Catalase impairs Leishmania mexicana development and virulence
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33724149
PubMed Central
PMC7971327
DOI
10.1080/21505594.2021.1896830
Knihovny.cz E-zdroje
- Klíčová slova
- Leishmania, catalase, dixeny, evolution, virulence,
- MeSH
- faktory virulence genetika metabolismus MeSH
- katalasa genetika metabolismus MeSH
- kultivované buňky MeSH
- Leishmania mexicana genetika růst a vývoj patogenita MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- protozoální proteiny genetika MeSH
- Psychodidae parazitologie MeSH
- stadia vývoje genetika MeSH
- Teschovirus genetika MeSH
- virulence MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- faktory virulence MeSH
- katalasa MeSH
- protozoální proteiny MeSH
Catalase is one of the most abundant enzymes on Earth. It decomposes hydrogen peroxide, thus protecting cells from dangerous reactive oxygen species. The catalase-encoding gene is conspicuously absent from the genome of most representatives of the family Trypanosomatidae. Here, we expressed this protein from the Leishmania mexicana Β-TUBULIN locus using a novel bicistronic expression system, which relies on the 2A peptide of Teschovirus A. We demonstrated that catalase-expressing parasites are severely compromised in their ability to develop in insects, to be transmitted and to infect mice, and to cause clinical manifestation in their mammalian host. Taken together, our data support the hypothesis that the presence of catalase is not compatible with the dixenous life cycle of Leishmania, resulting in loss of this gene from the genome during the evolution of these parasites.
Department of Parasitology Faculty of Science Charles University Prague Czech Republic
Faculty of Biology M 5 Lomonosov Moscow State University Moscow Russia
Life Science Research Centre Faculty of Science University of Ostrava Ostrava Czech Republic
Zobrazit více v PubMed
Maslov DA, Opperdoes FR, Kostygov AY, et al. Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology. 2019;146(1):1–27. PubMed
Lukeš J, Butenko A, Hashimi H, et al. Trypanosomatids are much more than just trypanosomes: clues from the expanded family tree. Trends Parasitol. 2018;34(6):466–480. PubMed
Bruschi F, Gradoni L.. The leishmaniases: old neglected tropical diseases. Cham, Switzerland: Springer; 2018.
WHO . Leishmaniasis. Accessed on 4 March, 2021. https://www.who.int/en/news-room/fact-sheets/detail/leishmaniasis .
Gillespie PM, Beaumier CM, Strych U, et al. Status of vaccine research and development of vaccines for leishmaniasis. Vaccine. 2016;34(26):2992–2995. PubMed
Ghorbani M, Farhoudi R. Leishmaniasis in humans: drug or vaccine therapy? Drug Des Devel Ther. 2018;12:25–40. PubMed PMC
Dostálová A, Volf P. Leishmania development in sand flies: parasite-vector interactions overview. Parasit Vectors. 2012;5(1):276. PubMed PMC
Dvorák V, Shaw JJ, Volf P. Parasite biology: the vectors. In: Bruschi F, Gradoni L, editors. The leishmaniases: old neglected tropical diseases. Cham, Switzerland: Springer; 2018. p. 31–77.
Rossi M, Fasel N. How to master the host immune system? Leishmania parasites have the solutions!. Int Immunol. 2018;30(3):103–111. PubMed PMC
Gossage SM, Rogers ME, Bates PA. Two separate growth phases during the development of Leishmania in sand flies: implications for understanding the life cycle. Int J Parasitol. 2003;33(10):1027–1034. PubMed PMC
Bates PA, Rogers ME. New insights into the developmental biology and transmission mechanisms of Leishmania. Curr Mol Med. 2004;4(6):601–609. PubMed
Sádlová J, Volf P. Peritrophic matrix of phlebotomus duboscqi and its kinetics during Leishmania major development. Cell Tissue Res. 2009;337(2):313–325. PubMed PMC
Lukeš J, Skalický T, Týč J, et al. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol. 2014;195(2):115–122. PubMed
Ghosh S, Banerjee P, Sarkar A, et al. Coinfection of Leptomonas seymouri and leishmania donovani in Indian leishmaniasis. J Clin Microbiol. 2012;50(8):2774–2778. PubMed PMC
