions of Metal Terephthalates. J. Vinyl Technol. 1989, 11, 59–61. 10.1002/vnl.730110204. DOI
Zhong-Johnson E. Z. L.; Voigt C. A.; Sinskey A. J. An Absorbance Method for Analysis of Enzymatic Degradation Kinetics of Poly(Ethylene Terephthalate) Films. Sci. Rep. 2021, 11, 928.10.1038/s41598-020-79031-5. PubMed DOI PMC
Nakamura A.; Kobayashi N.; Koga N.; Iino R. Positive Charge Introduction on the Surface of Thermostabilized PET Hydrolase Facilitates PET Binding and Degradation. ACS Catal. 2021, 11, 8550–8564. 10.1021/acscatal.1c01204. DOI
Xi X.; Ni K.; Hao H.; Shang Y.; Zhao B.; Qian Z. Secretory Expression in Bacillus subtilis and Biochemical Characterization of a Highly Thermostable Polyethylene Terephthalate Hydrolase from Bacterium HR29. Enzyme Microb. Technol. 2021, 143, 109715.10.1016/j.enzmictec.2020.109715. PubMed DOI
Shirke A. N.; White C.; Englaender J. A.; Zwarycz A.; Butterfoss G. L.; Linhardt R. J.; Gross R. A. Stabilizing Leaf and Branch Compost Cutinase (LCC) with Glycosylation: Mechanism and Effect on PET Hydrolysis. Biochemistry 2018, 57, 1190–1200. 10.1021/acs.biochem.7b01189. PubMed DOI
Fecker T.; Galaz-Davison P.; Engelberger F.; Narui Y.; Sotomayor M.; Parra L. P.; Ramírez-Sarmiento C. A. Active Site Flexibility as a Hallmark for Efficient PET Degradation by I. sakaiensisPETase. Biophys. J. 2018, 114, 1302–1312. 10.1016/j.bpj.2018.02.005. PubMed DOI PMC
Lu H.; Diaz D. J.; Czarnecki N. J.; Zhu C.; Kim W.; Shroff R.; Acosta D. J.; Alexander B.; Cole H.; Zhang Y. J.; Lynd N.; Ellington A. D.; Alper H. S.. Deep Learning Redesign of PETase for Practical PET Degrading Applications. bioRxiv, 2021, 10.1101/2021.10.10.463845. DOI
Bell E.; Smithson R.; Kilbride S.; Foster J.; Hardy F.; Ramachandran S.; Tedstone A.; Haigh S.; Garforth A.; Day P.; Levy C.; Shaver M.; Green A.. Directed Evolution of an Efficient and Thermostable PET Depolymerase. ChemRxiv, 2021, 10.26434/chemrxiv-2021-mcjh6. DOI
Erickson E.; Shakespeare T. J.; Bratti F.; Buss B. L.; Graham R.; Hawkins M. A.; König G.; Michener W. E.; Miscall J.; Ramirez K. J.; Rorrer N. A.; Zahn M.; Pickford A. R.; McGeehan J. E.; Beckham G. T. Comparative Performance of PETase as a Function of Reaction Conditions, Substrate Properties, and Product Accumulation. ChemSusChem 2022, 15, e20210193210.1002/cssc.202101932. PubMed DOI
Meng X.; Yang L.; Liu H.; Li Q.; Xu G.; Zhang Y.; Guan F.; Zhang Y.; Zhang W.; Wu N.; Tian J. Protein Engineering of Stable IsPETase for PET Plastic Degradation by Premuse. Int. J. Biol. Macromol. 2021, 180, 667–676. 10.1016/j.ijbiomac.2021.03.058. PubMed DOI
Singh A.; Rorrer N. A.; Nicholson S. R.; Erickson E.; DesVeaux J. S.; Avelino A. F. T.; Lamers P.; Bhatt A.; Zhang Y.; Avery G.; Tao L.; Pickford A. R.; Carpenter A. C.; McGeehan J. E.; Beckham G. T. Techno-Economic, Life-Cycle, and Socioeconomic Impact Analysis of Enzymatic Recycling of Poly(Ethylene Terephthalate). Joule 2021, 5, 2479–2503. 10.1016/j.joule.2021.06.015. DOI
Woodard L. N.; Grunlan M. A. Hydrolytic Degradation and Erosion of Polyester Biomaterials. ACS Macro Lett. 2018, 7, 976–982. 10.1021/acsmacrolett.8b00424. PubMed DOI PMC
Kari J.; Andersen M.; Borch K.; Westh P. An Inverse Michaelis–Menten Approach for Interfacial Enzyme Kinetics. ACS Catal. 2017, 7, 4904–4914. 10.1021/acscatal.7b00838. DOI
Vogel K.; Wei R.; Pfaff L.; Breite D.; Al-Fathi H.; Ortmann C.; Estrela-Lopis I.; Venus T.; Schulze A.; Harms H.; Bornscheuer U. T.; Maskow T. Enzymatic Degradation of Polyethylene Terephthalate Nanoplastics Analyzed in Real Time by Isothermal Titration Calorimetry. Sci. Total Environ. 2021, 773, 145111.10.1016/j.scitotenv.2021.145111. PubMed DOI
