Factors Affecting Young Adults' Decision Making to Undergo COVID-19 Vaccination: A Patient Preference Study

. 2022 Feb 09 ; 10 (2) : . [epub] 20220209

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35214722

Grantová podpora
K12 HS026370 AHRQ HHS - United States
K12HS026370 Agency for Healthcare Research and Quality
SGS20/144/OHK5/2T/17 Czech Technical University in Prague

Young adults are a substantial driver of lagging vaccination against COVID-19 worldwide. We aimed to understand what vaccine or vaccination environment attributes may affect young adults' vaccine inclination. We contacted a convenience sample of 1415 students to recruit a minimum of 150 individuals for a web-based discrete choice experiment. The respondents were asked to choose one of two hypothetical vaccines, defined by six attributes-vaccine efficacy, risk of mild side effects, protection duration, administration route, recommender, and travel time to the vaccination site. Individual preferences were calculated with the Markov chain Monte Carlo hierarchical Bayes estimation. A total of 445 individuals (mean age 24.4 years, 272 (61.1%) women) completed the survey between 22 March and 3 May 2021. Vaccine protection duration (28.3 (95% CI, 27.0-29.6)) and vaccine efficacy in preventing COVID-19 (27.5 (95% CI, 26.3-28.8)) were the most important, followed by the risk of vaccine side effects (17.3 (95% CI, 16.2-18.4)). Individuals reluctant or unsure about vaccination (21.1%) prioritized the potential for mild side effects higher and vaccine efficacy lower than the vaccine-inclined individuals. New vaccination programs that target young adults should emphasize the protection duration, low risk of vaccine side effects, and high efficacy.

Zobrazit více v PubMed

Woolf S.H., Chapman D.A., Lee J.H. COVID-19 as the Leading Cause of Death in the United States. JAMA. 2020;325:123–124. doi: 10.1001/jama.2020.24865. PubMed DOI PMC

Panagiotou O.A., Kosar C.M., White E.M., Bantis L.E., Yang X., Santostefano C.M., Feifer R.A., Blackman C., Rudolph J.L., Gravenstein S., et al. Risk Factors Associated With All-Cause 30-Day Mortality in Nursing Home Residents With COVID-19. JAMA Intern. Med. 2021;181:439. doi: 10.1001/jamainternmed.2020.7968. PubMed DOI PMC

Ioannidis J.P.A., Axfors C., Contopoulos-Ioannidis D.G. Population-Level COVID-19 Mortality Risk for Non-elderly Individuals Overall and for Non-elderly Individuals without Underlying Diseases in Pandemic Epicenters. Environ. Res. 2020;188:109890. doi: 10.1016/j.envres.2020.109890. PubMed DOI PMC

Faust J.S., Krumholz H.M., Du C., Mayes K.D., Lin Z., Gilman C., Walensky R.P. All-Cause Excess Mortality and COVID-19-Related Mortality Among US Adults Aged 25–44 Years, March–July 2020. JAMA. 2021;325:785–787. doi: 10.1001/jama.2020.24243. PubMed DOI PMC

Shiels M.S., Almeida J.S., García-Closas M., Albert P.S., Freedman N.D., de González A.B. Impact of Population Growth and Aging on Estimates of Excess U.S. Deaths During the COVID-19 Pandemic, March to August 2020. Ann. Intern. Med. 2021;174:437–443. doi: 10.7326/M20-7385. PubMed DOI PMC

Vestergaard L.S., Nielsen J., Richter L., Schmid D., Bustos N., Braeye T., Denissov G., Veideman T., Luomala O., Möttönen T., et al. Excess All-Cause Mortality during the COVID-19 Pandemic in Europe—Preliminary Pooled Estimates from The EuroMOMO Network, March to April 2020. Eurosurveillance. 2020;25:2001214. doi: 10.2807/1560-7917.ES.2020.25.26.2001214. PubMed DOI PMC

Boehmer T.K., DeVies J., Caruso E., van Santen K.L., Tang S., Black C.L., Hartnett K.P., Kite-Powell A., Dietz S., Lozier M., et al. Changing Age Distribution of the COVID-19 Pandemic—United States, May–August 2020. MMWR. Morb. Mortal. Wkly. Rep. 2020;69:1404–1409. doi: 10.15585/mmwr.mm6939e1. PubMed DOI PMC

Salvatore P.P., Sula E., Coyle J.P., Caruso E., Smith A.R., Levine R.S., Baack B.N., Mir R., Lockhart E.R., Tiwari T.S., et al. Recent Increase in COVID-19 Cases Reported Among Adults Aged 18–22 Years—United States, May 31–September 5, 2020. MMWR. Morb. Mortal. Wkly. Rep. 2020;69:1419–1424. doi: 10.15585/mmwr.mm6939e4. PubMed DOI PMC