Singh N, Chikara S, Sundar S. SOLiD sequencing of genomes of clinical isolates of Leishmania donovani from India confirm Leptomonas co-infection and raise some key questions. PLoS One. 2013;8(2):e55738. PubMed PMC
Srivastava P, Prajapati VK, Vanaerschot M, et al. Detection of Leptomonas sp. parasites in clinical isolates of kala-azar patients from India. Infect Genet Evol. 2010;10(7):1145–1150. PubMed PMC
Bhattarai NR, Das ML, Rijal S, et al. Natural infection of Phlebotomus argentipes with Leishmania and other trypanosomatids in a visceral leishmaniasis endemic region of nepal. Trans R Soc Trop Med Hyg. 2009;103(11):1087–1092. PubMed
Maruyama SR, De Santana AKM, Takamiya NT, et al. Non- Leishmania parasite in fatal visceral Leishmaniasis–like disease, brazil. Emerg Infect Dis. 2019;25(11):2088–2092. PubMed PMC
De Sa MF, De Sa CM, Veronese MA, et al. Morphologic and biochemical characterization of Crithidia brasiliensis sp.n. J Protozool. 1980;27(3):253–257. PubMed
McGhee RB. The infection of avian embryos with Crithidia species and Leishmania tarentola. J Infect Dis. 1959;105(1):18–25. PubMed
Ishemgulova A, Butenko A, Kortišová L, et al. Molecular mechanisms of thermal resistance of the insect trypanosomatid Crithidia thermophila. PLoS One. 2017;12(3):e0174165. PubMed PMC
Flegontov P, Butenko A, Firsov S, et al. Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci Rep. 2016;6(1):23704. PubMed PMC
Butenko A, Kostygov AY, Sádlová J, et al. Comparative genomics of Leishmania (Mundinia). BMC Genomics. 2019;20(1):726. PubMed PMC
Sloan MA, Brooks K, Otto TD, et al. Transcriptional and genomic parallels between the monoxenous parasite Herpetomonas muscarum and Leishmania. PLoS Genet. 2019;15(11):e1008452. PubMed PMC
Škodová-Sveráková I, Záhonová K, Bučková B, et al. Catalase and ascorbate peroxidase in euglenozoan protists. Pathogens. 2020;9(4):317. PubMed PMC
Kraeva N, Horáková E, Kostygov A, et al. Catalase in Leishmaniinae: with me or against me? Infect Genet Evol. 2017;50:121–127. PubMed
Bianchi C, Kostygov AY, Kraeva N, et al. An enigmatic catalase of Blastocrithidia. Mol Biochem Parasitol. 2019;232:111199. PubMed
Khan YA, Andrews NW, Mittra B. ROS regulate differentiation of visceralizing Leishmania species into the virulent amastigote form. Parasitol Open. 2018;4:e19. PubMed PMC
Mittra B, Cortez M, Haydock A, et al. Iron uptake controls the generation of Leishmania infective forms through regulation of ROS levels. J Exp Med. 2013;210(2):401–416. PubMed PMC
Horáková E, Faktorová D, Kraeva N, et al. Catalase compromises the development of the insect and mammalian stages of Trypanosoma brucei. FEBS J. 2020;287(5):964–977. PubMed
Freire ACG, Alves CL, Goes GR, et al. Catalase expression impairs oxidative stress-mediated signalling in Trypanosoma cruzi. Parasitology. 2017;144(11):1498–1510. PubMed
Opperdoes FR, Butenko A, Flegontov P, et al. Comparative metabolism of free-living bodo saltans and parasitic trypanosomatids. J Eukaryot Microbiol. 2016;63(5):657–678. PubMed
Duncan SM, Myburgh E, Alves-Ferreira EV, et al. DiCre-based inducible disruption of Leishmania genes. Methods Mol Biol. 2019;1971:211–224. PubMed
Duncan SM, Jones NG, Mottram JC. Recent advances in Leishmania reverse genetics: manipulating a manipulative parasite. Mol Biochem Parasitol. 2017;216:30–38. PubMed
Podešvová L, Huang H, Yurchenko V. Inducible protein stabilization system in Leishmania mexicana. Mol Biochem Parasitol. 2017;214:62–64. PubMed
Madeira Da Silva L, Owens KL, Murta SM, et al. Regulated expression of the Leishmania major surface virulence factor lipophosphoglycan using conditionally destabilized fusion proteins. Proc Natl Acad Sci U S A. 2009;106(18):7583–7588. PubMed PMC
Clayton CE. Gene expression in kinetoplastids. Curr Opin Microbiol. 2016;32:46–51. PubMed
Boucher N, Wu Y, Dumas C, et al. A common mechanism of stage-regulated gene expression in Leishmania mediated by a conserved 3′-untranslated region element. J Biol Chem. 2002;277(22):19511–19520. PubMed