Bååth J. A.; Borch K.; Jensen K.; Brask J.; Westh P. Comparative Biochemistry of Four Polyester (PET) Hydrolases. ChemBioChem. 2021, 22, 1627–1637. 10.1002/cbic.202000793. PubMed DOI
Silva C.; Da S.; Silva N.; Matama T.; Araujo R.; Martins M.; Chen S.; Chen J.; Wu J.; Casal M.; Cavaco-Paulo A. Engineered Thermobifida fusca Cutinase with Increased Activity on Polyester Substrates. Biotechnol. J. 2011, 6, 1230–1239. 10.1002/biot.201000391. PubMed DOI
Wei R.; Oeser T.; Then J.; Kühn N.; Barth M.; Schmidt J.; Zimmermann W. Functional Characterization and Structural Modeling of Synthetic Polyester-Degrading Hydrolases from Thermomonospora curvata. AMB Express 2014, 4, 44.10.1186/s13568-014-0044-9. PubMed DOI PMC
Wei R.; Oeser T.; Schmidt J.; Meier R.; Barth M.; Then J.; Zimmermann W. Engineered Bacterial Polyester Hydrolases Efficiently Degrade Polyethylene Terephthalate Due to Relieved Product Inhibition. Biotechnol. Bioeng. 2016, 113, 1658–1665. 10.1002/bit.25941. PubMed DOI
Ribitsch D.; Yebra A. O.; Zitzenbacher S.; Wu J.; Nowitsch S.; Steinkellner G.; Greimel K.; Doliska A.; Oberdorfer G.; Gruber C. C.; Gruber K.; Schwab H.; Stana-Kleinschek K.; Acero E. H.; Guebitz G. M. Fusion of Binding Domains to Thermobifida cellulosilytica Cutinase to Tune Sorption Characteristics and Enhancing PET Hydrolysis. Biomacromolecules 2013, 14, 1769–1776. 10.1021/bm400140u. PubMed DOI
Zumstein M. T.; Kohler H.-P. E.; McNeill K.; Sander M. Enzymatic Hydrolysis of Polyester Thin Films: Real-Time Analysis of Film Mass Changes and Dissipation Dynamics. Environ. Sci. Technol. 2016, 50, 197–206. 10.1021/acs.est.5b04103. PubMed DOI
Weinberger S.; Haernvall K.; Scaini D.; Ghazaryan G.; Zumstein M. T.; Sander M.; Pellis A.; Guebitz G. M. Enzymatic Surface Hydrolysis of Poly(Ethylene Furanoate) Thin Films of Various Crystallinities. Green Chem. 2017, 19, 5381–5384. 10.1039/C7GC02905E. DOI
Xue R.; Chen Y.; Rong H.; Wei R.; Cui Z.; Zhou J.; Dong W.; Jiang M. Fusion of Chitin-Binding Domain from Chitinolyticbacter meiyuanensis SYBC-H1 to the Leaf-Branch Compost Cutinase for Enhanced PET Hydrolysis. Front. Bioeng. Biotechnol. 2021, 9, 762854.10.3389/fbioe.2021.762854. PubMed DOI PMC
Zhang Y.; Wang L.; Chen J.; Wu J. Enhanced Activity toward PET by Site-Directed Mutagenesis of Thermobifida fusca Cutinase-CBM Fusion Protein. Carbohydr. Polym. 2013, 97, 124–129. 10.1016/j.carbpol.2013.04.042. PubMed DOI
Bååth J. A.; Novy V.; Carneiro L. V.; Guebitz G. M.; Olsson L.; Westh P.; Ribitsch D. Structure-Function Analysis of Two Closely Related Cutinases from Thermobifida cellulosilytica. Biotechnol. Bioeng. 2022, 119, 470–481. 10.1002/bit.27984. PubMed DOI PMC
Badino S. F.; Bååth J. A.; Borch K.; Jensen K.; Westh P. Adsorption of Enzymes with Hydrolytic Activity on Polyethylene Terephthalate. Enzyme Microb. Technol. 2021, 152, 109937.10.1016/j.enzmictec.2021.109937. PubMed DOI
Boneta S.; Arafet K.; Moliner V. QM/MM Study of the Enzymatic Biodegradation Mechanism of Polyethylene Terephthalate. J. Chem. Inf. Model. 2021, 61, 3041–3051. 10.1021/acs.jcim.1c00394. PubMed DOI PMC
Feng S.; Yue Y.; Zheng M.; Li Y.; Zhang Q.; Wang W. IsPETase- and IsMHETase-Catalyzed Cascade Degradation Mechanism toward Polyethylene Terephthalate. ACS Sustain. Chem. Eng. 2021, 9, 9823–9832. 10.1021/acssuschemeng.1c02420. DOI
Jerves C.; Neves R. P. P.; Ramos M. J.; da Silva S.; Fernandes P. A. Reaction Mechanism of the PET Degrading Enzyme PETase Studied with DFT/MM Molecular Dynamics Simulations. ACS Catal. 2021, 11, 11626–11638. 10.1021/acscatal.1c03700. DOI