Cunningham J.W., Vaduganathan M., Claggett B.L., Jering K.S., Bhatt A.S., Rosenthal N., Solomon S.D. Clinical Outcomes in Young US Adults Hospitalized With COVID-19. JAMA Intern. Med. 2021;181:379. doi: 10.1001/jamainternmed.2020.5313. PubMed DOI PMC

Flasche S., Edmunds W.J. The role of schools and schoolaged children in SARS-CoV-2 transmission. Lancet Infect. Dis. 2021;21:298–299. doi: 10.1016/S1473-3099(20)30927-0. PubMed DOI PMC

Casini L., Roccetti M. Reopening Italy’s schools in September 2020: A Bayesian estimation of the change in the growth rate of new SARS-CoV-2 cases. BMJ Open. 2021;11:e051458. doi: 10.1136/bmjopen-2021-051458. PubMed DOI PMC

Daly M., Jones A., Robinson E. Public Trust and Willingness to Vaccinate Against COVID-19 in the US From October 14, 2020, to March 29, 2021. JAMA. 2021;325:2397–2399. doi: 10.1001/jama.2021.8246. PubMed DOI PMC

Szilagyi P.G., Thomas K., Shah M.D., Vizueta N., Cui Y., Vangala S., Kapteyn A. Changes in COVID-19 Vaccine Intent From April/May to June/July 2021. JAMA. 2021;326:1971–1974. doi: 10.1001/jama.2021.18761. PubMed DOI PMC

Mascola J.R., Graham B.S., Fauci A.S. SARS-CoV-2 Viral Variants-Tackling a Moving Target. JAMA. 2021;325:1261–1262. doi: 10.1001/jama.2021.2088. PubMed DOI

Schaffer DeRoo S., Pudalov N.J., Fu L.Y. Planning for a COVID-19 Vaccination Program. JAMA. 2020;323:2458. doi: 10.1001/jama.2020.8711. PubMed DOI

Lazarus J.V., Ratzan S.C., Palayew A., Gostin L.O., Larson H.J., Rabin K., Kimball S., El-Mohandes A. A global survey of potential acceptance of a COVID-19 vaccine. Nat. Med. 2021;27:225–228. doi: 10.1038/s41591-020-1124-9. PubMed DOI PMC

Wong L.P., Alias H., Danaee M., Ahmed J., Lachyan A., Cai C.Z., Lin Y., Hu Z., Tan S.Y., Lu Y., et al. COVID-19 Vaccination Intention and Vaccine Characteristics Influencing Vaccination Acceptance: A Global Survey of 17 Countries. Infect. Dis. Poverty. 2021;10:122. doi: 10.1186/s40249-021-00900-w. PubMed DOI PMC

Detoc M., Bruel S., Frappe P., Tardy B., Botelho-Nevers E., Gagneux-Brunon A. Intention to Participate in a COVID-19 Vaccine Clinical Trial and to Get Vaccinated against COVID-19 in France during the Pandemic. Vaccine. 2020;38:7002–7006. doi: 10.1016/j.vaccine.2020.09.041. PubMed DOI PMC

Weintraub R.L., Subramanian L., Karlage A., Ahmad I., Rosenberg J. COVID-19 Vaccine To Vaccination: Why Leaders Must Invest In Delivery Strategies Now. Health Aff. 2021;40:33–41. doi: 10.1377/hlthaff.2020.01523. PubMed DOI

Malik A.A., McFadden S.M., Elharake J., Omer S.B. Determinants of COVID-19 Vaccine Acceptance in the US. EClinicalMedicine. 2020;26:100495. doi: 10.1016/j.eclinm.2020.100495. PubMed DOI PMC

Neumann-Böhme S., Varghese N.E., Sabat I., Barros P.P., Brouwer W., van Exel J., Schreyögg J., Stargardt T. Once We Have It, Will We Use It? A European Survey on Willingness to Be Vaccinated against COVID-19. Eur. J. Heal. Econ. 2020;21:977–982. doi: 10.1007/s10198-020-01208-6. PubMed DOI PMC

Sallam M. COVID-19 Vaccine Hesitancy Worldwide: A Concise Systematic Review of Vaccine Acceptance Rates. Vaccines. 2021;9:160. doi: 10.3390/vaccines9020160. PubMed DOI PMC