Mishra KK, Holzer TR, Moore LL, et al. A negative regulatory element controls mRNA abundance of the Leishmania mexicana paraflagellar rod gene pfr2. Eukaryot Cell. 2003;2(5):1009–1017. PubMed PMC
McNicoll F, Müller M, Cloutier S, et al. Distinct 3′-untranslated region elements regulate stage-specific mRNA accumulation and translation in Leishmania. J Biol Chem. 2005;280(42):35238–35246. PubMed
Dillon LA, Okrah K, Hughitt VK, et al. Transcriptomic profiling of gene expression and RNA processing during Leishmania major differentiation. Nucleic Acids Res. 2015;43(14):6799–6813. PubMed PMC
Ishemgulova A, Kraeva N, Faktorová D, et al. T7 polymerase-driven transcription is downregulated in metacyclic promastigotes and amastigotes of Leishmania mexicana. Folia Parasitol. 2016;63:016. PubMed
Szymczak-Workman AL, Vignali KM, Vignali DA. Design and construction of 2A peptide-linked multicistronic vectors. Cold Spring Harb Protoc. 2012;2012(2):199–204. PubMed
Bates PA, Tetley L. Leishmania mexicana: induction of metacyclogenesis by cultivation of promastigotes at acidic pH. Exp Parasitol. 1993;76(4):412–423. PubMed
Volf P, Volfová V. Establishment and maintenance of sand fly colonies. J Vector Ecol. 2011;36(Suppl 1):S1–9. PubMed
Benson DA, Cavanaugh M, Clark K, et al. GenBank. Nucleic Acids Res. 2018;46(D1):D41–D7. PubMed PMC
Aslett M, Aurrecoechea C, Berriman M, et al. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2010;38(suppl_1):D457–62. PubMed PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–780. PubMed PMC
Marchler-Bauer A, Derbyshire MK, Gonzales NR, et al. CDD: nCBI’s conserved domain database. Nucleic Acids Res. 2015;43(D1):D222–6. PubMed PMC
Clayton C, Adams M, Almeida R, et al. Genetic nomenclature for Trypanosoma and Leishmania. Mol Biochem Parasitol. 1998;97(1–2):221–224. PubMed
Dean S, Sunter J, Wheeler RJ, et al. A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids. Open Biol. 2015;5(1):140197. PubMed PMC
Merritt C, Stuart K. Identification of essential and non-essential protein kinases by a fusion PCR method for efficient production of transgenic Trypanosoma brucei. Mol Biochem Parasitol. 2013;190(1):44–49. PubMed PMC
Kraeva N, Ishemgulova A, Lukeš J, et al. Tetracycline-inducible gene expression system in Leishmania mexicana. Mol Biochem Parasitol. 2014;198(1):11–13. PubMed
Koren S, Walenz BP, Berlin K, et al. Canu: scalable and accurate long-read assembly via adaptive k -mer weighting and repeat separation. Genome Res. 2017;27(5):722–736. PubMed PMC
Slater GS, Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics. 2005;6(1):31. PubMed PMC
Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–410. PubMed
Li H, Durbin R. Fast and accurate long-read alignment with Burrows–wheeler transform. Bioinformatics. 2010;26(5):589–595. PubMed PMC
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. PubMed PMC
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–359. PubMed PMC
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–842. PubMed PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with dESeq2. Genome Biol. 2014;15(12):550. PubMed PMC
Ishemgulova A, Kraeva N, Hlavacova J, et al. A putative ATP/GTP binding protein affects Leishmania mexicana growth in insect vectors and vertebrate hosts. PLoS Negl Trop Dis. 2017;11(7):e0005782. PubMed PMC
Záhonová K, Füssy Z, Oborník M, et al. RuBisCO in non-photosynthetic alga Euglena longa: divergent features, transcriptomic analysis and regulation of complex formation. PLoS One. 2016;11(7):e0158790. PubMed PMC
Räz B, Iten M, Grether-Buhler Y, et al. The alamar blue assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro. Acta Trop. 1997;68(2):139–147. PubMed
Mikus J, Steverding D. A simple colorimetric method to screen drug cytotoxicity against Leishmania using the dye alamar Blue. Parasitol Int. 2000;48(3):265–269. PubMed