Zheng M.; Li Y.; Dong W.; Feng S.; Zhang Q.; Wang W. Computational Biotransformation of Polyethylene Terephthalate by Depolymerase: A QM/MM Approach. J. Hazard. Mater. 2022, 423, 127017.10.1016/j.jhazmat.2021.127017. PubMed DOI
Roth C.; Wei R.; Oeser T.; Then J.; Foellner C.; Zimmermann W.; Sträter N. Structural and Functional Studies on a Thermostable Polyethylene Therephtalate Degrading Hydrolase from Thermobifida fusca. Appl. Microbiol. Biotechnol. 2014, 98, 7815–7823. 10.1007/s00253-014-5672-0. PubMed DOI
Joo S.; Cho I. J.; Seo H.; Son H. F.; Sagong H.-Y.; Shin T. J.; Choi S. Y.; Lee S. Y.; Kim K.-J. Structural Insight into Molecular Mechanism of Poly(Ethylene Terephthalate) Degradation. Nat. Commun. 2018, 9, 382.10.1038/s41467-018-02881-1. PubMed DOI PMC
da Costa C. H. S.; dos Santos A. M.; Alves C. N.; Martí S.; Moliner V.; Santana K.; Lameira J. Assessment of the PETase Conformational Changes Induced by Poly(Ethylene Terephthalate) Binding. Proteins 2021, 89, 1340–1352. 10.1002/prot.26155. PubMed DOI
Taniguchi I.; Yoshida S.; Hiraga K.; Miyamoto K.; Kimura Y.; Oda K. Biodegradation of PET: Current Status and Application Aspects. ACS Catal. 2019, 9, 4089–4105. 10.1021/acscatal.8b05171. DOI
Wei R.; Song C.; Gräsing D.; Schneider T.; Bielytskyi P.; Böttcher D.; Matysik J.; Bornscheuer U. T.; Zimmermann W. Conformational Fitting of a Flexible Oligomeric Substrate Does Not Explain the Enzymatic PET Degradation. Nat. Commun. 2019, 10, 5581.10.1038/s41467-019-13492-9. PubMed DOI PMC
Han X.; Liu W.; Huang J.-W.; Ma J.; Zheng Y.; Ko T.-P.; Xu L.; Cheng Y.-S.; Chen C.-C.; Guo R.-T. Structural Insight into Catalytic Mechanism of PET Hydrolase. Nat. Commun. 2017, 8, 2106.10.1038/s41467-017-02255-z. PubMed DOI PMC
Chen C.-C.; Han X.; Ko T.-P.; Liu W.; Guo R.-T. Structural Studies Reveal the Molecular Mechanism of PETase. FEBS J. 2018, 285, 3717–3723. 10.1111/febs.14612. PubMed DOI
Liu B.; He L.; Wang L.; Li T.; Li C.; Liu H.; Luo Y.; Bao R. Protein Crystallography and Site-Direct Mutagenesis Analysis of the Poly(Ethylene Terephthalate) Hydrolase PETase from Ideonella sakaiensis. ChemBioChem. 2018, 19, 1471–1475. 10.1002/cbic.201800097. PubMed DOI
Chen C.-C.; Han X.; Li X.; Jiang P.; Niu D.; Ma L.; Liu W.; Li S.; Qu Y.; Hu H.; Min J.; Yang Y.; Zhang L.; Zeng W.; Huang J.-W.; Dai L.; Guo R.-T. General Features to Enhance Enzymatic Activity of Poly(Ethylene Terephthalate) Hydrolysis. Nat. Catal. 2021, 4, 425–430. 10.1038/s41929-021-00616-y. DOI
Araujo R.; Silva C.; O’Neill A.; Micaelo N.; Guebitz G.; Soares C. M.; Casal M.; Cavaco-Paulo A. Tailoring Cutinase Activity Towards Polyethylene Terephthalate and Polyamide 6,6 Fibers. J. Biotechnol. 2007, 128, 849–857. 10.1016/j.jbiotec.2006.12.028. PubMed DOI
Falkenstein P.; Wei R.; Matysik J.; Song C.. Mechanistic Investigation of Enzymatic Degradation of Polyethylene Terephthalate by Nuclear Magnetic Resonance. In Methods in Enzymology, Weber G.; Bornscheuer U. T.; Wei R., Eds.; Academic Press, 2021; Vol. 648, pp 231–252. PubMed
Furukawa M.; Kawakami N.; Tomizawa A.; Miyamoto K. Efficient Degradation of Poly(Ethylene Terephthalate) with Thermobifida fusca Cutinase Exhibiting Improved Catalytic Activity Generated Using Mutagenesis and Additive-Based Approaches. Sci. Rep. 2019, 9, 16038.10.1038/s41598-019-52379-z. PubMed DOI PMC