Fisher K.A., Bloomstone S.J., Walder J., Crawford S., Fouayzi H., Mazor K.M. Attitudes Toward a Potential SARS-CoV-2 Vaccine. Ann. Intern. Med. 2020;173:964–973. doi: 10.7326/M20-3569. PubMed DOI PMC

Ruiz J.B., Bell R.A. Predictors of Intention to Vaccinate against COVID-19: Results of a Nationwide Survey. Vaccine. 2021;39:1080–1086. doi: 10.1016/j.vaccine.2021.01.010. PubMed DOI PMC

Lucia V.C., Kelekar A., Afonso N.M. COVID-19 Vaccine Hesitancy among Medical Students. J. Public Health. 2021;43:445–449. doi: 10.1093/pubmed/fdaa230. PubMed DOI PMC

Barello S., Nania T., Dellafiore F., Graffigna G., Caruso R. ‘Vaccine Hesitancy’ among University Students in Italy during the COVID-19 Pandemic. Eur. J. Epidemiol. 2020;35:781–783. doi: 10.1007/s10654-020-00670-z. PubMed DOI PMC

Murphy J., Vallières F., Bentall R.P., Shevlin M., McBride O., Hartman T.K., McKay R., Bennett K., Mason L., Gibson-Miller J., et al. Psychological Characteristics Associated with COVID-19 Vaccine Hesitancy and Resistance in Ireland and the United Kingdom. Nat. Commun. 2021;12:29. doi: 10.1038/s41467-020-20226-9. PubMed DOI PMC

Paul E., Steptoe A., Fancourt D. Attitudes towards Vaccines and Intention to Vaccinate against COVID-19: Implications for Public Health Communications. Lancet Reg. Heal. Eur. 2021;1:100012. doi: 10.1016/j.lanepe.2020.100012. PubMed DOI PMC

Bogart L.M., Ojikutu B.O., Tyagi K., Klein D.J., Mutchler M.G., Dong L., Lawrence S.J., Thomas D.R., Kellman S. COVID-19 Related Medical Mistrust, Health Impacts, and Potential Vaccine Hesitancy Among Black Americans Living With HIV. JAIDS J. Acquir. Immune Defic. Syndr. 2021;86:200–207. doi: 10.1097/QAI.0000000000002570. PubMed DOI PMC

Kreps S., Prasad S., Brownstein J.S., Hswen Y., Garibaldi B.T., Zhang B., Kriner D.L. Factors Associated With US Adults’ Likelihood of Accepting COVID-19 Vaccination. JAMA Netw. Open. 2020;3:e2025594. doi: 10.1001/jamanetworkopen.2020.25594. PubMed DOI PMC

Lin C., Tu P., Beitsch L.M. Confidence and Receptivity for COVID-19 Vaccines: A Rapid Systematic Review. Vaccines. 2020;9:16. doi: 10.3390/vaccines9010016. PubMed DOI PMC

Szmyd B., Bartoszek A., Karuga F.F., Staniecka K., Błaszczyk M., Radek M. Medical Students and SARS-CoV-2 Vaccination: Attitude and Behaviors. Vaccines. 2021;9:128. doi: 10.3390/vaccines9020128. PubMed DOI PMC

Tuells J., Egoavil C.M., Pena Pardo M.A., Montagud A.C., Montagud E., Caballero P., Zapater P., Puig-Barberá J., Hurtado-Sanchez J.A. Seroprevalence Study and Cross-Sectional Survey on COVID-19 for a Plan to Reopen the University of Alicante (Spain) Int. J. Environ. Res. Public Health. 2021;18:1908. doi: 10.3390/ijerph18041908. PubMed DOI PMC

Grüner S., Krüger F. The Intention to Be Vaccinated against COVID-19: Stated Preferences before Vaccines Were Available. Appl. Econ. Lett. 2021;28:1847–1851. doi: 10.1080/13504851.2020.1854445. DOI

Kose S., Mandiracioglu A., Sahin S., Kaynar T., Karbus O., Ozbel Y. Vaccine Hesitancy of the COVID-19 by Health Care Personnel. Int. J. Clin. Pract. 2021;75:e13917. doi: 10.1111/ijcp.13917. DOI

Marsh K., van Til J.A., Molsen-David E., Juhnke C., Hawken N., Oehrlein E.M., Choi Y.C., Duenas A., Greiner W., Haas K., et al. Health Preference Research in Europe: A Review of Its Use in Marketing Authorization, Reimbursement, and Pricing Decisions—Report of the ISPOR Stated Preference Research Special Interest Group. Value Heal. 2020;23:831–841. doi: 10.1016/j.jval.2019.11.009. PubMed DOI