Myšková J, Votýpka J, Volf P. Leishmania in sand flies: comparison of quantitative Polymerase Chain Reaction with other techniques to determine the intensity of infection. J Med Entomol. 2008;45(1):133–138. PubMed
Grybchuk D, Macedo DH, Kleschenko Y, et al. The first non-LRV RNA virus in Leishmania. Viruses. 2020;12(2):168. PubMed PMC
Leštinová T, Vlková M, Votýpka J, et al. Phlebotomus papatasi exposure cross-protects mice against leishmania major co-inoculated with Phlebotomus duboscqi salivary gland homogenate. Acta Trop. 2015;144:9–18. PubMed
Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–682. PubMed PMC
Sádlová J, Price HP, Smith BA, et al. The stage-regulated HASPB and SHERP proteins are essential for differentiation of the protozoan parasite Leishmania major in its sand fly vector, phlebotomus papatasi. Cell Microbiol. 2010;12(12):1765–1779. PubMed PMC
Rogers ME, Chance ML, Bates PA. The role of promastigote secretory gel in the origin and transmission of the infective stage of Leishmania mexicana by the sandfly Lutzomyia longipalpis. Parasitology. 2002;124(5):495–507. PubMed
Fiebig M, Kelly S, Gluenz E. Comparative life cycle transcriptomics revises Leishmania mexicana genome annotation and links a chromosome duplication with parasitism of vertebrates. PLoS Pathog. 2015;11(10):e1005186. PubMed PMC
Nugent PG, Karsani SA, Wait R, et al. Proteomic analysis of Leishmania mexicana differentiation. Mol Biochem Parasitol. 2004;136(1):51–62. PubMed
Fong D, Chang KP. Tubulin biosynthesis in the developmental cycle of a parasitic protozoan, Leishmania mexicana: changes during differentiation of motile and nonmotile stages. Proc Natl Acad Sci U S A. 1981;78(12):7624–7628. PubMed PMC
Fong D, Wallach M, Keithly J, et al. Differential expression of mRNAs for alpha- and beta-tubulin during differentiation of the parasitic protozoan Leishmania mexicana. Proc Natl Acad Sci U S A. 1984;81(18):5782–5786. PubMed PMC
Fong D, Chang KP. Changes in tubulin mRNAs during differentiation of a parasitic protozoan Leishmania mexicana. Ann N Y Acad Sci. 1986;466:129–131. PubMed
Jackson AP, Vaughan S, Gull K. Comparative genomics and concerted evolution of β-tubulin paralogs in Leishmania spp. BMC Genomics. 2006;7(1):137. PubMed PMC
Ramírez CA, Requena JM, Puerta CJ. Alpha tubulin genes from Leishmania braziliensis: genomic organization, gene structure and insights on their expression. BMC Genomics. 2013;14(1):454. PubMed PMC
Ishemgulova A, Hlavacova J, Majerova K, et al. CRISPR/Cas9 in Leishmania mexicana: a case study of LmxBTN1. PLoS One. 2018;13(2):e0192723. PubMed PMC
Donnelly MLL, Luke G, Mehrotra A, et al. Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal ‘skip’. J Gen Virol. 2001;82(5):1013–1025. PubMed
Atkins JF, Wills NM, Loughran G, et al. A case for “StopGo”: reprogramming translation to augment codon meaning of GGN by promoting unconventional termination (Stop) after addition of glycine and then allowing continued translation (Go). RNA. 2007;13(6):803–810. PubMed PMC
Kim JH, Lee SR, Li LH, et al. High cleavage efficiency of a 2A peptide derived from Porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One. 2011;6(4):e18556. PubMed PMC
Tran KD, Rodriguez-Contreras D, Vieira DP, et al. KHARON1 mediates flagellar targeting of a glucose transporter in Leishmania mexicana and is critical for viability of infectious intracellular amastigotes. J Biol Chem. 2013;288(31):22721–22733. PubMed PMC
Tran KD, Vieira DP, Sanchez MA, et al. Kharon1 null mutants of Leishmania mexicana are avirulent in mice and exhibit a cytokinesis defect within macrophages. PLoS One. 2015;10(8):e0134432. PubMed PMC
Bates PA. Complete developmental cycle of Leishmania mexicana in axenic culture. Parasitology. 1994;108(1):1–9. PubMed
Kraeva N, Leštinová T, Ishemgulova A, et al. LmxM.22.0250-encoded dual specificity protein/lipid phosphatase impairs Leishmania mexicana virulence in vitro. Pathogens. 2019;8(4):241. PubMed PMC