Barth M.; Honak A.; Oeser T.; Wei R.; Belisário-Ferrari M. R.; Then J.; Schmidt J.; Zimmermann W. A Dual Enzyme System Composed of a Polyester Hydrolase and a Carboxylesterase Enhances the Biocatalytic Degradation of Polyethylene Terephthalate Films. Biotechnol. J. 2016, 11, 1082–1087. 10.1002/biot.201600008. PubMed DOI
Eugenio E. d. Q.; Campisano I. S. P.; de Castro A. M.; Coelho M. A. Z.; Langone M. A. P. Kinetic Modeling of the Post-Consumer Poly(Ethylene Terephthalate) Hydrolysis Catalyzed by Cutinase from Humicola insolens. J. Polym. Environ. 2021, 1.10.1007/s10924-021-02301-4. PubMed DOI
Knott B. C.; Erickson E.; Allen M. D.; Gado J. E.; Graham R.; Kearns F. L.; Pardo I.; Topuzlu E.; Anderson J. J.; Austin H. P.; Dominick G.; Johnson C. W.; Rorrer N. A.; Szostkiewicz C. J.; Copié V.; Payne C. M.; Woodcock H. L.; Donohoe B. S.; Beckham G. T.; McGeehan J. E. Characterization and Engineering of a Two-Enzyme System for Plastics Depolymerization. Proc. Nat. Acad. Sci. U.S.A. 2020, 117, 25476–25485. 10.1073/pnas.2006753117. PubMed DOI PMC
Meyer-Cifuentes I. E.; Öztürk B. Mle046 Is a Marine Mesophilic MHETase-Like Enzyme. Front. Microbiol. 2021, 12, 693985.10.3389/fmicb.2021.693985. PubMed DOI PMC
Palm G. J.; Reisky L.; Böttcher D.; Müller H.; Michels E. A. P.; Walczak M. C.; Berndt L.; Weiss M. S.; Bornscheuer U. T.; Weber G. Structure of the Plastic-Degrading Ideonella sakaiensis MHETase Bound to a Substrate. Nat. Commun. 2019, 10, 1717.10.1038/s41467-019-09326-3. PubMed DOI PMC
Dissanayake L.; Jayakody L. N. Engineering Microbes to Bio-Upcycle Polyethylene Terephthalate. Front. Bioeng. Biotechnol. 2021, 9, 656465.10.3389/fbioe.2021.656465. PubMed DOI PMC
Hachisuka S.-i.; Nishii T.; Yoshida S. Development of a Targeted Gene Disruption System in the Poly(Ethylene Terephthalate)-Degrading Bacterium Ideonella sakaiensis and Its Applications to PETase and MHETase Genes. Appl. Environ. Microbiol. 2021, 87, e0002010.1128/AEM.00020-21. PubMed DOI PMC
Barth M.; Wei R.; Oeser T.; Then J.; Schmidt J.; Wohlgemuth F.; Zimmermann W. Enzymatic Hydrolysis of Polyethylene Terephthalate Films in an Ultrafiltration Membrane Reactor. J. Membr. Sci. 2015, 494, 182–187. 10.1016/j.memsci.2015.07.030. DOI
Dai L.; Qu Y.; Huang J.-W.; Hu Y.; Hu H.; Li S.; Chen C.-C.; Guo R.-T. Enhancing PET Hydrolytic Enzyme Activity by Fusion of the Cellulose–Binding Domain of Cellobiohydrolase I from Trichoderma reesei. J. Biotechnol. 2021, 334, 47–50. 10.1016/j.jbiotec.2021.05.006. PubMed DOI
Weber J.; Petrović D.; Strodel B.; Smits S. H. J.; Kolkenbrock S.; Leggewie C.; Jaeger K.-E. Interaction of Carbohydrate-Binding Modules with Poly(Ethylene Terephthalate). Appl. Microbiol. Biotechnol. 2019, 103, 4801–4812. 10.1007/s00253-019-09760-9. PubMed DOI PMC
Berger B. W.; Sallada N. D. Hydrophobins: Multifunctional Biosurfactants for Interface Engineering. J. Biol. Eng. 2019, 13, 10.10.1186/s13036-018-0136-1. PubMed DOI PMC
Espino-Rammer L.; Ribitsch D.; Przylucka A.; Marold A.; Greimel K. J.; Herrero Acero E.; Guebitz G. M.; Kubicek C. P.; Druzhinina I. S. Two Novel Class II Hydrophobins from Trichoderma spp. Stimulate Enzymatic Hydrolysis of Poly(Ethylene Terephthalate) When Expressed as Fusion Proteins. Appl. Environ. Microbiol. 2013, 79, 4230–4238. 10.1128/AEM.01132-13. PubMed DOI PMC
Ribitsch D.; Herrero Acero E.; Przylucka A.; Zitzenbacher S.; Marold A.; Gamerith C.; Tscheliessnig R.; Jungbauer A.; Rennhofer H.; Lichtenegger H.; Amenitsch H.; Bonazza K.; Kubicek C. P.; Druzhinina I. S.; Guebitz G. M. Enhanced Cutinase-Catalyzed Hydrolysis of Polyethylene Terephthalate by Covalent Fusion to Hydrophobins. Appl. Environ. Microbiol. 2015, 81, 3586–3592. 10.1128/AEM.04111-14. PubMed DOI PMC