Hoogink J., Verelst F., Kessels R., van Hoek A.J., Timen A., Willem L., Beutels P., Wallinga J., de Wit G.A. Preferential Differences in Vaccination Decision-Making for Oneself or One’s Child in the Netherlands: A Discrete Choice Experiment. BMC Public Health. 2020;20:828. doi: 10.1186/s12889-020-08844-w. PubMed DOI PMC

McPhedran R., Toombs B. Efficacy or Delivery? An Online Discrete Choice Experiment to Explore Preferences for COVID-19 Vaccines in the UK. Econ. Lett. 2021;200:109747. doi: 10.1016/j.econlet.2021.109747. PubMed DOI PMC

Motta M. Can a COVID-19 Vaccine Live up to Americans’ Expectations? A Conjoint Analysis of How Vaccine Characteristics Influence Vaccination Intentions. Soc. Sci. Med. 2021;272:113642. doi: 10.1016/j.socscimed.2020.113642. PubMed DOI PMC

Bridges J.F.P., Hauber A.B., Marshall D., Lloyd A., Prosser L.A., Regier D.A., Johnson F.R., Mauskopf J. Conjoint Analysis Applications in Health—A Checklist: A Report of the ISPOR Good Research Practices for Conjoint Analysis Task Force. Value Health. 2011;14:403–413. doi: 10.1016/j.jval.2010.11.013. PubMed DOI

Dong D., Xu R.H., Wong E.L., Hung C., Feng D., Feng Z., Yeoh E., Wong S.Y. Public Preference for COVID-19 Vaccines in China: A Discrete Choice Experiment. Heal. Expect. 2020;23:1543–1578. doi: 10.1111/hex.13140. PubMed DOI PMC

Voysey M., Clemens S.A.C., Madhi S.A., Weckx L.Y., Folegatti P.M., Aley P.K., Angus B., Baillie V.L., Barnabas S.L., Bhorat Q.E., et al. Safety and Efficacy of the chadox1 Ncov-19 Vaccine (AZD1222) Against SARS-CoV-2: An Interim Analysis of Four Random-Ised Controlled Trials in Brazil, South Africa, and the UK. Lancet. 2021;397:99–111. doi: 10.1016/S0140-6736(20)32661-1. PubMed DOI PMC

Walsh E.E., Frenck R.W., Falsey A.R., Kitchin N., Absalon J., Gurtman A., Lockhart S., Neuzil K., Mulligan M.J., Bailey R., et al. Safety and Immunogenicity of Two RNA-Based COVID-19 Vaccine Candidates. N. Engl. J. Med. 2020;383:2439–2450. doi: 10.1056/NEJMoa2027906. PubMed DOI PMC

Knoll M.D., Wonodi C. Oxford–AstraZeneca COVID-19 Vaccine Efficacy. Lancet. 2021;397:72–74. doi: 10.1016/S0140-6736(20)32623-4. PubMed DOI PMC

Pfizer and BioNTech Conclude Phase 3 Study of COVID-19 Vaccine Candidate, Meeting All Primary Efficacy Endpoints. [(accessed on 24 August 2021)]. Available online: https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-conclude-phase-3-study-covid-19-vaccine.

AstraZeneca AZD1222 Vaccine Met Primary Efficacy Endpoint in Preventing COVID-19. [(accessed on 24 August 2021)]. Available online: https://www.astrazeneca.com/content/astraz/media-centre/press-releases/2020/azd1222hlr.html.

Moderna Moderna’s COVID-19 Vaccine Candidate Meets its Primary Efficacy Endpoint in the First Interim Analysis of the Phase 3 COVE Study. [(accessed on 24 August 2021)]. Available online: https://investors.modernatx.com/news-releases/news-release-details/modernas-covid-19-vaccine-candidate-meets-its-primary-efficacy.

US Food and Drug Administration Moderna COVID-19 Vaccine EUA Fact Sheet for Vaccination Providers. [(accessed on 24 August 2021)]; Available online: https://www.fda.gov/media/144637/download.

US Food and Drug Administration Pfizer-BioNTech COVID-19 Vaccine EUA Fact Sheet for Vaccination Providers. [(accessed on 24 August 2021)]; Available online: https://www.fda.gov/media/144413/download.

US Food and Drug Administration Janssen COVID-19 Vaccine EUA Fact Sheet for Vaccination Providers. [(accessed on 24 August 2021)]; Available online: https://www.fda.gov/media/146304/download.

World Health Organization COVID-19 Vaccine Tracker and Landscape. [(accessed on 24 August 2021)]. Available online: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines.