Glorieux C, Calderon PB. Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biol Chem. 2017;398:1095–1108. PubMed
Purdue PE, Castro SM, Protopopov V, et al. Targeting of human catalase to peroxisomes is dependent upon a novel C-terminal peroxisomal targeting sequence. Ann N Y Acad Sci. 1996;804(1 Peroxisomes):775–776. PubMed
Edwards C, Lloyd D. Subcellular fractionation by differential and zonal centrifugation of the trypanosomatid Crithidia fasciculata. J Gen Microbiol. 1977;100(2):339–346. PubMed
Poulin R, Randhawa HS. Evolution of parasitism along convergent lines: from ecology to genomics. Parasitology. 2015;142(S1):S6–S15. PubMed PMC
Butenko A, Hammond M, Field MC, et al. Reductionist pathways for parasitism in euglenozoans? Expanded datasets provide new insights. Trends Parasitol. 2021;37(2):100–116. PubMed
Jackson AP, Otto TD, Aslett M, et al. Kinetoplastid phylogenomics reveals the evolutionary innovations associated with the origins of parasitism. Curr Biol. 2016;26(2):161–172. PubMed PMC
Harkins KM, Schwartz RS, Cartwright RA, et al. Phylogenomic reconstruction supports supercontinent origins for Leishmania. Infect Genet Evol. 2016;38:101–109. PubMed
Kraeva N, Butenko A, Hlaváčová J, et al. Leptomonas seymouri: adaptations to the dixenous life cycle analyzed by genome sequencing, transcriptome profiling and co-infection with leishmania donovani. PLoS Pathog. 2015;11(8):11:e1005127. PubMed PMC
Jirků M, Yurchenko V, Lukeš J, et al. New species of insect trypanosomatids from Costa Rica and the proposal for a new subfamily within the Trypanosomatidae. J Eukaryot Microbiol. 2012;59(6):537–547. PubMed
Kostygov AY, Yurchenko V. Revised classification of the subfamily Leishmaniinae (Trypanosomatidae). Folia Parasitol. 2017;64:020. PubMed
Garcia-Estrada C, Perez-Pertejo Y, Ordonez D, et al. Characterization of the 5′ region of the Leishmania infantum LORIEN/MAT2 gene cluster and role of LORIEN flanking regions in post-transcriptional regulation. Biochimie. 2008;90(9):1325–1336. PubMed
Charest H, Zhang WW, Matlashewski G. The developmental expression of Leishmania donovani A2 amastigote-specific genes is post-transcriptionally mediated and involves elements located in the 3ʹ-untranslated region. J Biol Chem. 1996;271(29):17081–17090. PubMed
Ryan MD, King AM, Thomas GP. Cleavage of foot-and-mouth disease virus polyprotein is mediated by residues located within a 19 amino acid sequence. J Gen Virol. 1991;72(11):2727–2732. PubMed
Koh HG, Kang NK, Kim EK, et al. Advanced multigene expression system for Nannochloropsis salina using 2A self-cleaving peptides. J Biotechnol. 2018;278:39–47. PubMed
Garcia ES, Castro DP, Figueiredo MB, et al. Immune homeostasis to microorganisms in the guts of triatomines (Reduviidae)–a review. Mem Inst Oswaldo Cruz. 2010;105(5):605–610. PubMed
Diaz-Albiter H, Mitford R, Genta FA, et al. Reactive oxygen species scavenging by catalase is important for female Lutzomyia longipalpis fecundity and mortality. PLoS One. 2011;6(3):e17486. PubMed PMC
Diaz-Albiter H, Sant’Anna MR, Genta FA, et al. Reactive oxygen species-mediated immunity against Leishmania mexicana and Serratia marcescens in the sand phlebotomine fly Lutzomyia longipalpis. J Biol Chem. 2012;287(28):23995–24003. PubMed PMC
Da Silva R, Sacks DL. Metacyclogenesis is a major determinant of Leishmania promastigote virulence and attenuation. Infect Immun. 1987;55(11):2802–2806. PubMed PMC
Mallinson DJ, Coombs GH. Interaction of Leishmania metacyclics with macrophages. Int J Parasitol. 1989;19(6):647–656. PubMed
Giraud E, Martin O, Yakob L, et al. Quantifying Leishmania metacyclic promastigotes from individual sandfly bites reveals the efficiency of vector transmission. Commun Biol. 2019;2(1):84. PubMed PMC
Formation and three-dimensional architecture of Leishmania adhesion in the sand fly vector
Comparative Analysis of Three Trypanosomatid Catalases of Different Origin
Analyses of Leishmania-LRV Co-Phylogenetic Patterns and Evolutionary Variability of Viral Proteins