Puspitasari N.; Tsai S.-L.; Lee C.-K. Class I Hydrophobins Pretreatment Stimulates PETase for Monomers Recycling of Waste PET. Int. J. Biol. Macromol. 2021, 176, 157–164. 10.1016/j.ijbiomac.2021.02.026. PubMed DOI
Dai L.; Qu Y.; Hu Y.; Min J.; Yu X.; Chen C.-C.; Huang J.-W.; Guo R.-T. Catalytically Inactive Lytic Polysaccharide Monooxygenase PCAA14A Enhances the Enzyme-Mediated Hydrolysis of Polyethylene Terephthalate. Int. J. Biol. Macromol. 2021, 190, 456–462. 10.1016/j.ijbiomac.2021.09.005. PubMed DOI
Chen K.; Hu Y.; Dong X.; Sun Y. Molecular Insights into the Enhanced Performance of EKylated PETase toward PET Degradation. ACS Catal. 2021, 11, 7358–7370. 10.1021/acscatal.1c01062. DOI
Várnai A.; Siika-Aho M.; Viikari L. Carbohydrate-Binding Modules (CBMs) Revisited: Reduced Amount of Water Counterbalances the Need for CBMs. Biotechnol. Biofuels 2013, 6, 30.10.1186/1754-6834-6-30. PubMed DOI PMC
Kari J.; Olsen J. P.; Jensen K.; Badino S. F.; Krogh K. B. R. M.; Borch K.; Westh P. Sabatier Principle for Interfacial (Heterogeneous) Enzyme Catalysis. ACS Catal. 2018, 8, 11966–11972. 10.1021/acscatal.8b03547. DOI
Herrero Acero E.; Ribitsch D.; Steinkellner G.; Gruber K.; Greimel K.; Eiteljoerg I.; Trotscha E.; Wei R.; Zimmermann W.; Zinn M.; Cavaco-Paulo A.; Freddi G.; Schwab H.; Guebitz G. Enzymatic Surface Hydrolysis of PET: Effect of Structural Diversity on Kinetic Properties of Cutinases from Thermobifida. Macromolecules 2011, 44, 4632–4640. 10.1021/ma200949p. DOI
Schmidt J.; Wei R.; Oeser T.; Belisário-Ferrari M. R.; Barth M.; Then J.; Zimmermann W. Effect of Tris, MOPS, and Phosphate Buffers on the Hydrolysis of Polyethylene Terephthalate Films by Polyester Hydrolases. FEBS Open Bio 2016, 6, 919–927. 10.1002/2211-5463.12097. PubMed DOI PMC
Kim H. T.; Hee Ryu M.; Jung Y. J.; Lim S.; Song H. M.; Park J.; Hwang S. Y.; Lee H.-S.; Yeon Y. J.; Sung B. H.; Bornscheuer U. T.; Park S. J.; Joo J. C.; Oh D. X. Chemo-Biological Upcycling of Poly(Ethylene Terephthalate) to Multifunctional Coating Materials. ChemSusChem 2021, 14, 4251–4259. 10.1002/cssc.202100909. PubMed DOI PMC
Rogers B. A.; Okur H. I.; Yan C.; Yang T.; Heyda J.; Cremer P. S. Weakly Hydrated Anions Bind to Polymers but Not Monomers in Aqueous Solutions. Nat. Chem. 2022, 14, 40–45. 10.1038/s41557-021-00805-z. PubMed DOI
Sonnendecker C.; Oeser J.; Richter P. K.; Hille P.; Zhao Z.; Fischer C.; Lippold H.; Blázquez-Sánchez P.; Engelberger F.; Ramírez-Sarmiento C. A.; Oeser T.; Lihanova Y.; Frank R.; Jahnke H.-G.; Billig S.; Abel B.; Sträter N.; Matysik J.; Zimmermann W. Low Carbon Footprint Recycling of Post-Consumer PET Plastic with a Metagenomic Polyester Hydrolase. ChemSusChem 2021, 1.10.1002/cssc.202101062. PubMed DOI PMC
Gundupalli S. P.; Hait S.; Thakur A. A Review on Automated Sorting of Source-Separated Municipal Solid Waste for Recycling. Waste Manage. 2017, 60, 56–74. 10.1016/j.wasman.2016.09.015. PubMed DOI
Hahladakis J. N.; Iacovidou E. An Overview of the Challenges and Trade-Offs in Closing the Loop of Post-Consumer Plastic Waste (PCPW): Focus on Recycling. J. Hazard. Mater. 2019, 380, 120887.10.1016/j.jhazmat.2019.120887. PubMed DOI
Tsochatzis E. D.; Lopes J. A.; Corredig M. Chemical Testing of Mechanically Recycled Polyethylene Terephthalate for Food Packaging in the European Union. Resour. Conserv. Recycl. 2022, 179, 106096.10.1016/j.resconrec.2021.106096. DOI