Trevena L.J., Zikmund-Fisher B.J., Edwards A., Gaissmaier W., Galesic M., Han P.K., King J., Lawson M.L., Linder S.K., Lipkus I., et al. Presenting Quantitative Information about Decision Outcomes: A Risk Communication Primer for Patient Decision Aid Developers. BMC Med. Inform. Decis. Mak. 2013;13:S7. doi: 10.1186/1472-6947-13-S2-S7. PubMed DOI PMC

McCaffery K.J., Holmes-Rovner M., Smith S.K., Rovner D., Nutbeam D., Clayman M.L., Kelly-Blake K., Wolf M.S., Sheridan S.L. Addressing Health Literacy in Patient Decision Aids. BMC Med. Inform. Decis. Mak. 2013;13:S10. doi: 10.1186/1472-6947-13-S2-S10. PubMed DOI PMC

Veldwijk J., Lambooij M.S., van Til J.A., Groothuis-Oudshoorn C.G.M., Smit H.A., de Wit G.A. Words or graphics to present a Discrete Choice Experiment: Does it matter? Patient Educ. Couns. 2015;98:1376–1384. doi: 10.1016/j.pec.2015.06.002. PubMed DOI

Orme B.K. Getting Started with Conjoint Analysis: Strategies for Product Design and Pricing Research. Research Publishers; Madison, WI, USA: 2020. Sample Size Issues for Conjoint Analysis; pp. 57–66.

de Bekker-Grob E.W., Donkers B., Jonker M.F., Stolk E.A. Sample Size Requirements for Discrete-Choice Experiments in Healthcare: A Practical Guide. Patient. 2015;8:373–384. doi: 10.1007/s40271-015-0118-z. PubMed DOI PMC

Conjoint.ly Technical Points on DCE with Conjoint.ly. [(accessed on 24 August 2021)]. Available online: https://conjointly.com/guides/conjoint-technical-notes/

U.S. Centers for Disease Control and Prevention Underlying Medical Conditions Associated with Higher Risk for Severe COVID-19: Information for Healthcare Providers. [(accessed on 24 March 2021)]; Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/underlyingconditions.html. PubMed

McFadden D. Conditional logit analysis of qualitative choice behavior. In: Zarembka P., editor. Frontiers in Economics. Academic Press; New York, NY, USA: 1974. pp. 105–142.

Hughes R.A., Heron J., Sterne J.A.C., Tilling K. Accounting for missing data in statistical analyses: Multiple imputation is not always the answer. Int. J. Epidemiol. 2019;48:1294–1304. doi: 10.1093/ije/dyz032. PubMed DOI PMC

White I.R., Carlin J.B. Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values. Stat. Med. 2010;29:2920–2931. doi: 10.1002/sim.3944. PubMed DOI

Diesel J., Sterrett N., Dasgupta S., Kriss J.L., Barry V., Esschert K.V., Whiteman A., Cadwell B.L., Weller D., Qualters J.R., et al. COVID-19 Vaccination Coverage Among Adults—United States, December 14, 2020–May 22, 2021. MMWR Recomm. Rep. 2021;70:922–927. doi: 10.15585/mmwr.mm7025e1. PubMed DOI PMC

Eshun-Wilson I., Mody A., Tram K.H., Bradley C., Sheve A., Fox B., Thompson V., Geng E.H. Preferences for COVID-19 vaccine distribution strategies in the US: A discrete choice survey. PLoS ONE. 2021;16:e0256394. doi: 10.1371/journal.pone.0256394. PubMed DOI PMC

Kelly B.J., Southwell B.G., McCormack L.A., Bann C.M., MacDonald P.D.M., Frasier A.M., Bevc C.A., Brewer N.T., Squiers L.B. Correction to: Predictors of Willingness to Get a COVID-19 vaccine in the U.S. BMC Infect. Dis. 2021;21:383. doi: 10.1186/s12879-021-06085-9. PubMed DOI PMC

Štěpánek L., Janošíková M., Nakládalová M., Štěpánek L., Boriková A., Vildová H. Motivation to COVID-19 Vaccination and Reasons for Hesitancy in Employees of a Czech Tertiary Care Hospital: A Cross-Sectional Survey. Vaccines. 2021;9:863. doi: 10.3390/vaccines9080863. PubMed DOI PMC

Eberhardt J., Ling J. Predicting COVID-19 Vaccination Intention Using Protection Motivation Theory and Conspiracy Beliefs. Vaccine. 2021;39:6269–6275. doi: 10.1016/j.vaccine.2021.09.010. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...