Beckham G. T.; Matthews J. F.; Peters B.; Bomble Y. J.; Himmel M. E.; Crowley M. F. Molecular-Level Origins of Biomass Recalcitrance: Decrystallization Free Energies for Four Common Cellulose Polymorphs. J. Phys. Chem. B 2011, 115, 4118–4127. 10.1021/jp1106394. PubMed DOI
Hon J.; Borko S.; Stourac J.; Prokop Z.; Zendulka J.; Bednar D.; Martinek T.; Damborsky J. EnzymeMiner: Automated Mining of Soluble Enzymes with Diverse Structures, Catalytic Properties and Stabilities. Nucleic Acids Res. 2020, 48, W104–W109. 10.1093/nar/gkaa372. PubMed DOI PMC
Gumulya Y.; Baek J.-M.; Wun S.-J.; Thomson R. E. S.; Harris K. L.; Hunter D. J. B.; Behrendorff J. B. Y. H.; Kulig J.; Zheng S.; Wu X.; Wu B.; Stok J. E.; De Voss J. J.; Schenk G.; Jurva U.; Andersson S.; Isin E. M.; Bodén M.; Guddat L.; Gillam E. M. J. Engineering Highly Functional Thermostable Proteins Using Ancestral Sequence Reconstruction. Nat. Catal. 2018, 1, 878–888. 10.1038/s41929-018-0159-5. DOI
Vanacek P.; Sebestova E.; Babkova P.; Bidmanova S.; Daniel L.; Dvorak P.; Stepankova V.; Chaloupkova R.; Brezovsky J.; Prokop Z.; Damborsky J. Exploration of Enzyme Diversity by Integrating Bioinformatics with Expression Analysis and Biochemical Characterization. ACS Catal. 2018, 8, 2402–2412. 10.1021/acscatal.7b03523. DOI
Mazurenko S.; Prokop Z.; Damborsky J. Machine Learning in Enzyme Engineering. ACS Catal. 2020, 10, 1210–1223. 10.1021/acscatal.9b04321. DOI
Musil M.; Khan R. T.; Beier A.; Stourac J.; Konegger H.; Damborsky J.; Bednar D. FireProtASR: A Web Server for Fully Automated Ancestral Sequence Reconstruction. Brief. Bioinformatics 2021, 22, bbaa33710.1093/bib/bbaa337. PubMed DOI PMC
Jumper J.; Evans R.; Pritzel A.; Green T.; Figurnov M.; Ronneberger O.; Tunyasuvunakool K.; Bates R.; Žídek A.; Potapenko A.; Bridgland A.; Meyer C.; Kohl S. A. A.; Ballard A. J.; Cowie A.; Romera-Paredes B.; Nikolov S.; Jain R.; Adler J.; Back T.; Petersen S.; Reiman D.; Clancy E.; Zielinski M.; Steinegger M.; Pacholska M.; Berghammer T.; Bodenstein S.; Silver D.; Vinyals O.; Senior A. W.; Kavukcuoglu K.; Kohli P.; Hassabis D. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. 10.1038/s41586-021-03819-2. PubMed DOI PMC
Baek M.; DiMaio F.; Anishchenko I.; Dauparas J.; Ovchinnikov S.; Lee G. R.; Wang J.; Cong Q.; Kinch L. N.; Schaeffer R. D.; Millán C.; Park H.; Adams C.; Glassman C. R.; DeGiovanni A.; Pereira J. H.; Rodrigues A. V.; Dijk A. A. v.; Ebrecht A. C.; Opperman D. J.; Sagmeister T.; Buhlheller C.; Pavkov-Keller T.; Rathinaswamy M. K.; Dalwadi U.; Yip C. K.; Burke J. E.; Garcia K. C.; Grishin N. V.; Adams P. D.; Read R. J.; Baker D. Accurate Prediction of Protein Structures and Interactions Using a Three-Track Neural Network. Science 2021, 373, 871–876. 10.1126/science.abj8754. PubMed DOI PMC
Sahtoe D. D.; Praetorius F.; Courbet A.; Hsia Y.; Wicky B. I. M.; Edman N. I.; Miller L. M.; Timmermans B. J. R.; Decarreau J.; Morris H. M.; Kang A.; Bera A. K.; Baker D. Reconfigurable Asymmetric Protein Assemblies through Implicit Negative Design. Science 2022, 375, eabj766210.1126/science.abj7662. PubMed DOI PMC
Vermaas J. V.; Crowley M. F.; Beckham G. T.; Payne C. M. Effects of Lytic Polysaccharide Monooxygenase Oxidation on Cellulose Structure and Binding of Oxidized Cellulose Oligomers to Cellulases. J. Phys. Chem. B 2015, 119, 6129–6143. 10.1021/acs.jpcb.5b00778. PubMed DOI
Heinz H.; Lin T.-J.; Kishore Mishra R.; Emami F. S. Thermodynamically Consistent Force Fields for the Assembly of Inorganic, Organic, and Biological Nanostructures: The Interface Force Field. Langmuir 2013, 29, 1754–1765. 10.1021/la3038846. PubMed DOI
Tiso T.; Narancic T.; Wei R.; Pollet E.; Beagan N.; Schröder K.; Honak A.; Jiang M.; Kenny S. T.; Wierckx N.; Perrin R.; Avérous L.; Zimmermann W.; O’Connor K.; Blank L. M. Towards Bio-Upcycling of Polyethylene Terephthalate. Metab. Eng. 2021, 66, 167–178. 10.1016/j.ymben.2021.03.011. PubMed DOI
Werner A. Z.; Clare R.; Mand T. D.; Pardo I.; Ramirez K. J.; Haugen S. J.; Bratti F.; Dexter G. N.; Elmore J. R.; Huenemann J. D.; Peabody G. L.; Johnson C. W.; Rorrer N. A.; Salvachúa D.; Guss A. M.; Beckham G. T. Tandem Chemical Deconstruction and Biological Upcycling of Poly(Ethylene Terephthalate) to β-Ketoadipic Acid by Pseudomonas putida KT2440. Metab. Eng. 2021, 67, 250–261. 10.1016/j.ymben.2021.07.005. PubMed DOI
Kim H. T.; Kim J. K.; Cha H. G.; Kang M. J.; Lee H. S.; Khang T. U.; Yun E. J.; Lee D.-H.; Song B. K.; Park S. J.; Joo J. C.; Kim K. H. Biological Valorization of Poly(Ethylene Terephthalate) Monomers for Upcycling Waste PET. ACS Sustain. Chem. Eng. 2019, 7, 19396–19406. 10.1021/acssuschemeng.9b03908. DOI
Heyde S. A. H.; Arnling Bååth J.; Westh P.; Nørholm M. H. H.; Jensen K. Surface Display as a Functional Screening Platform for Detecting Enzymes Active on PET. Microb. Cell Fact. 2021, 20, 93.10.1186/s12934-021-01582-7. PubMed DOI PMC
Chen Z.; Xiao Y.; Weber G.; Wei R.; Wang Z.. Yeast Cell Surface Display of Bacterial PET Hydrolase as a Sustainable Biocatalyst for the Degradation of Polyethylene Terephthalate. In Methods in Enzymology, Weber G.; Bornscheuer U. T.; Wei R., Eds.; Academic Press, 2021; Vol. 648, pp 457–477. PubMed
Yan F.; Wei R.; Cui Q.; Bornscheuer U. T.; Liu Y.-J. Thermophilic Whole-Cell Degradation of Polyethylene Terephthalate Using Engineered Clostridium thermocellum. Microb. Biotechnol. 2021, 14, 374–385. 10.1111/1751-7915.13580. PubMed DOI PMC
Moog D.; Schmitt J.; Senger J.; Zarzycki J.; Rexer K.-H.; Linne U.; Erb T.; Maier U. G. Using a Marine Microalga as a Chassis for Polyethylene Terephthalate (PET) Degradation. Microb. Cell Fact. 2019, 18, 171.10.1186/s12934-019-1220-z. PubMed DOI PMC
Gao R.; Sun C. A Marine Bacterial Community Capable of Degrading Poly(Ethylene Terephthalate) and Polyethylene. J. Hazard. Mater. 2021, 416, 125928.10.1016/j.jhazmat.2021.125928. PubMed DOI
Oberbeckmann S.; Labrenz M. Marine Microbial Assemblages on Microplastics: Diversity, Adaptation, and Role in Degradation. Annu. Rev. Mar. Sci. 2020, 12, 209.10.1146/annurev-marine-010419-010633. PubMed DOI
Liu J.; He J.; Xue R.; Xu B.; Qian X.; Xin F.; Blank L. M.; Zhou J.; Wei R.; Dong W.; Jiang M. Biodegradation and Up-Cycling of Polyurethanes: Progress, Challenges, and Prospects. Biotechnol. Adv. 2021, 48, 107730.10.1016/j.biotechadv.2021.107730. PubMed DOI
Knyazev V. D. Effects of Chain Length on the Rates of C-C Bond Dissociation in Linear Alkanes and Polyethylene. J. Phys. Chem. A 2007, 111, 3875–3883. 10.1021/jp066419e. PubMed DOI
Jiang Q.; Li Z.; Cui Z.; Wei R.; Nie K.; Xu H.; Liu L. Quantum Mechanical Investigation of the Oxidative Cleavage of the C–C Backbone Bonds in Polyethylene Model Molecules. Polymers 2021, 13, 2730.10.3390/polym13162730. PubMed DOI PMC
Guzik M. W.; Kenny S. T.; Duane G. F.; Casey E.; Woods T.; Babu R. P.; Nikodinovic-Runic J.; Murray M.; O’Connor K. E. Conversion of Post Consumer Polyethylene to the Biodegradable Polymer Polyhydroxyalkanoate. Appl. Microbiol. Biotechnol. 2014, 98, 4223–4232. 10.1007/s00253-013-5489-2. PubMed DOI
Ghatge S.; Yang Y.; Ko Y.; Yoon Y.; Ahn J.-H.; Kim J. J.; Hur H.-G. Degradation of Sulfonated Polyethylene by a Bio-Photo-Fenton Approach Using Glucose Oxidase Immobilized on Titanium Dioxide. J. Hazard. Mater. 2022, 423, 127067.10.1016/j.jhazmat.2021.127067. PubMed DOI
Ballerstedt H.; Tiso T.; Wierckx N.; Wei R.; Averous L.; Bornscheuer U.; O’Connor K.; Floehr T.; Jupke A.; Klankermayer J.; Liu L.; de Lorenzo V.; Narancic T.; Nogales J.; Perrin R.; Pollet E.; Prieto A.; Casey W.; Haarmann T.; Sarbu A.; Schwaneberg U.; Xin F.; Dong W.; Xing J.; Chen G.-Q.; Tan T.; Jiang M.; Blank L. M. Mixed Plastics Biodegradation and Upcycling Using Microbial Communities: EU Horizon 2020 Project MIX-UP Started January 2020. Environ. Sci. Europe 2021, 33, 99.10.1186/s12302-021-00536-5. PubMed DOI PMC
Shinozaki Y.; Watanabe T.; Nakajima-Kambe T.; Kitamoto H. K. Rapid and Simple Colorimetric Assay for Detecting the Enzymatic Degradation of Biodegradable Plastic Films. J. Biosci. Bioeng. 2013, 115, 111–114. 10.1016/j.jbiosc.2012.08.010. PubMed DOI
Zumstein M. T.; Kohler H.-P. E.; McNeill K.; Sander M. High-Throughput Analysis of Enzymatic Hydrolysis of Biodegradable Polyesters by Monitoring Cohydrolysis of a Polyester-Embedded Fluorogenic Probe. Environ. Sci. Technol. 2017, 51, 4358–4367. 10.1021/acs.est.6b06060. PubMed DOI
Wei R.; Oeser T.; Billig S.; Zimmermann W. A High-Throughput Assay for Enzymatic Polyester Hydrolysis Activity by Fluorimetric Detection. Biotechnol. J. 2012, 7, 1517–1521. 10.1002/biot.201200119. PubMed DOI
Pfaff L.; Breite D.; Badenhorst C. P. S.; Bornscheuer U. T.; Wei R.. Fluorimetric High-Throughput Screening Method for Polyester Hydrolase Activity Using Polyethylene Terephthalate Nanoparticles. In Methods in Enzymology, Weber G.; Bornscheuer U. T.; Wei R., Eds.; Academic Press, 2021; Vol. 648, pp 253–270. PubMed
Weigert S.; Gagsteiger A.; Menzel T.; Höcker B. A Versatile Assay Platform for Enzymatic Poly(Ethylene-Terephthalate) Degradation. Protein Eng. Des. Sel. 2021, 34, gzab022. PubMed
Molitor R.; Bollinger A.; Kubicki S.; Loeschcke A.; Jaeger K.-E.; Thies S. Agar Plate-Based Screening Methods for the Identification of Polyester Hydrolysis by Pseudomonas Species. Microb. Biotechnol. 2020, 13, 274–284. 10.1111/1751-7915.13418. PubMed DOI PMC
Charnock C. A Simple and Novel Method for the Production of Polyethylene Terephthalate Containing Agar Plates for the Growth and Detection of Bacteria Able to Hydrolyze This Plastic. J. Microbiol. Methods 2021, 185, 106222.10.1016/j.mimet.2021.106222. PubMed DOI
Qiao Y.; Hu R.; Chen D.; Wang L.; Wang Z.; Yu H.; Fu Y.; Li C.; Dong Z.; Weng Y.-X.; Du W. Fluorescence-Activated Droplet Sorting of PET Degrading Microorganisms. J. Hazard. Mater. 2022, 424, 127417.10.1016/j.jhazmat.2021.127417. PubMed DOI
Pardo I.; Jha R. K.; Bermel R. E.; Bratti F.; Gaddis M.; McIntyre E.; Michener W.; Neidle E. L.; Dale T.; Beckham G. T.; Johnson C. W. Gene Amplification, Laboratory Evolution, and Biosensor Screening Reveal Muck as a Terephthalic Acid Transporter in Acinetobacter baylyi ADP1. Metab. Eng. 2020, 62, 260–274. 10.1016/j.ymben.2020.09.009. PubMed DOI
Meyer A.; Pellaux R.; Potot S.; Becker K.; Hohmann H.-P.; Panke S.; Held M. Optimization of a Whole-Cell Biocatalyst by Employing Genetically Encoded Product Sensors inside Nanolitre Reactors. Nat. Chem. 2015, 7, 673–678. 10.1038/nchem.2301. PubMed DOI
Clarkson S. M.; Giannone R. J.; Kridelbaugh D. M.; Elkins J. G.; Guss A. M.; Michener J. K.; Vieille C. Construction and Optimization of a Heterologous Pathway for Protocatechuate Catabolism in Escherichia coli Enables Bioconversion of Model Aromatic Compounds. Appl. Environ. Microbiol. 2017, 83, e0131310.1128/AEM.01313-17. PubMed DOI PMC